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ASSESSING THE RELIABILITY FUNCTION
OF NANOCOMPONENTS

NADER EBRAHIMI,∗ Northern Illinois University

Abstract

A nanocomponent is a collection of atoms arranged to a specific design in order to achieve
a desired function with an acceptable performance and reliability. The type of atoms, the
manner in which they are arranged within the nanocomponent, and their interrelationship
have a direct effect on the nanocomponent’s reliability (survival) function. In this
paper we propose models based on the notion of a copula that are used to describe
the relationship between the atoms of a nanocomponent. Having defined these models,
we go on to construct a ‘nanocomponent’ model in order to obtain the reliability function
of a nanocomponent.
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1. Introduction

In the fields of nanoscience and nanotechnology much attention has been given to the dual
problem of designing nanocomponents with novel physical properties and how they can be
fabricated; see Ebrahimi (2008), Ebrahimi (2010), and the references cited therein for more
details. Receiving less attention has been the question of the nanocomponent reliability: how
does a nanocomponent fail and how long does a nanocomponent survive under typical operation
conditions? Today, high reliability is necessary to guarantee the advancement and utilization
of nanocomponents due to the fact that they account for a high proportion of costs of newly
designed nanosystems and multiscale systems. Recently, Ebrahimi (2008), (2010) developed
general methodologies to assess the nanocomponent’s limiting reliability from its atoms. In both
papers the author was concerned with the nanocomponent reliability at a single instant in time.
However, in many practical applications we are interested in the nanocomponent reliability for
the interval [0, t], i.e. the probability that the nanocomponent functions successfully throughout
the interval [0, t]. It is usually referred to as the reliability function or the survival function.

Consider a nanocomponent consisting of N atoms. The nanocomponent can fail because its
atoms rearrange. Usually, displacement occurs due to an atom being attracted or repelled by
another atom. In order to explore complex patterns of N atoms in three dimensions, assume
that there is a set of spatial locations {si; i = 1, . . . , N}, where si = (ui, vi, wi) denotes the
location of atom i in space. Here ui = 1, . . . , N1, vi = 1, . . . , N2, wi = 1, . . . , N3, and
N = N1N2N3. To indicate the state of each atom, define the nonnegative continuous random
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variable T (si), where T (si) represents the time that the atom at location si, i = 1, . . . , N , is
displaced.

Assessing the reliability function of a nanocomponent requires a model for the joint behaviors
of the random variables T (s1), . . . , T (sN). For example, suppose that a nanocomponent fails
if at least one atom is displaced. Then the reliability function of the nanocomponent is simply
given by RN(t) = P(T (si) > t for i = 1, 2, . . . , N). It is clear that specification of the joint
survival distribution, P(T (si) > ti, i = 1, 2, . . . , N), which gives such a probability requires
full information about the marginal survival functions, P(T (si) > ti), i = 1, 2, . . . , N , and
dependence between all the atoms. The objective of this paper is to focus on one particular
aspect, namely developing models for the joint survival distribution of the random variables
T (s1), . . . , T (sN) when partial information about the dependence between atoms is given.
Using these models, we then obtain the reliability function for a specific ‘nanocomponent’
model.

This paper is organized as follows. In Section 2 we present the definitions and notation
used in the subsequent sections. In Section 3 we describe models for the joint distribution of
T (s1), . . . , T (sN) and provide some insight into these models. For a specific ‘nanocomponent’
structure, in Section 4 we use the models of Section 3 and provide the reliability function for
this structure.

2. Preliminaries

To construct a joint survival distribution for T (s1), . . . , T (sN), we concentrate on the notion
of a copula, well known for some time within the statistical literature. The standard ‘operational’
definition of a copula is a multivariate distribution function defined on the unit cube [0, 1]p, with
uniformly distributed marginals. Here p is the number of random variables whose behaviors
we wish to understand. The following definition formalizes the notion of a copula.

