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In this paper, we summarize our recent work on gyrokinetic applications in electron—
positron and non-neutral plasma. The electrostatic stability of electron—positron plasmas
was investigated in dipole and slab geometries, with and without ion admixture. The
gyrokinetic dispersion relation was derived and, for the slab case, extended to non-neutral
plasmas. Here, we further extend the gyrokinetic formulation to the relativistic regime.
Electron—positron plasmas are found to be remarkably stable as long as perfect symmetry
between the two species prevails, but instabilities appear if this symmetry is broken, for
instance by the introduction of impurities or magnetic curvature.
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1. Introduction

Natural electron—positron plasmas can be found in many places in the Universe.
Normally, these are highly energetic locations, such as pulsar magneto-spheres
(Spitkovsky 2008) or Poynting-flux dominated astrophysical jets (Lyutikov & Blackman
2001), since photons with very high energies or very strong electromagnetic fields are
needed for the pair creation. Compact objects, such as pulsars, can provide the energy
sufficient for the pair creation, due to their large masses, extremely fast rotations and very
strong magnetic fields. Charged particles drifting in such strong inhomogeneous magnetic
fields can provide high-energy gamma radiation via bremsstrahlung. Astrophysical pair
plasmas are normally not ‘pure’ and contain other species (Pétri 2016), e.g. protons
or iron ions. These plasmas are normally relativistic and may coexist with strong
radiation (Uzdensky 2016; Cruz et al. 2021). Charge neutrality of the plasmas surrounding
magnetized rotating compact objects (e.g. pulsars) is often violated (Pétri 2009).

Recently, there has been great interest in the production of pair plasmas in a laboratory.
Relativistic pair plasmas with properties similar to the astrophysical ones can be obtained
in laser experiments where pairs are produced via an interaction of laser beams with a gold
target (Chen & Fiuza 2023). In contrast, magnetically confined pair plasmas (Stoneking
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2 A. Mishchenko and others

et al. 2020) will employ external sources of positrons and therefore have low temperatures
(few eV). These plasmas are non-relativistic and standard magnetic fusion plasma theory
and numerical tools can readily be applied to them. They can be confined in magnetic
dipole traps or stellarators and are not necessarily quasineutral (since plasmas with an
arbitrary degree of charge neutrality can be confined in an external magnetic field). A
well-established application of laboratory non-neutral plasmas with a large number of
positrons (Surko & Greaves 2004) is the field of antimatter research which includes
positronium (Cassidy & Mills 2007) and antihydrogen (Fajans & Surko 2020) production.
An important technique in the antihydrogen creation is the cooling of antiprotons via
interactions with an electron gas (Rolston & Gabrielse 1989). Stability of such complex
many-component plasmas may also be addressed borrowing well-established tools from
the magnetic-confinement research.

Gyrokinetic theory (Brizard & Hahm 2007; Catto 2019) is a reduced description of the
low-frequency dynamics in magnetized plasmas. It is a standard model used for turbulence
(Garbet et al. 2010) and energetic-particle-driven instabilities (Chen & Zonca 2016) in
magnetic fusion research. Starting around 2009, gyrokinetic theory has also been applied
to astrophysical systems (Schekochihin et al. 2009), such as the solar wind and accretion
disks. A considerable amount of analytical work and dozens of numerical codes exist
that employ gyrokinetic theory in magnetic fusion and astrophysical-plasma contexts.
It seems promising to apply gyrokinetic theory and numerical tools also for antimatter
(electron—positron) and non-neutral (e.g. electron—antiproton) plasma problems. An
extension of gyrokinetic theory to the relativistic regimes would be desirable for the
astrophysical applications involving compact objects and for the laboratory laser plasmas.

It has been shown (Stenson et al. 2017) that the wave dynamics drastically simplifies in
pair plasmas in the cold-plasma limit. A natural question arises as to whether this strong
simplification still holds in the gyrokinetic regime. Since the confinement theorem (Dubin
& O’Neil 1999) does not apply to quasineutral plasmas, a cylindrical configuration, such as
the Penning trap, is not an option for confinement of plasma containing both positively and
negatively charged particles. Toroidal configurations are required such as dipoles (Saitoh
et al. 2014) or stellarators (Pedersen et al. 2012). Both these options are being currently
pursued in ongoing laboratory projects (Saitoh et al. 2014; Stenson 2019). The toroidal
geometry violates pair-plasma symmetry since the curvature drift direction depends on
the sign of the particle charge. This may lead to collective instabilities, as has recently
been shown for the gyrokinetic regime (Mishchenko, Plunk & Helander 2018a). Naturally,
these collective micro-instabilities can lead to particle and energy turbulent transport
which can be harmful or beneficial depending on the problem at hand. The role of the
magnetic-field configuration in pair-plasma stability and resulting confinement is an issue
of practical relevance for the experiments under construction (Saitoh et al. 2014; Stenson
2019). Our recent work on gyrokinetic applications in electron—positron and non-neutral
plasmas includes the following:

