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SYMMETRIC SPECTRAL FACTORISATION OF
SELF-ADJOINT RATIONAL MATRIX FUNCTIONS

G.J. GROENEWALD AND M.A. PETERSEN

For a self-adjoint rational matrix function, not necessarily analytic at infinity, the
existence of a right (symmetric) spectral factorisation is described in terms of a
given left spectral factorisation. The formula for the right spectral factor is given
in terms of the formula for the given left spectral factor. All formulas are based
on a special realisation of a rational matrix function, which is different from ones
that have been used before.

1. INTRODUCTION

It is well known that Wiener-Hopf and spectral factorisations of matrix and
operator-valued functions have numerous applications in analysis and electrical engi-
neering. Applications include singular integral equations (see [6, 10, 13]), Toeplitz
operators (see [8]), algebraic Riccati equations (see [14] and [15]) and model reduc-
tion for linear systems (see [1, 2]). Moreover, in the analysis of //oo-control problems,
spectral factorisation plays an important role (see for example, [11, 7]). In the latter
theories, the matrix functions are in general assumed to be rational, that is, their entries
are quotients of polynomials.

In this paper, we use the state space method (see [5]), which depends on the notion
of realisation and allows one to reduce problems concerning rational matrix functions
to ones in linear algebra involving constant matrices. By a realisation for a rational
matrix function W (which is analytic and invertible at oo) we mean a representation
for W of the form

(1) W{X) = I + C(X- A)~1B,

where A is an n x n matrix and B and C are nxm and mxn matrices, respectively.
Here / denotes the m x m identity matrix.

In [3], Ball and Ran showed how the state space method may be applied to rational
matrix functions (of the form (1)) which are analytic and invertible at infinity. We follow
a similar program as in [3] (see also [12]), but with a different representation. Indeed,
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in our case, the analysis is based on the following representation of the given rational
matrix function:

(2) W{X) = I + C{XG-A)'1B.

Here the matrix G is of the same order as A, the matrices B and C are as before and
the pencil XG - A is regular on the unit circle |A| — 1.

In this article, we extend a factorisation result of [3] to the general case. Given a
signed antispectral factorisation

with respect to the unit circle, where Y-(X) and its inverse are given in realisation
form, the aim is to find necessary and sufficient conditions for the existence of a signed
spectral factorisation

_

and give an explicit formula for a spectral factor X+(X) and its inverse in realisation

form.

The paper consists of three sections, including the introduction. The second section

summarises the preliminary notions and results. Section 3 contains the main factorisa-

tion result.

2. PRELIMINARIES

Firstly, we give terminology and notation. By a Cauchy contour 7, we mean
the positively oriented boundary of a bounded Cauchy domain in C. Such a contour
consists of a finite number of non-intersecting closed rectifiable Jordan curves. The set
of points inside 7 is called the inner domain of 7 and will be denoted by A + . The
outer domain of 7 is the set A_ — Coo \ A+. By convention 0 € A + and by definition
00 e A_.

Next, we consider operator pencils. Let X be a complex Banach space and let G
and A be bounded linear operators on X. For A € C, the expression XG — A is called
a (linear) operator pencil on X. Given a non-empty subset A of the Riemann sphere
Coo i we say that XG — A is A— regular if XG — A (or just G if A = 00) is invertible
for each A £ A. The spectrum of XG — A, denoted by a(G,A), is the subset of Coo
determined by the following properties: 00 € cr(G, A) if and only if G is not invertible,
and <T(G, A) nC consists of all those A € C for which XG - A is not invertible. Its
complement (in Coo) is the resolvent set of XG - A, denoted by p(G, A).
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Let W(X) be a rational mxm matrix function with neither a pole nor a zero on
7. Then W(X) admits a (right) Wiener-Hopf factorisation relative to 7, that is, W(X)
factorises as

