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ELLIPSOIDS ARE THE ONLY LOCAL MAXIMIZERS OF THE
VOLUME PRODUCT

MATHIEU MEYER AND SHLOMO REISNER

Abstract. Using previous results about shadow systems and Steiner symmetri-
zation, we prove that the local maximizers of the volume product of convex bodies
are actually the global maximizers, that is: ellipsoids.

Let K ⊂ Rn be a convex body (a compact and convex set with non-empty
interior). For z ∈ int(K ), the interior of K , let K z be the polar of K with respect
to z:

K z
= {y ∈ Rn

; 〈y − z, x − z〉 6 1 for every x ∈ K },

where 〈·, ·〉 denotes the standard scalar product in Rn . It is well-known that K z

is also a convex body, that z ∈ int(K z) and that (K z)z = K . The volume product
of K , 5(K ) (or 5n(K ) if the dimension is to be specified), is given by the
following formula:

5(K ) := min
z∈int(K )

|K ||K z
|,

where |A| denotes the Lebesgue measure of a Borel subset A of Rn . The unique
point z = s(K ) ∈ K , where this minimum is reached, is called the Santaló point
of K . We denote K ∗ = K s(K ). Blaschke [3] (1917) proved for dimensions n = 2
and n = 3 that

5(K ) = |K ||K ∗| 6 5(Bn
2 ),

where Bn
2 = {x ∈ Rn

; |x | 6 1} (|x | =
√
〈x, x〉) is the Euclidean unit ball in Rn .

This was generalized to all dimensions by Santaló [14] (1948).
It then took some time to establish the case of equality: one has 5(K ) =

5(Bn
2 ) if and only if K is an ellipsoid. This was done by Saint-Raymond [13]

(1981), when K is centrally symmetric and by Petty [12] (1982), in the general
case. Another proof was given by Meyer and Pajor [9] (1990), based on Steiner
symmetrization.

Campi and Gronchi [5] (2006), introduced the use of shadow systems for
volume product problems. Fix a direction u ∈ Sn−1. A shadow system (Kt )

along the direction u is a family of convex sets (Kt ), t ∈ [a, b] such that

Kt = conv{x + tα(x)u; x ∈ A},
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where A is a given bounded subset of Rn and α : A → R ia a given bounded
function, called the speed of the shadow system. An example is given by the
Steiner symmetrization of a convex body K with respect to the hyperplane u⊥

orthogonal to u ∈ Sn−1. Let K be described as

K = {y + su; y ∈ Pu K , s ∈ I (y)},

where Pu is the orthogonal projection onto u⊥ and I (y) is some non-empty
closed interval depending on y ∈ Pu K . The Steiner symmetral Stu(K ) is defined
by

Stu(K ) :=
{

y + su; y ∈ Pu K , s ∈
I (y)− I (y)

2

}
.

For t ∈ [−1, 1], let

Kt =

{
y + su; y ∈ Pu K , s ∈

1− t
2

I (y)−
1+ t

2
I (y)

}
.

The family (Kt ), t ∈ [−1, 1] forms a shadow system such that K−1 = K , K1
is the reflection of K with respect to u⊥ and K0 is the Steiner symmetral of K
with respect to u⊥. As a matter of fact, setting A = K0, and I (y) = [a(y), b(y)]
for y ∈ Pu K , one has for t ∈ [−1, 1] that

Kt =

{
z − t

a(Puz)+ b(Puz)
2

u; z ∈ K0

}
.

The following theorem was proved in [11] as Theorem 1 and Proposition 7
there.

THEOREM 1. Let Kt , t ∈ [a, b], be a shadow system in Rn . Then t→ |K ∗t |
−1

is a convex function on [a, b]. If t → |Kt | and t → |K ∗t |
−1 are both affine

functions in [a, b] then, for all t ∈ [a, b], Kt is an affine image of Ka , Kt =

Au,t (Ka), where Au,t is an affine transformation that satisfies Pu Au,t = Pu .
More precisely: for some v ∈ Rn and some c ∈ R, one has for all t ∈ [−1, 1]
and all x ∈ Rn that

Au,t (x) = x + (t − a)(〈x, v〉 + c)u.

This theorem extended and strengthened a result of Campi and Gronchi [5],
who proved the first part of it when the shadow system (Kt ) is composed of
bodies that are centrally symmetric with respect to the same center of symmetry.

As a consequence of Theorem 1, one gets the main result of this paper.

THEOREM 2. The convex bodies K in Rn which are local maximizers (with
respect to the Hausdorff distance or to the Banach–Mazur distance) of the
volume product in Rn are the ellipsoids.
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Remark. A partial result in this direction was proved by Alexander, Fradelizi
and Zvavich [1] who observed that no polytope can be a local maximizer for the
volume product.

Proof of Theorem 2. Suppose that K is a local maximizer. Let u ∈ Sn−1 and
Stu(K ) be the Steiner symmetral of K with respect to u⊥.