Definition 1. Let U1, . . . , Up be p uniform random variables with joint multivariate distribu-
tion

C(u1, . . . , up) = P(U1 ≤ u1, . . . , Up ≤ up). (1)

The function C is referred to as a copula function which is defined from [0, 1]p → [0, 1].
The function C(u1, . . . , up) defined in (1) is a multivariate distribution whose marginals

are all uniform over the interval (0, 1). The concept of a copula is relatively simple and,
by the celebrated Skylar’s theorem (see Skylar (1959)), it serves as an elegant approach for
imposing a dependence structure on predetermined marginal distributions. Specifically, let S

be a p-dimensional joint survival distribution function with marginals F̄1, . . . , F̄p. Then there
exists a p-dimensional copula such that, for all (x1, . . . , xp) in the domain of S,

S(x1, . . . , xp) = P(X1 > x1, . . . , Xp > xp) = C(F̄1(x1), . . . , F̄p(xp)).

That is, C(F̄1(x1), . . . , F̄N (xp)) gives a representation of the survival function S(x1, . . . , xp).
Here F̄i(xi) = P(Xi > xi), i = 1, . . . , p, and X1, . . . , Xp is a sequence of p random variables.
For more details about the notion of a copula and its applications, see Nelson (2006),Yan (2007),
Frees and Valdez (2008), and the many references therein.

In our situation, with the copula construction in (1), we can select arbitrary marginal survival
distribution functions F̄i(t) = P(T (si) > ti), i = 1, . . . , N . Then, with p = N ,

C(F̄1(t1), . . . , F̄N (tN )) = P(T (s1) > t1, . . . , T (sN) > tN). (2)
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That is, the copula function C can be used to model the joint survival function of T (s1), . . . ,

T (sN). Note that the function C in (2) is defined from [0, 1]N to [0, 1].
For imposing a dependence structure on F̄1, F̄2, . . . , F̄p, two frequently used copula families

are the elliptical copula family and the Farlie–Gumbel–Morgenstern (FGM) copula family.
They are described below.

Definition 2. Let F be the multivariate distribution of an elliptical distribution, let Fi be the
distribution of the ith margin, and let F−1

i , i = 1, . . . , p, be its inverse (quantile) function.
Then, the elliptical copula is determined by F and its marginals F1, . . . , Fp, and is given by

C(u1, . . . , up) = F [F−1
1 (u1), . . . , F

−1
p (up)]. (3)

In (3) if F is the p-variate standard multivariate normal distribution with correlation matrix
R, then we get the Gaussian copula. That is, the Gaussian copula is given by

CGaussian(u1, . . . , up; R) = �R(�−1(u1), . . . , �
−1(up)), (4)

where

�R(x1, . . . , xp) =
∫ x1

−∞
· · ·

∫ xp

−∞
1

(2π)p/2|R|1/2 exp

[
−1

2
z�R−1z

]
dz1 · · · dzp,

�(x) =
∫ x

−∞
1√
2π

exp

[−z2

2

]
dz,

z� = (z1, . . . , zp), and z� is the transpose of z.

Definition 3. The function C : [0, 1]p → [0, 1] defined by

C(u1, . . . , up) =
( p∏

i=1

ui

)[
1 +

p∑
k=2

∑
1≤j1<···<jk≤p

θ(j1, . . . , jk)(1 − uj1) · · · (1 − ujk
)

]
(5)

is called the p-dimensional FGM copula. In (5), the θ(j1, . . . , jk)s are some known parameters.

Throughout this paper, we use the Gaussian copula and a slightly modified version of the
FGM copula to impose a dependence structure on F̄1, . . . , F̄N . We cannot overemphasize the
fact that these two families are but two of many different families of copula that can be used in
practice to model dependence among atoms. We simply use them to illustrate our methodology.

3. Modeling the joint behavior of T (s1), . . . , T (sN)

Without considering the interactions between atoms, the joint survival distribution of T (s1),

. . . , T (sN) is simply
∏N

i=1 P(T (si) > ti). Considering interactions among atoms, Markov
random field (MRF) theory provides a convenient and consistent way to model interactions via
a neighborhood system. Here any random variable, say T (si), is assumed to be independent
of all other immediate neighbor random variables. For points in a plane, we define a pair to be
immediate neighbors if they are closer than a given distance; see Besag (1974) for more details.
Let D(i) = {j : j is the neighbor of the atom located at si}, i = 1, . . . , N . To specify the joint
distribution of T (s1), . . . , T (sN), we assume that {T (s1), . . . , T (sN)} has the MRF property.
Assumption 1 below formalizes the notion of an MRF.
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Assumption 1. (MRF property.) Given any particular atom, say the atom located at si , we
assume that

P(T (si) > ti | T (sj ) = tj , j = 1, 2, . . . , N and j �= i)

= P(T (si) > ti | T (sj ) = tj , jεD(i)), i = 1, . . . , N. (6)

That is, the conditional survival distribution of T (si) depends only on the behaviors of its
neighbors.