(3) W(X) = W_(X)D(X)W+(X), A S 7 ,

where W+ and W_ are rational mxm matrix functions, W+ has neither a pole nor a
zero on A + U 7 and W_ has neither a pole nor a zero on A_ U 7 (which includes the
point 00), and

D(X) =diag(A^)JLi-

Here Ki ^ K2 ̂  • • • S5 nm
 a r e integers, which are uniquely determined by W (and 7),

and are called the (right) factorisation indices of W relative to 7 (see, for example,
[6]). The factorisation is called a (right) canonical Wiener-Hopf factorisation if and
only if the indices Ki,...,nm are all zero. If W admits such a factorisation, then
detW(X) ^ 0 for each A G 7. In general, this condition is only necessary but not
sufficient for the existence of a canonical factorisation. We refer to a (left) Wiener-Hopf

factorisation if in (3) the order of the factors are interchanged.

Throughout this paper, we shall consider the representation of the rational matrix
function W of the form (see [9]):

W(X) = I + C(XG-A)~1B, \X\ = 1.

The square matrices G and A are both of order n say, and B and C are matrices of

sizes nxm and mxn, respectively. Also, we assume that the pencil XG — A is regular

on the unit circle T = {A : |A| = 1}.

Put Ax = A - BC. Then detMK(A) ^ 0 if and only if XG - Ax is T-regular. In

this case,

~l = / - C ( A G - AxylB, |A| = 1,

(see [9]).

Next, we state [13, Theorem 2.3]. We shall present an application of this fac-
torisation theorem in the next section. The result involves left and right canonical
factorisation of rational matrix functions. A thorough discussion of these concepts can
be found in [4] and [3]. For instance, it is shown how to compute realisations for the
factors W- and W+ of a right canonical factorisation W — W- W+, if one is given a re-
alisation W(X) = I + C(X — A)~ B for W. Furthermore, it is known how to compute a
right canonical Wiener-Hopf factorisation VF(A) = W_(X)W+(X) in terms of a given left
canonical factorisation W(A) = y+(A)y_(A) where the left factors are given by Y+(A) =
I + C+(X- A+y1B+ and Y_(A) = I+ C-(X - A_)~1B_ . However, as in [13, Section
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2], we assume that the factors Y+ and Y_ of a left canonical Wiener-Hopf factorisa-
tion are given by the more general realisations Y+(X) = I + C+(XG+ — A+)~ B+ and
Y_(A) = I + C-(XG- — A-)~ £?_ . We then state a necessary and sufficient condition
for the existence of a right canonical Wiener-Hopf factorisation W(X) = W-(X)W+(X).

In this case, we provide explicit formulas for the factors W- and W+ in terms of the
realisations of Y+ and Y_. Let the inner and outer domain of the unit circle T be
denoted by ED+ and D_ , respectively. The result is as follows.

THEOREM 2 . 1 . Suppose that the rational m x m matrix function W(X) (not

necessarily analytic and invertible at oo) has a left canonical Wiener-Hopf factorisation

with respect to T, that is, W(\) factorises as

W(\) = Y+(\)Y.{\),

where

(4) Y+(\) = Im + C l

and

(5) r_(A) = / m + C

Set A* := A- ~ B-C- and A* := A+ - B+C+. Assume that AG_ - A- and

XG- — A* are n_ x n_ matrix pencils which are (E>_ U T) -regular and that AG+ — A+

and XG+ — A+ are n+ x n + matrix pencils which are (D+ U T) -regular. Let U and T

denote the unique solutions of the Lyapunov equations

(6) A*UG+ -G.UAl = B_C+

and

(7) G+TA_ - A+TG- = 5 + C _ .

