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THE SLIDING VELOCITY OF ATHABASCA GLACIER, CANADA

By W. S. B. PATERSON

(Polar Continental Shelf Project, Department of Energy, Mines and Resources, Ottawa,
Ontario, Canada)

AssTrACT., A method of estimating sliding velocity is presented. It rests on few assumptions, one of which
is that longitudinal strain-rate varies linearly with depth. The flow law of ice is not used. To apply it, the
sliding velocity at one point must be known. The method is used to calculate the sliding velocity at twelve
points on Athabasca Glacier. These values are not related to calculated basal shear stresses. Thus one or
more of the following statements must be true: (1) basal shear stress cannot be calculated by the conven-
tional formula, (2) the roughness of the glacier bed varies from place to place, (3) sliding velocity does not
obey Weertman’s formula. Analysis of seven published measurements of sliding velocity leads to the same
conclusion.

RESUME. La vitesse de glissement de I’ Athabasca Glacier. Une methode d'estimation de la vitesse de glissement
est presentée.  Elle repose sur quelques hypothéses dont I'une est que la vitesse de deformation longitudinale
varie linéairement avec le profondeur. Elle n'utilise pas la loi d’ecoulement de la glace. Pour I'appliquer, la
vitesse de glissement en un point doit étre connue. La methode est utilisée pour calculer la vitesse de glisse-
ment en 12 points de ’Athabasca Glacier. Ces valeurs nesont pas liées aux contraintes de cisaillement basales
calculés. Ainsi un ou plusieurs des sentences suivantes doivent étre exactes: (1) la contrainte de cisaillement
basale ne peut étre calculée par la formule classique, (2) la rugosité du lit du glacier varie d’un endroit a
Pautre, (3) la vitesse de glissement n’obéit pas 4 la formule de Weertman. L’analyse de sept mesures publiées
de la vitesse de glissement méne 4 la méme conclusion.

ZUSAMMENFASSUNG. Die Gleitgeschwindigheit des Athabasca Glacier. Es wird eine Methode zur Abschitzung
der Gleitgeschwindigkeit vorgelegt. Sie beruht aul wenigen Annahmen, von denen eine die ist, dass die
longitudinale Deformationsgeschwindigkeit sich linear mit der Tiefe &ndert; sie benutzt nicht das Fliessgesetz
des Eises. Fir ithre Anwendung muss die Gleitgeschwindigkeit an einem Punkt bekannt sein. Die Methode
wird zur Berechnung der Gleitgeschwindigkeit an zwdlf Punkten des Athabasca Glacier verwendet. Diese
Werte stehen in keinem Zusammenhang mit berechneten Scherspannungen am Grund. Deshalb muss
mindestens eine der folgenden Feststellungen zutreffen: (1) Die Scherspannung am Grund kann nicht mit der
konventionellen Formel berechnet werden; (2) die Rauhigkeit des Gletscherbettes dndert sich von Ort zu
Ort; (3) die Gleitgeschwindigkeit erfiillt nicht Weertman’s Formel. Die Analyse von sieben veréffentlichten
Messungen der Gleitgeschwindigkeit fithrt zu demselben Schluss.

1. INTRODUCTION

The mechanism by which a temperate glacier slides over its bed is a topic of considerable
interest, and some controversy, at present. To date, theoretical studies have predominated;
Lliboutry (1968) has listed most of the relevant papers. T'o measure the sliding velocity of a
glacier is difficult. The usual approach is to calculate its value from measurements of surface
velocity by the formula (Nye, 1952):

up = ug— A" h/(n+1). (1)
Here uy is sliding velocity, ug velocity at the surface, £ ice thickness, and A4 and n are para-
meters in the flow law of ice. The basal shear stress = is given by

7 = Fpghsin o (2)

where p is the density of ice, g the acceleration due to gravity, « the surface slope, and F is a
“shape factor” introduced to allow in an approximate way for the effect of the valley walls.