Define the distance between two atoms located at si = (ui, vi, wi) and sj = (uj , vj , wj )

by

m(si, sj ) =
√

(ui − uj )2 + (vi − vj )2 + (wi − wj)2. (7)

For simplicity, throughout this paper, we take, for i = 1, . . . , N ,

D1(i) = {j : m(si, sj ) = 1, i.e. the distance between the atom located at si

and its neighbors is 1} (8)

and

P(T (si) > ti | T (sj ) = tj , j = 1, . . . , N, j �= i) = P(T (si) > ti | T (sj ) = tj , jεD1(i)).

(9)
We consider the following two scenarios.

Scenario 1. In addition to the MRF property, we assume that

K1(m(si, sj )) = cov(T (si), T (sj )) = σ 2 exp[−θm(si, sj )], i, j = 1, . . . , N, (10)

where m(si, sj ) is given by (7) , σ 2 = var(T (si)), and θ ≥ 0. That is, we assume that
{T (s1), . . . , T (sN)} is isotropic (see Schabenberger and Gotway (2005, p. 45)), and that the
correlation between any two atoms decreases as the distance between them increases. In fact,
using (9) and (10), under this scenario, cov(T (si), T (sj )) = 0 if j is not in D1(i). If j is in
D1(i) then cov(T (si), T (sj )) = σ 2 exp[−θ ].
Scenario 2. Assume that

P(T (si) > ti, T (sj ) > tj ) = P(T (si) > ti) P(T (sj ) > tj ) (11)

for all i, j = 1, . . . , N such that m(si, sj ) ≥ γ . Here γ is a known positive number.

From (11), it is clear that, under Scenario 2, K2(m(si, sj )) = cov(T (si), T (sj )) = 0 if
m(si, sj ) ≥ γ . That is, here K2 is a tapered covariance function of compact support. The idea
of tapering here is to reduce the covariances to 0 at large distances.

Our first task is to develop a model for the joint survival function of T (s1), . . . , T (sN) under
Scenario 1.

Model 1. Assume that

F̄i(t) = P(T (si) > t) = F̄ (t), i = 1, . . . , N.

Note that this assumption is just for convenience and can be easily extended to the nonidentical
case. We formulate the model as follows.
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Let Z(s1), . . . , Z(sN) be jointly normal with mean vector zero, variance 1, and isotropic
covariance function K1(h) = exp[−θh]; see (10). Also, let {Z(s1), . . . , Z(sN)} be an MRF
satisfying (9). Suppose that CGaussian(u1, . . . , uN) is the corresponding Gaussian copula;
see (4). Then our proposed model for the joint survival function is given by

P(T (si) > ti, i = 1, . . . , N) = CGaussian(�
−1(F̄ (t1)), . . . , �

−1(F̄ (tN ))). (12)

Note that in (12), C is defined from [0, 1]N → [0, 1] and it is obtained purely from the
dependence structure between atoms.

The following theorem provides some information about the behavior of the sequence
Z(s1), . . . , Z(sN).

Theorem 1. Given any particular atom, say the atom located at si ,

(a) E(Z(si) | Z(sj ), j = 1, . . . , N, j �= i) = bi

∑
jεD1(i)

Z(sj ),

(b) var(Z(si) | Z(sj ), j = 1, . . . , N, j �= i) = di ,

where

bi =
⎧⎨
⎩

exp[−θ ]
1 + (|D1(i)| − 1) exp[−θ ] if |D1(i)| ≥ 1,

0 if |D1(i)| = 0,
(13)

di =
⎧⎨
⎩

1 − |D1(i)| exp[−2θ ]
1 + (|D1(i)| − 1) exp[−θ ] if |D1(i)| ≥ 1,

1 if |D1(i)| = 0,
(14)

where |D1(i)| is the number of elements in D1(i), and D1(i) is given by (8).