(i) The investigation of the electrostatic stability of electron—positron plasmas
(Mishchenko et al. 2018a) in a dipole geometry. Here, the kinetic dispersion
relation for sub-bounce-frequency instabilities has been derived and solved. For
the zero-Debye-length case, the stability diagram has been found to exhibit
singular behaviour. However, when the Debye length is non-zero, a fluid mode
appears, resolving the observed singularity. It has been demonstrated that both the
temperature and density gradients can drive instability.

(i) The study of the gyrokinetic stability of electron—positron plasmas contaminated
by ion (proton) admixture (Mishchenko et al. 2018b) in a slab geometry. The
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appropriate dispersion relation has been derived and solved. The ion-temperature-
gradient-driven instability (ITG), the electron-temperature-gradient-driven instability
(ETG), the universal mode and the shear Alfvén wave were considered.

(iii)) The investigation of the confining properties of dipole and stellarator geometries,
ranging from pure electron plasmas through to quasineutral. We have shown
(Kennedy & Mishchenko 2019) that non-neutral plasmas can be unstable with
respect to both density-gradient- and temperature-gradient-driven instabilities.

(iv) The numerical study of the gyrokinetic stability of plasmas in different magnetic
geometries (Kennedy et al. 2020). The stability of plasmas has been examined
varying the mass ratio between the positive and negative charge carriers, from
conventional hydrogen plasmas through to electron—positron plasmas. Stability
was studied for prescribed temperature and density gradients in an axisymmetric
tokamak and a non-axisymmetric quasi-isodynamic stellarator configurations.

(v) The linear gyrokinetic simulations of magnetically confined electron—positron
plasmas have been performed (Kennedy et al. 2018) in the dipole geometry and
parameter regimes likely to be relevant for upcoming laboratory experiments
(Stoneking et al. 2020). Our results have demonstrated the existence of unstable
entropy modes and interchange modes in pair plasmas.

The paper is organized as follows. In § 2, we review the non-relativistic gyrokinetic
theory for pair and non-neutral plasmas. In § 3, the relativistic extension is derived. In § 4,
we draw our conclusions.

2. Non-relativistic case
2.1. Slab geometry

Following Helander (2014) and Helander & Connor (2016), it is convenient to write the
gyrokinetic distribution function in the form

eq(9)
Til

ea(P)
T,

Ja = Jao (1— >+ga =fao t+far, Jua=— fao + &a- (2.1)

Here, f,o is a Maxwellian, a is the species index with @ = e corresponding to electrons,
a = p to positrons and a = i to the ions, ¢, is the electric charge, f,; is the perturbed part of
the distribution function and g, is the non-adiabatic part of f,;. The linearized gyrokinetic
equation in this notation is

y k
V8, + (0 — Wai)8a = ;—Jo ( le) (0 — @) (9 — viADfao (2.2)

with J; the Bessel function, w the complex frequency of the mode, w., the cyclotron
frequency, k; the component of the wavenumber perpendicular to the ambient magnetic
field, vy and v, the parallel and perpendicular velocities, ¢ the perturbed electrostatic
potential and A, the perturbed parallel magnetic potential in the Coulomb gauge. The
plasma pressure has been assumed small enough that magnetic-field fluctuations parallel
to the equilibrium field can be neglected. We consider an unsheared slab geometry with
coordinates (x,y, z), a uniform magnetic field B = Be, pointing in the z-direction and
plasma profiles which are non-uniform in the x-direction. In the slab geometry, the drift

https://doi.org/10.1017/50022377823000764 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377823000764

4 A. Mishchenko and others
frequency wq, = 0. Other notations used are

2

3 / /
a)Ia = Wyyq |:1 + Na (UUT - E)i| s V= Uﬁ + Ui, kJ_ = k)% + k)Z (2.361—6‘)

tha

_ kT,dinn, din7, 27, e.B

s Na Uthg = s Weqg =
e,B dx

Wiq == 5 .
dln n, my my

(2.4a-d)