Nye (1952) pointed out several reasons why this method of calculating uy is not very
reliable: the underlying assumption, that the longitudinal strain-rate in the glacier is zero,
may be false; the calculated value of * may not be equal to the actual shear stress; the values
of A and n are not precisely known for the type of ice in the glacier in question. Thus an
alternative method of calculation may be useful.

The sliding velocity of Athabasca Glacier has been determined at two points where bore
holes reached the glacier bed (Savage and Paterson, 1963). We have devised a method of
estimating, by extrapolation from these measured values, the sliding velocity at twelve other
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points where ice thickness and other parameters have been measured. This method rests on
few assumptions and, in particular, does not use the flow law of ice. In this paper we describe
the method and discuss how the resulting values of sliding velocity are related to basal shear
stress and other parameters.

2. ATHABASCA GLACIER

Athabasca Glacier (lat. 52.2° N., long. 117.2° W.) is one of the main outlet glaciers from
the Columbia Icefield in the Canadian Rocky Mountains. The glacier descends from the
Icefield in a series of three ice falls over a distance of 2 km. The measurements to be discussed
were made in the section between the foot of the lowest ice fall and the terminus. The length
of this section is 4.8 km, its average width 1.1 km. The width varies only slightly, and the only
bend is a slight one about 1 km from the terminus. The surface slope, generally between 2°
and 6°, increases to about 20° at the terminus. The maximum ice thickness is about 325 m.
This section of the glacier is virtually free of crevasses except near its sides and in two small
areas, one immediately above the terminus and one about 1.5 km from it. Ice velocity
decreases from about 75 m a~' just below the lowest ice fall to about 10 ma~' near the
terminus.

3. MEASUREMENTS

We shall mention briefly how we measured those parameters used in the subsequent
analysis. Readers who want further details are referred to previous papers (Paterson and
Savage, 1963[a]; Savage and Paterson, 1963).

Surface slope

The surface slope, averaged over a distance comparable with the ice thickness, was
measured from a map of the glacier at scale 1 : 4 8oo with 10 ft (3.048 m) contours. The
standard error of each measurement is estimated to be 0.3°

Ice thickness
Ice thickness was determined by seismic sounding at 15 points along the center-line of the
glacier. The standard error of each measurement is about 5 m.

Bed slope

The slope of the glacier bed at each seismic station was calculated from the move-out of a
reflection trough across the twelve traces of a single reflection record. This is an accurate
method of determining the average slope over the distance covered by the geophone spread
{about 100 m). Thus the measurements of bed slope at each station are independent of the
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Fig. 1. Cross-section of the lower part of Athabasca Glacier, along the center-line, with seismic stations. Recorded reflection
surfaces are shown as heavy line segments; bore holes as vertical lines. There is no vertical exaggeration in scale.
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measurements of ice thickness. The standard error of a measurement of bed slope is estimated
to be 209%,.

The average slope of the bed between adjacent stations, also needed in the analysis, was
determined from the difference in elevation of the bed between the two stations. The elevation
of the bed was calculated from ice thickness and surface elevation.

Figure 1 shows the profile of the glacier along the center-line and the locations of seismic
stations and bore holes. (Seismic measurements were made at the bore holes.)

Surface velocity

Horizontal and vertical components of surface velocity, with respect to axes fixed in space,
were determined by conventional survey methods. Velocities were measured at 30 stakes
along the center-line (these included the seismic stations), and at 6 to 10 stakes in each of 6
transverse lines. Both components were measured with an estimated standard error of 0.15
m:a-?,

Sliding velocity

Sliding velocity was determined from the surface velocity combined with inclinometer
measurements in two bore holes that penetrated to the glacier bed. The bore holes, holes 322
and 209, are designated by their depth in meters. Hole 322 was surveyed in 1960 and 1961.
The velocity at a depth of 316 m, the lowest point at which inclination was measured, was
32.0m a~'. Extrapolation of the velocity curve to the base of the ice gives a sliding velocity of
joma—'. Hole 209 was surveyed in 1960, 1961 and 1g62. The velocity was g.2 ma~" at
196 m for 196061 and 16.6 m a~* at 192 m for 1961-62. Extrapolation to the base of the ice
gives sliding velocities of 3 m a~! for 196061 and 1o m a~* for 1961-62. We take an average

value of 6.54-3.5 ma~".