Proof. The proof follows from Equation (4.6) of Johnson and Wichern (2007) and the fact
that {Z(s1), . . . , Z(sN)} is an MRF with covariance structure given by (10) and σ 2 = 1.

As an application of Theorem 1, suppose that the atom located at si has three neighbors
located at sj , sj ′ , and sj ′′ . Then

E(Z(si) | Z(s�), � = 1, . . . , N, � �= i) = exp[−θ ]
1 + 2 exp[−θ ] [Z(sj ) + Z(sj ′) + Z(sj ′′)]

and var(Z(si) | Z(s�), � = 1, . . . , N, � �= i) = 1 − 3 exp[−2θ ]
1 + 2 exp[−θ ] .

From (12), we can show that the joint density function of T (s1), . . . , T (sN) under Model 1
is

f (t1, . . . , tN ) =
[ N∏

i=1

f (ti)

]
[cGaussian(F̄ (t1), . . . , F̄ (ti), . . . , F̄ (tN ))],

where

cGaussian(u1, . . . , uN) = 1

|R|1/2 exp

[
−1

2
w�

1 [R−1 − I ]w1

]
, (15)

w�
1 = (�−1(u1), . . . , �

−1(uN)), I is the N × N identity matrix, f (u) = −dF̄ (u)/du, and
R is the covariance function, which describes the interactions between atoms and is obtained
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from (10), with σ 2 = 1 and assuming that the MRF property holds. In (15) c is a function
defined from [0, 1]N → [0, 1].

The multivariate hazard gradient h∗(t1, . . . , tN ) of T (s1), . . . , T (sN) under Model 1, see
Johnson and Kotz (1975) for a definition of the multivariate hazard gradient, is given by

h∗(t1, . . . , tN ) = (h∗
1(t1, . . . , tN ), h∗

2(t1, . . . , tN ), . . . , h∗
N(t1, . . . , tN )), (16)

where h∗ is an N -dimensional row vector and

h∗
i (t1, . . . , tN ) = − ∂

∂ti
[log P(T (si) > ti, i = 1, . . . , N)].

Note that h∗
i , which is defined from [0, ∞]N → [0, ∞], simply denotes the punctual displace-

ment probability for the atom located at si at time ti given that other atoms located at s1, . . . ,

si−1, si−1, . . . , sN are still in their places at times t1, . . . , ti−1, ti+1, . . . , tN , respectively.
From (15), (16), and Theorem 1, we can easily show that

h∗
i (t1, . . . , tN ) = f (ti)(2π)1/2 exp[(�−1(F̄ (ti)))

2/2]
�R(�−1(F̄ (ti)), i = 1, . . . , N)

×
∫

· · ·
∫

1

(2π)N/2|R|1/2 exp

[
−1

2
w�R−1w

]
dw∗,

where

w∗� = (w(s1), . . . , w(si−1), w(si+1), . . . , w(sN)),

w� = (w(s1), . . . , w(si−1), �
−1(F̄ (ti)), w(si+1), . . . , w(sN)),

and the integral is over −∞ to �−1(F̄ (tj )), j = 1, . . . , N, j �= i. Consequently, the right-
hand side becomes

λ(ti)F̄ (ti)(2π)1/2 exp

[
1

2
(�−1(F̄ (ti)))

2
]

× 1

�R(�−1(F̄ (ti)), i = 1, 2, . . . , N)

∫
· · ·

∫
1

(2π)N/2d
1/2
i |R∗(si)|1/2

× exp

[
− (�−1(F̄ (ti)) − bi)

2

2di

]

× exp

[
−w∗�(R∗(si))−1w∗

2

]
dw∗,

where R∗(si) is the correlation matrix between atoms located at sj and sj ′, j, j ′ �= i, j =
1, . . . , N , j ′ = 1, . . . , N , and bi and di are given in (13) and (14), respectively.

In general, it is possible to compute the joint survival function and multivariate gradient
hazard function provided that (12) and (16) can be evaluated. However, in many cases it is very
difficult to calculate these equations. In such cases we can seek upper and lower bounds for
(12) as well as an approximation for h∗ in (16).