Here, m, is the particle mass, n, is the ambient particle density and the sign convention is
such that w,; < 0, w,, < 0, and w,, > 0 for dInn,/dx < 0. For simplicity, we will assume
ke = 0 and k, = k, throughout the paper. Taking the Fourier transform along the parallel
coordinate, we obtain

kLUL

(@ — kyv))ga = %Jo ( ) (0 — o) (@ — viA)fo- (2.5)

ca

This equation is trivially solved

®— o efo
= —4 J —v4y). 2.6
8 w— kv, T, 0@ —vA)) (2.6)

The gyrokinetic quasineutrality condition and the parallel Ampere’s law are

nge’ M
(Z - +eoki> ¢ = Zea/galod3v, A= k_fzeufv,,ga Jod*v. (2.7a,b)
a a a s a

Here, €, is the electric permittivity and pg is the magnetic permeability of vacuum. For
the electromagnetic dispersion relation, it is convenient to define

1 w—w!
Wy = — 3t ov] dv. 2.8
Vg / w — kv ofeovj &0 =9
Taking velocity-space integrals, one finds
xa xalla 3
sz = é‘a {(1 - @ )ZnaFOa + Drall |:_ZnaF0a - ZnaF*a - Zn+2,aF0a:|} . (29)
w w 2
Here, the following notation is employed:
1 e’n 1 1 m,T,
=47 a’ — = —_, ba=k2 2’ = a4 2.10a-d
B el B Z 2 Loar Pae= 0B ( )
F*a = FOa - ba [FOU - Fla] s FOa = IO(ba) e_bu’ Fla =1 (ba) e_ha (211)
1 [®xe ™ dx w
Zna = _/ ) Ca = P (212)
Vil x=¢ kyvina

with I, and [; denoting the modified Bessel functions of the first kind. Note the presence
of the Debye scale in (2.7a,b) and (2.10a—d) usually ignored in gyrokinetic applications
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for fusion plasmas already at the level of the phase-space Lagrangian. The resulting
electromagnetic dispersion relation in slab geometry reads

A2 B
2 32 E D W, 2 : a
1+kLlD+ /12 Oa 1-2 k2 2”2a
a Da 1P,

+2Z Wluumaz b Wia _, (2.13)

2
k7 p? Vg

Here, B, = pon.T,/B>. The electrostatic limit corresponds, as usual, to 8, = 0.

This dispersion relation has been solved in Mishchenko et al. (2018b). It was found
that pair plasmas can support the gyrokinetic ion-temperature-gradient-driven (ITG),
electron-temperature-gradient-driven (ETG) and universal instabilities even in a slab
geometry if the proton fraction exceeds some threshold. In practice, however, this threshold
is usually quite large, hopefully large enough to keep the proton content below this value
in pair-plasma experiments (Pedersen er al. 2012). These results extend the finding of
Helander (2014) that pair plasmas are stable to gyrokinetic modes in the absence of
magnetic curvature for the cases with small to moderate proton contamination. We find,
however, that pure pair plasmas can have temperature-gradient-driven instabilities, if the
electron and the positron temperature profiles differ. In reality, such profiles are unlikely
in steady state, since the characteristic time of energy exchange between the species is
comparable to the equilibration time of each species. Generalization of the local dispersion
relation to the case of non-neutral plasma is straightforward (Kennedy & Mishchenko
2019) providing that effects of a strong electric field, normally existing in non-neutral
plasmas, can be cast in the form of a simple Doppler shift for the frequency. The dispersion
relation for this shifted frequency coincides with (2.13).

2.2. Dipole geometry

In a dipole geometry, the drift frequency wy, # 0, so that the gyrokinetic equation (2.2)
has to be used where now

5 bx VB m,v3
Wi = k1 * Vgo, Vo = (mvH + uB) B iy (2.14)
k,T, dinn,

ki =k,V{ +k,Vo, = (2.15a,b)

e Ay’

with i the poloidal flux and ¢ the polar (toroidal) angle. We will assume electrostatic
perturbations (A, = 0) and the drift-kinetic limit, i.e. kj v, /e, < 1 so that Jo & 1.