Surface sirain-rate

At the bore holes, the longitudinal and transverse surface strain-rates were determined
by means of four stakes arranged in a diamond pattern. The length of each side of the
diamond was roughly equal to the ice thickness. Lengths were measured by steel tape. The
standard error of these strain-rates is about 0.001 a=".

In addition, the longitudinal strain-rate between each pair of adjacent stakes on the
center-line was calculated from the survey data. Similarly the transverse strain-rate was
measured between the center stakes on each transverse line. The standard error of these
strain-rates is 0.002 a~".

The transverse strain-rate, at points where it was not measured, was determined by
interpolation. An alternative method would have been to calculate the strain-rate from the
way in which the glacier’s width varies along its length. However, this method gives the
transverse strain-rate averaged over the glacier’s width. Because the strain-rate in the vicinity
of the center-line, required in the present analysis, may well be less than the average strain-
rate, we preferred to interpolate between measured values.

4. ESTIMATION OF SLIDING VELOCITY

The method consists of calculating (¢;)p, the longitudinal strain-rate at the glacier bed.
Then, if we start at a point where the sliding velocity up, is known, we can calculate up at the
next seismic station, and so on.

We have already shown that, in Athabasca Glacier, the longitudinal strain-rate varies
with depth (Paterson, unpublished; Paterson and Savage, 1963[b], Savage and Paterson,
1963). Our method consisted of calculating €., the strain-rate averaged over the ice thickness,
and showing that it differed significantly from (éz)s, the strain-rate measured at the surface.
Raymond and Kamb (1968) have subsequently confirmed this conclusion by measurements
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in several bore holes in the vicinity of our hole g22. That we cannot use (é,)s to extrapolate a
measured value of u}, to other points is obvious from the following fact: the sliding velocity at
hole 209 is about 23.5 m a~* less than that at hole 322; the difference in surface velocity is
only toma~".

We use a coordinate system fixed in space. The origin is below the glacier bed. The x-axis
is horizontal, in the direction of flow along the center-line (assumed straight), positive in the
direction of flow. The y-axis is vertical, positive upwards. The z-axis is chosen to make the
system right-handed. The corresponding velocity components are u, v, w. Strain-rates are
denoted by €4, €y, €;, and time by ¢. The glacier surface is

FB(x:y: 2, t) :)’*hs(x: Z, t) =y
and the glacier bed is
Fy(x,», z) = y—hp(x, 2) = o, (3)

where kg, by are arbitrary functions.
Because ice is incompressible, we have

ERE T —
Thus —0v/dy = —éy = éxtés
Integration with respect to y, between the limits &y and A, gives
vp—ts = h(€xt€2) (4)

where ‘5, vy, are the vertical components of velocity at the surface and bed and ¢, €, are
strain-rates averaged over the ice thickness h = hs—hy,.

If we assume that ice is neither formed nor melted at the glacier bed, there can be no tlow
normal to the bed. The condition for this is

DFy/Dt = o

where D denotes differentiation following the motion. In the present case, from Equation (3),
if up, vy, wy denote the velocity components at the bed,

DFy /Dt = —up(0hn/0x) +on—wy(chy/82) = o.
Substitution in Equation (4) gives
€x = h~"[up(Ohn/0x) +wn(ohy/0z) —v5) —€,.
For points on the center-line of the glacier, wy, = 0 and we have
€r = h~"[un(ohy/ox) —uvs] —&,. (5)
Except for a change of coordinate system, this is the formula that Savage and Paterson (1963)

used to calculate €.