The following theorem gives the upper and lower bounds for the joint survival function of
T (s1), . . . , T (sN).
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Theorem 2. Under Model 1,

N∏
i=1

F̄ (ti) ≤ P(T (si) > ti, i = 1, . . . , N) ≤ P(T ∗(si) > ti, i = 1, . . . , N),

where the joint survival function of T ∗(s1), . . . , T
∗(sN) is obtained by assuming that K(h) =

exp[−θ ] instead of K1(h) in (10). That is,

P(T ∗(si) > ti, i = 1, . . . , N)

= 1√
2π

∫ ∞

−∞
exp

[
−x2

2

]

×
N∏

i=1

[
�(1 − exp[−θ ])−1/2�−1(F̄ (ti)) +

(
exp[−θ ]

1 − exp[−θ ]
)1/2

x

]
dx.

Proof. Suppose that W1, . . . , Wk are random variables having a k-variate multivariate nor-
mal distribution with mean vector 0, variance 1, and, under the probability law PL1 , the
correlation matrix L1 = {�ir (1)}, and, under the probability law PL2 , the correlation matrix
L2 = {�ir (2)}. If the correlation �ir (1) ≤ �ir (2) for all i and r , then it is known that

PL1(W1 ≤ c1, . . . , Wk ≤ ck) ≤ PL2(W1 ≤ c1, . . . , Wk ≤ ck)

for any numbers c1, c2, . . . , ck; see Slepian (1962) for more details. The result now follows
from Tong (1990, p. 193).

The following example shows an interesting application of Theorem 2.

Example 1. Consider a nanocomponent with three atoms, i.e. N = 3, such that θ = 1
2 and

F̄ (t) = exp[−t]. Suppose that the lifetime of the nanocomponent T = min(T (s1), T (s2),

T (s3)) and that the joint survival function of T (s1), T (s2), and T (s3) can be modeled by
(12) (Model 1). Then, the reliability function is R3(t) = P(T > t) = P(T (s1) > t,

T (s2) > t, T (s3) > t) and, from Theorem 2,

R3(t) ≤ 1√
2π

∫ ∞

−∞
exp

[
−x2

2

][
�

(
1 − exp

[
−1

2

])−1/2

�−1(exp[−t])

+
(

exp[−1/2]
1 − exp[−1/2]

)1/2

x

]3

dx.

In Table 1 we present results for the upper bound of the reliability function R3(t) for various t .
Suppose that the lifetime T is measured in years. In view of Table 1, the chance that the

nanocomponent survives for more than, say, 0.5 years (6 months), is less than 0.33.

Under Model 1, we can also approximate the joint survival function of T (s1), . . . , T (sN)

and the multivariate hazard gradient h∗(t1, . . . , tN ) using the following procedure.
The multivariate Gaussian copula in (4) can be approximated by a Taylor expansion:

CGaussian(u(s1), . . . , u(sN)) =
N∏

i=1

u(si) +
N∑

i=1

N∑
j=1

K1(m(si, sj ))

× φ(�−1(u(si)))φ(�−1(u(sj ))). (17)
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Table 1: Upper bounds for R3(t).

t R3(t)

0.1 0.78
0.2 0.62
0.3 0.50
0.4 0.40
0.5 0.33
0.6 0.27
0.7 0.22
0.8 0.18
0.9 0.15
1.0 0.12

In (17), K1(h) is defined by (10), with σ 2 = 1 and φ(x) = √
(1/2π) exp[−x2/2]. Thus, taking

V = ∑N
i=1

∑N
j=1 exp[−θm(si, sj )], applying (17), and using the fact that dφ(�−1(F̄ (t)))/dt

= f (t)�−1(F̄ (t)), we obtain

P(T (si) > ti, i = 1, . . . , N) =
N∏

i=1

F̄ (ti) +
N∑

i=1

N∑
j=1

exp[−θm(si, sj )]

× φ(�−1(F̄ (ti)))φ(�−1(F̄ (tj ))). (18)

Using (18), we can easily show that

h∗
i (t1, . . . , tN ) = f (ti)[P(T (si) > ti, i = 1, . . . , N)]−1

×
[ N∏

j=1, j �=i

F̄ (tj ) +
N∑

j=1, j �=i

K1(m(si, sj ))(�
−1(F̄ (ti)))φ(�−1(F̄ (tj )))

]
.