Expanding the distribution function g, = g + ¢! + ... in the small parameter &, =
w/w, with wy, the bounce frequency, we obtain in the lowest order

y Vel =0, (2.16)

implying that g” coincides with its bounce average, g = g, where the bounce-average
operation is defined as
()= % (- (2.17)
Un

Here, [ is the arc length measured along a magnetlc—ﬁeld line and the integration is
performed between bounce points for trapped particles, and over the entire closed field
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line for passing particles. Applying the bounce average at the next order in &,, we obtain

_ eap
(0 — D)8y = (@ — a):a)TﬁzO’ (2.18)

where we have neglected magnetic fluctuations. We assume the background temperature
and the density profiles of the electrons and the positrons to be identical, and invoke the
Poisson equation for the charge density perturbations

n.e’
(Z T +eoki) p=> ea/gs)) d*v. (2.19)

a=e,p a=e,p

We find that the perturbed electrostatic potential satisfies the equation
2

1 [ & — ogo! -
(1+k2) ¢ = — / g . (2.20)
0

2 _
w* — @

Here, and in the following, we use the notation o, = ®,,, W, = Wy, Vg = Dge, Ny = N,

Ty = T, and the Debye length is defined as usual, Ap = \/€0To/(2ng €?).

We have solved this equation in Mishchenko et al. (2018a) where the drift-kinetic
stability of a pair plasma confined by a dipole magnetic field has been studied. It has been
found that pair plasmas can be unstable in a dipole geometry even for perfectly coinciding
electron and positron profiles, in the absence of any contamination, and for quasineutral
plasmas. The reason for the instability is related to the fact that the curvature drift depends
on the sign of the particle charge, which is opposite in the case of the electrons and
positrons. A detailed study of instabilities in dipole pair plasmas has been carried out in
Mishchenko et al. (2018a). In contrast, one needs some violation of the symmetry between
the species for instability in a slab.

3. Relativistic plasmas
3.1. Relativistic gyrokinetic equation

The relativistic gyrokinetic equation has been derived in Brizard & Chan (1999) as

Wy | (B oHy | bxVHy\ . B -VHy
ot BW 8PH E,IB]T BW 8pH

=0. (3.1)

Note that the CGS unit system is employed throughout this section since it is more
convenient than the SI (MKS) units in relativistic calculations. To the first order in the
perturbation amplitude, the gyrokinetic relativistic Hamiltonian is given by the expression

1 [2uB
H, = ymac® + e, <¢ S Ty i} -A>, (3.2)
ymuc yc\ m,

with _L the unit vector directed along the gyro-motion of the particle and the gyro-average
operation (¢) = § ¢(R + p) d9/(27) defined as usual for the gyro-radius

1 2uB e,B
P = 'u ;, Wpq = ) (33)

[O): 7 mg mg,c

where ¢ = (e, cos6 — e, sinf) is the unit vector directed along the gyro-radius rotating
in the fixed basis (e, e;, b) and wp, is the rest-mass gyro-frequency. Following Brizard &
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Chan (1999), the gyrokinetic relativistic Lorentz factor is

2 2B :
y =1+ ’Zzz\/u “2+<ﬂ), P =pi+2muB,  (4)
m-c m,c m,C
and
. 1 . . e B
B"=B+c—=Vxb, B/ =b-B, b :E. (3.5a—c)
€a I

We can write

OH,, P eq (A)) eap
L =( L e )+ DAy +VamaB L) G6)
4 mgy m, yc nycy

) e, e, [2uBVB
VHy = |mc + (PrA) +V2mauB (L - 4)) | Vy = = [0 a)
yzmac yc nyg 2B
2m,uB uVB
+e, (V(¢> ~ Py - Yy ay), vy =520 @)
ymc ymc mc?y

3.2. Electrostatic dispersion relation

For electrostatic waves 4 = 0. In this case, the linearized relativistic gyrokinetic equation
in a slab geometry takes the form

8f1a+ P bovfmzeab.v((p)am_cbxv<¢>>

- VFy,. 3.8
ot myy op| B . (5-8)

For the background, we can choose the Maxwell-Jiittner distribution function describing
the relativistic ideal gas, see Jiittner (1911), Zenitani (2015) and Cercignani & Kremer
(2012),

-1
Foo = N, exp —i,/pz—i-m%2 N, = Moa L. K, Mac” . (3.9
¢ ¢ T, a | C dmmied [ myc? T,

a

Here, K;(z) is the modified Bessel function of the second kind which has the asymptotic

behaviour
[Tt
K>(z) ~ z—zefz, z> 1. (3.10)