When €, is known, we calculate (é;)p from the measured value of (é,)s by the formula

(€x)p = 2€z—(€2)s (6)

This rests on the assumption of simple bending, namely that €, varies linearly with depth.
This is the simplest assumption that can be made: to assume a more complex relation seems
hardly justified. This assumption was made previously in the analysis of bore-hole deforma-
tion (Paterson and Savage, 1963[b]). It leads to a value of 0.000 g a~* for (é;)p at hole 322,
which agrees satisfactorily with the observation of Raymond and Kamb (1968) that the strain-
rate “‘approaches zero toward the bottom” in this region.

In the calculations we have to assume that €, does not vary with depth, so that in Equation
(5) we can replace €, by (€;)s. As (é;)¢ is small, this procedure is unlikely to introduce appre-
ciable errors.

The calculations were carried out in a coordinate system in which the x-axis, instead of
being horizontal, was parallel to the average bed of the glacier between the two stations. A
separate coordinate system was used for cach pair of stations. (In the following paragraph,
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quantities are measured in this coordinate system and ¢hy/dx denotes the difference between
the slope of the bed at the station and the average bed slope.)

The calculations were carried out as follows. At hole 322, all quantities on the right-hand
side of Equation (5) were measured. Thus €, was calculated from Equation (5) and then
(éz)n from Equation (6). We then use this value to calculate

Aup = (é2)pAx. (7)

Here Ax is the distance between hole 322 and Lig (the next seismic station down-glacier)
and Auy, is the correction to be added to the value of uy, at hole 322 to give a first approximation
to up at L1g. (Use of a coordinate system parallel to the average bed eliminates a term in
Ay from Equation (7).) With this approximation, we then calculate (éz)y at L1g by means
of Equations (5) and (6). We then calculate a new value of Auy, from Equation (7) using the
average of the values of (¢;)p at hole 422 and L1g. This gives a second approximation to
at L1g. The process is repeated until there is no further change in the value of uy at Lig.
The final value of (é;)p, at L.1g is then used in Equation (7) to give a first approximation to up
at the next station.

1 am indebted to Dr J. F. Nye for pointing out an alternative to the numerical solution
namely. to solve the differential equation for uy, analytically. Equation (7) is equivalent to

duyp/dx = g(x) up+f (x)
2h~" dhy /dx

and Flx) = —2h " os—(é2)s—2¢..

where g(x)

The solution is
un = exp [[ g(x) dx] [ f(x) exp [—[ g(x) dx] dx.
For the special case when the glacier bed is a plane, g(x) = o and the solution reduces to
up = |f(x) dx.

However. for the case of Athabasca Glacier, f (x) and g(x) cannot be represented by simple
functions. The numerical solution has to be used.

The calculations were carried, through five intermediate seismic stations, to hole 209. The
calculated value of up at hole 209 was g.om a~'. We consider that this is satisfactory agree-
ment with the measured value of 6.54-3.5 m a—".

The sliding velocity was also calculated at four seismic stations up-glacier from hole 322
and three stations below hole 209. (The lowest station, I.37, had to be excluded because the
vertical velocity was not measured there). There is no check on these values however,

This method of calculating sliding velocity is based on the following assumptions:

(1) lce is incompressible.

(2) There is no flow normal to the glacier bed.

(3) The longitudinal strain-rate varies linearly with depth.
(4) The transverse strain-rate does not vary with depth.

The method is not restricted to a glacier in a steady state nor to any particular flow law.
Nor do we have to assume that the surface and bed are planes.

This is certainly not a precise method of calculating sliding velocity. The measurements
of ice thickness, bed slope, velocity, and strain-rate are subject to experimental inaccuracies.
And assumptions (3) and (4) will not be strictly true. Nevertheless we think that the calculated
values should at least show the general trend of sliding velocity in this part of the glacier.

Table 1 lists, for each seismic station, the horizontal components of surface and sliding
velocity. ice thickness, surface and bed slopes and basal shear stress. The bed slope given is
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that mecasured at each station, not the average slope between stations. The basal shear stress
was calculated from Equation (2), with values of shape factor F obtained from table IV of Nye
(1965) on the assumption that the glacier has a parabolic cross-section.