(19)

Thus, for ti = t, i = 1, . . . , N , and large N (i.e. N → ∞), (19) reduces to

h∗
i (t, . . . , t) = [(F̄ (t))N + (φ(�−1(F̄ (t)))2)V ]−1

×
[
f (t)(F̄ (t))N−1 + f (t)φ(�−1(F̄ (t)))�−1(F̄ (t))

N∑
j=1, j �=i

K1(m(si, sj ))

]

= f (t)

F̄ (t)

1 + aN

1 + bN

= f (t)

F̄ (t)
,

where bN → ∞ and aN/bN → 0 as N → ∞. That is, the gradient hazard function for any
atom is approximately the same as its marginal hazard function.

We now develop a model for the joint survival function of T (s1), . . . , T (sN) by incorporating
the assumptions described in Scenario 2.
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Model 2. Assume that P(T (si) > t) = F̄ (t), i = 1, . . . , N . The model can be formulated by
slightly modifying the FGM copula described in Definition 3. Our proposed modified FGM
(MFGM) copula is

CMFGM(u(s1), . . . , u(sn)) =
N∏

i=1

u(si)

[
1 +

γ∑
�=1

∑
Q(�)

θ�(1 − u(si))(1 − u(sj ))

]
,

where Q(�) = {i and j : m(si, sj ) = �}. Using the MFGM copula, our proposed model for the
joint survival function of T (s1), . . . , T (sN)) is given by

P(T (s1) > t1, . . . , T (sN) > tN) = CMFGM(F̄ (t1), . . . , F̄ (tN )). (20)

Again, for simplicity, we assume that � = 1. Thus, (20) reduces to

P(T (s1) > t1, . . . , T (sN) > tN) =
N∏

i=1

F̄ (ti)

[
1 + θ

∑
Q(1)

F (ti)F (tj )

]
, (21)

where F = 1 − F̄ .

From (21), we can easily show that the joint density function of T (s1), . . . , T (sN) is given
by

f (t1, . . . , tN ) =
N∏

i=1

f (ti)

[
1 + θ

∑
Q(1)

(1 − 2F̄ (ti))(1 − 2F̄ (tj ))

]
.

Also, from (21), the multivariate hazard gradient for the T (s1), . . . , T (sN) is given by

h∗(t1, . . . , tN ) = (h∗
1(t1, . . . , tN ), . . . , h∗

N(t1, . . . , tN )),

where

h∗
i (t1, . . . , tN ) = λ(ti)

[
1 + θF̄ (ti)

∑
Qi(1) F (tj )

1 + θ
∑

Q(1) F (ti)F (tj )

]
, (22)

Qi(1) = {j : m(si, sj ) = 1}, and λ(u) = f (u)/F̄ (u) is the marginal hazard function. Suppose
that ti = t for i = 1, . . . , N . Then (22) reduces to

h∗
i (t, . . . , t) = λ(t)

[
1 + θF̄ (t)F (t)|Qi(1)|

1 + θF 2(t)|Q(1)|
]
, (23)

where |A| is the number of elements in the set A. It should be noted that h∗
i (t, . . . , t) in (23)

simply denotes the punctual displacement probability for the atom located at si at time t given
that other atoms are still in their places at time t .

From (23), it is clear that at t = 0 and t = ∞, h∗
i (t, . . . , t) = λ(0) and λ(∞), respectively.

Also, for large N (i.e. N → ∞), since |Q(1)| → ∞ and |Qi(1)| is finite,

h∗
i (t, . . . , t) = λ(t).

That is, in Model 2, for large N (i.e. N → ∞), the gradient hazard function for any atom is the
same as its marginal hazard function.
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4. Reliability function of nanocomponents

In this section we illustrate how Model 1 and Model 2 can be used to obtain the reliability
function for a specific ‘nanocomponent’ model.

Generally speaking, let T be the lifetime of a nanocomponent. Then its reliability function
is given by

RN(t) = P(T > t).