With the above notations we describe the Steiner symmetral of K as K0
of a shadow system Kt , t ∈ [−1, 1], with K−1 = K and K1 being the mirror
reflection of K about u⊥. It follows from the definition of this shadow system
that it preserves the volume of K : one has |Kt | = |K | for all t ∈ [−1, 1].

By construction, for all t , Kt is the mirror reflection of K−t with respect to
u⊥. It follows that (Kt )

∗ is also the mirror reflection of (K−t )
∗ with respect to

u⊥. Let

f (t) = (|K ||(Kt )
∗
|)−1
=

1
5n(Kt )

.

It is clear that the function t → Kt is continuous for both the Hausdorff
and the Banach–Mazur distances. Thus such is also the function t → (Kt )

∗. It
follows that f is continuous on [−1, 1].

By Theorem 1, f is convex on [−1, 1] and by construction, it is even. Thus
f (t) 6 f (−1) = f (1) for all t ∈ [−1, 1] and f has its absolute minimum
at 0. Since K is a local maximum of the volume product (i.e, a local minimum
of f ), one has for some −1 < c 6 0 , f (t) > f (−1) for all t ∈ [−1, c]. Thus
f is constant on [−1, c]. It now follows from its convexity and the preceding
observations, that f is actually constant on [−1, 1] and |(Kt )

∗
| = |K ∗| for t ∈

[−1, 1].
From the second part of Theorem 1 we conclude now that K0 = Stu(K ) is

an image of K−1 = K under an affine transformation having special properties.
Since this fact is true for any u ∈ Sn−1, application of the next lemma completes
the proof.

LEMMA 3. Let K be a convex body such that, for all u ∈ Sn−1, Stu(K ) is an
image of K , Stu(K ) = Au(K ) where Au is an affine transformation that satisfies
Pu Au = Pu . Then (and only then) K is an ellipsoid.

Remark. Lemma 3 can be formulated in an equivalent form as: Let K be a
convex body such that, for all u ∈ Sn−1, the centers of the chords of K that
are parallel to u are located on a hyperplane. Then (and only then) K is an
ellipsoid. With this formulation the result, in dimension two, was declared by
Bertrand [2] (1842). However, his proof does not seem complete. The result
was proved by Brunn [4] (1889). Gruber [8] (1974) proved the result under
strongly relaxed assumptions. A number of proofs of the result appear in the
literature. See, for example, Danzer, Laugwitz and Lenz [6] (1957), which
uses the Löwner ellipsoid of K , or Grinberg [7] (1991) which uses an infinite
sequence of symmetrizations. We introduce here, for the sake of completeness,
a proof that uses the uniqueness of the John ellipsoid of K .
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We also point out [10] for a generalization, replacing the location of midpoints
of chords by the location of centroids of sections of any fixed dimension k, 1 6
k 6 n − 1.

Proof of Lemma 3. We notice that the property of K presented in the lemma
is preserved under affine transformations (this is easy to see from the equivalent
form of this property presented in the Remark above). Thus, using an affine
transformation, we may assume that the John ellipsoid of K (the ellipsoid of
maximal volume contained in K ) is the Euclidean unit ball Bn

2 . We then want to
show that K is a homothetic Euclidean ball.

Let u ∈ Sn−1. By the assumption, Stu(K ) = Au(K ), Au affine with
Pu Au = Pu . Hence the John ellipsoid of Stu(K ) is Au(Bn

2 ). Now |K | =
|Stu(K )| = |Au(K )|, so |det(Au)| = 1 and |Au(Bn

2 )| = |B
n
2 |. By symmetry of Bn

2
about u⊥ and the fact that Bn

2 ⊂ K , we have Bn
2 ⊂ Stu(K ). By the uniqueness of

the John ellipsoid we conclude that Au(Bn
2 ) = Bn

2 . Thus Au is a linear isometry
with respect to the Euclidean norm, i.e. an orthogonal transformation.

The orthogonal transformation Au preserves u⊥ by the assumption of the
lemma, so it is either the identity or an orthogonal reflection by u⊥. Using any of
these possibilities for each u ∈ Sn−1, we see that K is orthogonally symmetric
about any hyperplane through 0. It follows that all the points of the boundary
of K have the same Euclidean norm. Thus K is a Euclidean ball centered at the
origin.

This completes the proof of Lemma 3, thus also the proof of Theorem 2. �
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Cité Descartes, 5 Bd Descartes,
Champs-sur-Marne,
77454 Marne-la-Vallée cedex 2,
France
E-mail: mathieu.meyer@u-pem.fr

Shlomo Reisner,
Department of Mathematics,
University of Haifa,
Haifa 31905,
Israel
E-mail: reisner@math.haifa.ac.il

https://doi.org/10.1112/S0025579319000056 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579319000056

	References