Then W has a right canonical Wiener-Hopf factorisation if and only if the n_ x n_
matrix In_ — G-UG+T is invertible, or equivalently, if and only if the n_ x n_ matrix
In_ — UG+TG- is invertible, or equivalently, if and only if the n + x n + matrix In+ —
G+TG-U is invertible, or equivalently, if and only if the n+ x n+ matrix In+ —
TG-UG+ is invertible. In this case, the factors W_(X) and W+(X) for a right canonical
Wiener-Hopf factorisation are given by the formulas

(8) W_{X) = J + [C
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and

(9) W+(X) = I+[C+ + C-UG+][In+ - TG-UG+]-1(\G+ - A+)~l[B+ - G+TB.].

Their inverses are given by

(10)

H^A)- 1 = / - [C + TG'_ + C_][Jn_ -UG+TG-]-l(\G_ - AX_)~\-G-UB+ + B_],

and

(11) ^ ( A ) " 1 = I-[C++C^UG+](XG+ - A*yl[In+-G+TG-U}-1[B+-G+TB_).

3. ANTISPECTRAL VERSUS SPECTRAL FACTORISATION WITH RESPECT TO THE

UNIT CIRCLE

We assume that W(A) is a rational m x m matrix function which is analytic and

invertible on the unit circle {A : |A| = 1} such that VF (l/A) = W(X). In general,

in this section we shall use W* to denote the function W*{X) = W (l/A) . Observe,

that for a rational matrix function W, we have that W — W* if and only if W(X)

is self-adjoint for |A| = 1. Since by hypothesis, W(A) is self-adjoint and invertible on

the unit circle, it follows that W{elT^ has non-zero real eigenvalues, that is, W(elT)

must have a constant number (say p) of positive eigenvalues and q = m—p of negative

eigenvalues for all real r .

By a signed antispectral factorisation of W (with respect to the unit circle) we

mean a factorisation of the form:

where V_(A) is analytic and invertible on the exterior of the unit disc D_ = {A : |A| 2?
1}. By a signed spectral factorisation of W (with respect to the unit circle) we mean a
factorisation of the form:

W(X) = X*+(X

where X+(X) is analytic and invertible on the closed unit disc D + = {A : |A| ^ 1}.

The problem which we consider here, may be viewed as a symmetrised version of
the one analysed in [13]. Indeed, given a signed antispectral factorisation
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find necessary and sufficient conditions for the existence of a signed spectral factori-
sation. In this case, give an explicit formula for a spectral factor X+(X), and its
inverse. In order to achieve this, we need the fact that a function W, which is self-
adjoint and invertible on the unit circle, has a signed spectral factorisation if and
only if it has a right canonical Wiener-Hopf factorisation with respect to the unit cir-
cle. In particular, if W(X) = W-(\)W+(\) is a right canonical factorisation then
W(X) = W*(X) = W+(\)W1(\) is also one. However, it is known that such factorisa-
tions are unique up to a constant invertible factor; hence W_(\) = W+(X)K, where K

is some non-singular m x m matrix, and W(A) = W+(\)KW+(X). Upon substituting
A = 1, we get that K = W ^ l ) " 1 ^ ! ) ^ ^ ) " 1 is self-adjoint (and invertible), so as
before K has p positive and q negative eigenvalues. Then K factors as:

for some invertible m x m matrix E. Thus

is a signed spectral factorisation, where X+(\) = EW+(X). By using these observations
and Theorem 2.1, we obtain an analogous result for signed spectral factorisation.

THEOREM 3 . 1 . Suppose that the rational mx m matrix function W(X) =

W* (A) has a signed antispectral factorisation

where

F_(A) = y_(oo)[Jm + C

We may asssume that AG_ — A- and XG- — A*i are n- x n_ matrices with spectra

in the open unit disc D + . Here A^_ := A- — B_C_. We also assume that y_(oo)
and Y*{co) = VI (0)* are invertibie, so W(oo) and W(0) = W^oo)* are invertible. We

denote by ip the Hermitian matrix

Let U and T denote the unique solutions of the Stein equations

(12) 1{)* 1
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and

(13) A*_GTlTA- -

Then W has a signed spectral factorisation if and only if the n+ x n+ matrix In+ -T*U