Suppose that the lifetime of a nanocomponent can be represented byT = �(T (s1), . . . , T (sN)),
where � is some known function defined from [0, ∞]N → [0, ∞]. We refer to � as
the ‘nanocomponent’ model. In this section we assume that the ‘nanocomponent’ model
�(u1, . . . , uN) = min1≤i≤N ui . That is, the nanocomponent will fail if at least one of the
atoms is displaced.

Now, it is clear that, under this ‘nanocomponent’ model,

RN(t) = P(T (si) > t, i = 1, . . . , N). (24)

Our goal in this section is to obtain RN(t) under Model 1 and Model 2. We start with Model 2.
From (21), (24) reduces to

RN(t) = (F̄ (t))N (1 + θF 2(t)|Q(1)|). (25)

Theorem 3 below gives a simple approximation to RN(t) in (25) for large N (i.e. N → ∞).

Theorem 3. Assume that there are sequences aN and bN > 0 of real numbers such that, for
all y, as N → ∞,

lim
N→∞ NF(aN + bNy) = w(y)

exists. Then, under Model 2, as N → ∞,

lim
N→∞ RN(aN + bN t) = exp[−w(t)]. (26)

Proof. Take z = F(aN + bNy). Using (25), we obtain

RN(aN + bNy) = (1 − z)N(1 + θz2|Q(1)|) ≤ exp[−Nz](1 + θz2|Q(1)|).
Let us first consider the case when w(y) = +∞. Then

RN(aN + bNy) ≤ exp[−w(y)](1 + O(w(y)) = 0

immediately yields (26) (recall that exp[−∞] = 0). Note that, for sequences of real positive
numbers cN and dN, dN = O(cN) if there is a positive constant number M such that dN < McN

for all sufficiently large N .
Now, consider the case when w(y) < ∞. Using Lemma 1.3.1 of Galambos (1978),

(exp[−Nz] − (1 − z)N(exp[2Nz2] − 1))(1 + θz2|Q(1)|) < RN(aN + bNy)

< exp[−Nz](1 + θz2|Q(1)|).
Since limN→∞ Nz2 = 1/N(Nz)2 = 0, we obtain limN→∞(1 + θz2|Q(1)|) = 1 and,

therefore,
lim

N→∞ RN(aN + bNy) = exp[−w(y)].
This completes the proof.
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The next example illustrates an application of Theorem 3.

Example 2. In Theorem 3, let
F̄ (x) = exp[−λx].

Then, F(aN + bNx) = 1 − exp[−λ(aN + bNx)]. In order to satisfy the assumption of
Theorem 3, take aN = 0 and bN = 1/N ; then lim N(1 − exp[−λy/N ]) = λy. That is,
RN(y/N) = exp[−λy].

Now we turn our attention to Model 1. Using (12), we can easily show that, under this
model, (24) reduces to

RN(t) = �R(�−1(F̄ (t)), . . . , �−1(F̄ (t))). (27)

We now prove the following result.

Theorem 4. Under Model 1, let bN = (2 log N)−1/2 and aN = 1/bN − bN(log log N +
log 4π)/2. Then, as N → ∞, the simple approximation to RN(t) in (27) is

RN(F̄−1(�(aN + bNu))) → exp[−e−u], −∞ < u < ∞.

Proof. Using (27) and Theorem 3.8.2 of Galambos (1978), as N → ∞, we obtain

RN(F̄−1(�(aN + bNu))) = �R(aN + bNu, . . . , aN + bNu)

= P(max(Z(s1), . . . , Z(sN)) < aN + bNu)

= exp[−e−u].
This completes the proof.

The following example gives an application of Theorem 4.

Example 3. Let F̄ (t) = exp[−λt]. From Theorem 4 we have

RN(−λ̄1 log �(aN + bNu)) = exp[−e−u], −∞ < u < ∞. (28)

In (28), suppose that N = 100 and λ = 0.01. Then, bN = 0.33, aN = 2.33, and
R100(−100 log �(2.33 + 0.33u)) = exp[−e−u]. For example, R100(0) = 1, R100(0.05) =
0.95, R100(0.1) = 0.87, R100(0.4) = 0.7, R100(0.9) = 0.37, and R100(2.3) = 0.066.
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