Using this asymptotic expression, we can recover the usual Maxwellian distribution
function for T, < mc? and p <« mc. The distribution function (3.9) neglects the pair
formation and quantum effects but it can be used as an approximation for already created
relativistic electron—positron plasmas. Taking derivatives, we obtain

0Foa  py Fou  0Fy, B Fy,

= , = (3.11a,b)
ap myy T, o y T,
VN, ymu,* (VT, Vy
VF, = 4 ~ ) F,. (3.12)
N, T, T, Y

Note that Vy will contribute only the case of an inhomogeneous magnetic field. For a
uniform magnetic field considered in this section, Vy = 0. Using these expressions, the
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relativistic gyrokinetic equation can be written in the form

agd + P v - eaFOa (8<¢> CTa VFoa x b

18a = T

V(o) ), 3.13
| muy T, \at eB Fo <¢>) 19

with the usual definition of the non-adiabatic part of the distribution function g,

eq(9) eq(9)
T, T,

ﬁzZFOu (1_ )+ga:FOa+flaa fla:_ F0a+ga~ (314)

For plane waves, g, = g, exp(iwt — ik - x) and ¢ = <Z> exp(iwt — ik « x), we can write

VFOa

Oa

<w_M) B = (0—al) Td)FOaJO(kL,o) ol = (3.15)

mqy

Following Brizard & Chan (1999), we write the gyrokinetic Maxwell equations in the
low-frequency limit neglecting the displacement current

——VZA“ Zea / R —— r [fm + {81, Fo, } (3.16)
5 =L / Gao. w=p— L4 (s Foy~ B3,
Wga ymc myc 060 ou
- do
v =y R+ p)— (¥), <w>=7§w<R+p>g, (3.18)

with A = (¢, A) the perturbed four-potential, p* = (ym,c, p) the four-momentum,
p=pb+2m,uBL, d°Z = m,B} dRdp; dudf and 5} = §(R+ p — x).
For electrostatic perturbations, only the quasmeutrahty equation has to be solved

—Vip= e =Y / d6zag‘“’;">Fom b=6-) (19

with the perturbed density of the gyro-centres n, = [d°Z 5:)fla. In terms of the
non-adiabatic part of the distribution function, the quasineutrality condition reads

- —qus + Zea / &z e“¢F0a Zea / &z g.. (3.20)

For plane waves, we can write as usual
1 2 7 65(2; 3
4—’%1’ + Eu T, "= Ea €q / Joga d'p, (3.21)

with d*p = 2mm, B dp; du and ng, = [ &p Fo,. This results in the relativistic dispersion
relation for gyrokinetic electrostatic waves

1+ K228+ Z -0, (3.22)

Da
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with the notation

T
WOa:_L/LJZFOadS , /1?) = Ta , i: L
ny, w k”p”/(may) a 43'[631’1(),1 /1%) P /l%)a

(3.23a—c)
One can easily see that the effect of spatial non-uniformity is proportional to w! . It
disappears in a pure relativistic pair plasma, similarly to the non-relativistic case, providing
the electron and positron profiles are the same and magnetic drifts are absent. One can
see that the resonance structure o = kyp,/(m,y) appearing in the function W, is more
complex than in the non-relativistic case (recall that y depends both on p| and the magnetic
moment ). Such integrals involving the Maxwell-Jiittner distribution cannot simply be
expressed through the plasma dispersion function, as they were in the non-relativistic case.
Note that the relativistic generalization of the plasma dispersion functions has extensively
been studied in the weakly relativistic limit (Robinson 1987; Castejon & Pavlov 2006) for
electron cyclotron heating applications.

3.3. Electromagnetic dispersion relation

Now let us address relativistic gyrokinetic theory in the electromagnetic regime. For
simplicity, we consider slab geometry and neglect the compressional component of the
magnetic field perturbation assuming 4 ~ A b . In this case, we can write

0H,, p e A 2uB p
o L Ll (1 +—2>, VHy =eV(¥), ¥ =¢— ——A
P mgy — m,Ccy mgC myCcy
(3.24a,b)
In a slab, the electromagnetic relativistic gyrokinetic equation takes the form

0f1a daFo, b x VFy,
Ya o Py gh o, (p2F00 4 DX VEWY Gy (3.25)
ot muy apy e.B

The relativistic parallel Ampere’s law reads

1
- Vi :Zea/d6283 P [f,a {S1, Foa} +

e
c b-. {R +p, FOa} . (326)