is invertible, or equivalently, if and only if the n+ xn+ matrix In+ —TU* is invertible, or

equivalently, if and only if the n_ x n_ matrix In_ — U*T is invertible, or equivalently,

if and only if the n_ x n_ matrix /„_ - UT* is invertible, Suppose that this is the

case, and let

Z = (In+ - TU*)-1

and

Then the Hermitian matrix,

1 / . . / ,

+ B*_ZT*GZlB_ - B*_Z A*rlC*_xjj

is invertible and has p positive and q negative eigenvalues. Thus K has a factorisation

for an invertible matrix E. Then

is a signed spectral factorisation of W(X) where

(15) X+(X) = E{lm + [-V-1^* (4*)*"1 + C-UG*_-1].Z(XG*_-1 - AT1)'1

.{A*_-lC*_ip - G*_~lTB-}},

with inverse

(16) ^ ( A ) " 1 = [lm - l-^B'^A*)*-1 +C-UG*_-l][XG*_-1 - ( ^ ) * " 1 ] " 1

PROOF: We have that W(X) = y+(A)YL(A), where Y+(oo) = y_(oo) = Im. We
consider W(oo)~ W(X) and its left canonical Wiener-Hopf factorisation with respect
to T. Then

= y+(A)[y_(oo)-1y_(A)]
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where

o - V
y - ( o o ) '

By hypothesis,
y_(cx))"1y_(A) = im + C_(AG_ - A_)~1B_,

where G_,A_,i?_ and G_ are given. Then we have that

= [Im + B*_(X~1Gt - A*_)~lC*_]Y.(oo)*

= [Im - B*_A*_-lCl - B*_A*Sl(\G*_~l -

and hence it is clear that

W{oo) = Yl{oo) ^ _°7 j y_(oo) = (7

Therefore, we compute that

Clearly, W(oo)~ W(X) has a right canonical Wiener-Hopf factorisation if and only
if W(X) has one. By the remarks preceding this theorem, this is equivalent to the
existence of a signed spectral factorisation for W.

To obtain conditions for a right canonical factorisation for W(oo)~1W(X) we apply
Theorem 2.1 with G_,A_,S_ and C_ as given here, but with G+,A+,B+ and C+

given by:

B+ = Al^CliP, C+ = -lp-1

Next, we compute the associate operator,

A+ = A+ — B+C+

= A*Tl + A*_-lC*_B*_
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By replacing G+, A+ and C+ in the Lyapunov equation,

A*UG+ - G-UA* =B_C+,

with the expressions determined above, it is clear that (12) holds. Note that the solution
U of (12) is unique. Similarly, by replacing G+,A+ and B+ in equation (7), we find
that (13) holds and has the unique solution T. Also, from (12), we have

*~l(A*y - G-U = -B_^lB*_ = A^Gl^U*(A*)* - U*G*_.

Then, since (12) is uniquely solvable, it follows that

U = GZlU*G*_.

Similarly, from (13), we have
T = G*_T*GZl-

Furthermore, where Z = (Jn+ - TU*)~l and Z' - (ln+ - T*U)~l, we conclude that

T*G~_XZ* = ZT*GZ\ Z'*G_U = G-UZ'.

Thus the invertibility of In+ — T*U, or equivalently, the invertibility of In+ — TU*,

or equivalently, the invertibility of /„_ - U*T, or equivalently, the invertibility of

/„_ — UT* is a necessary and sufficient condition for the existence of a signed spectral

factorisation of W(X).

Then, by applying formulas (8)-(l l) of Theorem 2.1 we have that

is a right canonical Wiener-Hopf factorisation, with

(17) W+(\) = Im + [-i>~lB*_ {AlY~l + C-UGT1]-Z(XG*_-1 - Al'1)'1

and its inverse

(18) ^ ( A ) " 1 = Im- [-V"1^!.(A^)'"1 + (

.Z[A*SlC*_il> - G*SlTB_)

In particular,
W(\) = W(oo)W
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is a right canonical Wiener-Hopf factorisation of W. Thus, the same is true for

W(X) = W*(X) = Wl(X)Wl{X)W* (oo).

By the uniqueness of the right canonical factorisation, we know that there is a constant,
invertible matrix K such that

Therefore,

(19) W(X) = W;(X)KW+(X).

By calculating both sides of (19) at a point A on the unit circle and using the original
signed antispectral factorisation for W, we get that K is invertible with p positive and
q negative eigenvalues. Thus K can be factored as

for some invertible matrix E. Then (19) yields

W(X) = WZ(X)E* ^ _° ) EW+{X)

which is a signed spectral factorisation of W(A), where X+(X) = EW+(X). Employing

formulas (17) and (18), we obtain the required formulas (15) and (16) for -X+(A) and

X+(X)~ , provided we verify that the constant K in (19) is given by the formula (14).

To evaluate K, we set A = oo in (19) to obtain

K = W | ( o o ) " V ( o o ) = W+(0)*~ lW(oo).

From (18), we see that

W M 0 ) - 1 = [ ^ ( o ) " 1 ] *

= Im + [V'C-AI1 - B*_T*GZ1}Z'*{AX_).[-(AX_)~1B^-1 + GZlU*C*_\.

We have already observed that

W(oo) = [Im - B*_A*_-lC*_}i).
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To compute the product K = W+(Q)*~ W(oo), we first simplify the expression

[-(A* )"1S_V'"1 + GZ1U*C*_)W(oo)

as follows

= {Ax_)~\-B. + G-UAl^Clt] + [GZlU* -

Here we have used the fact that U - GZlU*G*_. Thus, it follows that

K = [W+ioy^Wioo)

-j- XJ Zi I Cjt B — B ZJ A O y)

which coincides with (14). This completes the proof of the theorem. D

The model reduction problem for discrete time systems (see [2]), suggests the
application of Theorem 3.1 to a special form of the rational matrix function V_ (A).

COROLLARY 3 . 2 . Suppose L(X) = C(XG - A)~lB is a p x q rational matrix

function of Mcmillan degree n such that all the poles of L are in the open unit disk

D+ . Thus we may assume that cr(G, A) C D + . For \x a positive real number, define

the matrix function W(X) by

IP 0 \ flp 0 \ (IP L{X)
w{x)- u*w M/,y vo -ij vo

and let U and T be the unique solutions of the Stein equations

A(n2U)G*-1 A* - G(n2U) = BB*

and

A*G*~1TA-TG = C*C.

Then W has a signed spectral factorisation if and only if the matrix In — T* U is invert-

ible, or equivalently, if and only if the matrix In — TV is invertible, or equivalently, if

and only if the matrix In — U*T is invertible, or equivalently, if and only if the matrix
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/„ - UT* is invertible. When this is the case, the factor X+(X) for a signed spectral
factorisation

1 -h
is computed as follows. Set

and
Z' = (In-T*U)-\

and let K be the (p + q) x (p + q) matrix

'A*~1C* -CA-XZ'*B
K ' -B*Z'A*~lC*

Then K is Hermitian with p positive and q negative eigenvalues, and so has the
factorisation

for an invertible (p + q) x (p + q) matrix E. Then the spectral factor X+(X) for W(X)
in this case is given by

0 \ / CUG*-1

with inverse given by

0 \ _ / CUG*-1

IJ \[i-2B*A*-

-l _ A*-i)-17l \A*~lr*
— J\_ I ZJ 1/1 O —

PROOF: The result follows from Theorem 3.1 above, if one takes

/„ 0 ^ (Ip L{X)\
0 ai

Note that then both YL (A) and

IP -L(\)\
0 Iq ) \0

are analytic on the complement of the unit disk D + since all the poles of L(X) are
assumed to be in D + . D
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