Evaluating the Poisson brackets (Brizard & Chan 1999) in the usual way, we obtain

eaA” e,y ~ 8F()a + eaAH 8F0a

b-{R , Foal = fia
. {R+p, Foa} f1+BW8M ¢ op

Jia + {81, Foa} + (3.27)

Substituting the partial derivatives of the Maxwell-Jiittner distribution function, computed
in (3.11a,b) and (3.12), results in

ey ~ aFOa eaAH aFOa ea& pH <A||>

= ——LFp — ————""Fpa. 3.28
B v o * c apy 7, ° macy 7, ° (028)
Finally, the parallel Ampere’s law for relativistic plasmas takes the form
43‘[6 6 D ® maFou 47 -
d°zs;, A —ViA = — a 3.29
mcz/ ( 7. A Vi = a Ju (3.29)
Jila = € f L b (3.30)
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It is straightforward to combine this equation with the relativistic quasineutrality condition
and the gyrokinetic equation in the local limit in order to obtain the relativistic
generalization of the electromagnetic dispersion relation (2.13).

4. Conclusions

In this paper, we have summarized our recent work on gyrokinetic applications
in electron—positron and non-neutral plasma (Mishchenko et al. 2018a; Kennedy &
Mishchenko 2019). The gyrokinetic stability of electron—positron plasmas contaminated
by ion (proton) admixture has been studied in Mishchenko et al. (2018b) in a slab geometry.
The appropriate dispersion relation was derived and solved. The destabilization of ITGs,
ETGs and universal modes at finite ion contamination were considered. It has been shown
in Kennedy & Mishchenko (2019) that drift instabilities can be excited in non-neutral
plasmas. In Mishchenko et al. (2018a), the electrostatic stability of electron—positron
plasmas has been investigated in the dipole geometry. Linear gyrokinetic simulations of
magnetically confined electron—positron plasmas were performed in dipole (Kennedy et al.
2020) and stellarator (Kennedy et al. 2018) geometries.

Similarly to the cold-plasma case (Stenson et al. 2017), a drastic reduction of the
unstable solutions is found for pure pair plasma also in the gyrokinetic regime. Pure pair
plasmas are gyrokinetically stable for all gradients if the symmetry between the species
is not violated. However, any species asymmetry can drive gyrokinetic instabilities. The
asymmetry can be caused by a contamination (e.g. with protons or other ion species),
plasma non-neutrality or different electron and positron temperature profiles. Finally,
magnetic curvature can cause gyrokinetic instabilities of pair plasmas too, since the
magnetic drift depends on the sign of the particle charge which is opposite for the electrons
and positrons. Hence, toroidally confined pair plasmas (in a dipole or a stellarator trap) can
be turbulent. This turbulence may lead to the self-organization process such as the inward
pinch or zonal flows.

In this paper, the dispersion relation for the slab case is generalized to the relativistic
regime. It is found that the remarkable pair-plasma stability can be extended to relativistic
applications with the same limitations of a perfect species symmetry and absence
of curvature drifts. Formally, relativistic modifications of the dispersion relation and
other basic equations (the gyrokinetic and Maxwell equations) are rather moderate.
However, the parallel resonance structure becomes more complex due to the presence
of the relativistic Lorentz factor which depends both on the parallel momentum p;
and the magnetic moment w. Also, the relativistic ambient distribution function (such
as the Maxwell-Jiittner distribution function) leads to complications since the usual
plasma-dispersion-function formalism cannot be applied. Some analytical progress can be
made in the weak-relativistic limit but the calculations become quickly very cumbersome.

One limitation of this extension is that, as in Brizard & Chan (1999), only the special
relativity contributions have been included in this paper. However, for astrophysical
applications in areas of extreme gravitation, such as the surroundings of black holes,
general relativity must be used. The appropriate extension of the gyrokinetic theory
is being elaborated (Beklemishev & Tessarotto 2004). Another limitation is in the
Maxwell-Jiittner distribution function employed in the paper. It assumes some agent, such
as Coulomb collisions, establishing a local thermodynamic equilibrium and neglects pair
creation and annihilation, which are processes inherent to electron—positron plasmas at
high enough energy density. In future, a formulation based on the Dirac equation has to
be developed in order to account for these complications (Uzdensky & Rightley 2014).
Finally, radiation and its reaction on plasma particles may play an important role, for
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example affecting the reconnection dynamics (Uzdensky 2016). Such effects seem to be
out of scope of the regular gyrokinetic theory because of its low-frequency ordering.
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