TaABLE |. SURFACE AND SLIDING VELOCITIES, ICE THICKNESS, SURFACE AND BED SLOPES, AND BASAL
SHEAR STRESS AT SEISMIC STATIONS ON ATHABASCA GLACIER

Station i Uy h @ B T
ma' ma ' m deg deg bar

Lio.5 70.1 26 312 4.0 16.5 1.1
Liz 59.3 29 323 2.8 1.2 0.8
Lig 51.9 32 317 3.2 1.8 1.0
L16 46.5 31 322 4.1 3.1 1.3
Hole 322 38.9 30 322 3.5 5.6 1.1
Lig 37.5 30 310 3.1 3.1 0.9
La1 34.4 28 310 1.7 —2.8 0.5

Lag 33.4 28 273 2.8 — 4.2 0.
Las 33.2 22 248 3.8 5.8 1.0
L2y 32.5 1 248 5.5 11.5 1.4
Hole 209 28.8 3.5 209 6.3 16.9 1.4
L3o.5 27.8 12 167 5.2 1.1 1.0
.32 26.1 9 118 5.0 6.0 0.7
L34 26.5 o 113 8.8 11.8 1.9

5. DISCUSSION OF RESULTS

Theoretical studies of glacier sliding have yielded relations between sliding velocity, basal
shear stress, and other parameters. For lack of data, however, these relations have not been
adequately tested. Perhaps the most widely used relation is that of Weertman (1957, 1964[b]):

up = BSPrm, (8)
Here uy, is sliding velocity, = basal shear stress, § measures the smoothness of the glacier bed
(the larger S, the less rough the bed) and B, m and p are constants. The value of m is about 2,
that of p about 4. A major difficulty in trying to verify this relation is that u,, depends on a
high power of §, a quantity that is very difficult to measure.

Meier (1968) has recently examined the relation between up and = for Nisqually Glacier.
He used Equation (1) to calculate uy from measurements of ug, estimates of £, and values of =
calculated from Equation (2). The need to determine § was eliminated by confining the
analysis to one point on the glacier bed. A range of velocities was obtained because the values
of us, h and 7 changed by large amounts during the 22 year period of observation. Meier
concluded that )y was not a simple, single-valued function of 7.

The fact that § is unknown presents a major obstacle to using the Athabasca Glacier data to
test Equation (8). If we assume, as in some theoretical studies, that § has the same value at all
points on the glacier bed, we would expect the data to show a relation between u) and .
However, the measured sliding velocity at hole 322 is nearly five times that at hole 20q,
though the value of 7 is slightly smaller (1.1 bar against 1.4 bar). Again, regression analysis
of the data in Table I showed no significant relation between up and 7. (On the other hand,
a significant relation was found between sliding velocity and ice thickness.) Thus one or more
of the following statements must be true:

1. The roughness of the glacier bed is not uniform.

2. The basal shear stress cannot be calculated by Equation (2).

3. The data do not fit Equation (8).

The assumption of uniform roughess is unlikely to be correct. As Figure 1 shows, the
glacier bed appears to be much rougher down glacier from station L27 than it is above that
point. And sliding velocities below L27 are much smaller than they are above, as Equation
(8) predicts. However, the scale of measurement of § must be considered. On Weertman's
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theory, the sliding velocity is mainly controlled by obstacles of a certain size on the glacier bed.
The critical size is a matter of controversy (Kamb and LaChapelle, 1964; Weertman, 1964[a],
[b]); however, it is probably in the range 1 mm to 1 m. Presumably § should be measured
at this scale. On Weertman’s theory, § is assumed to have the same value for obstacles of all
sizes; but this is unlikely to be true in a real glacier. Thus the roughness shown in Figure 1,
which has a scale of 100 m, should not be used as an indication of the small-scale roughness.
To obtain information on this will not be easy; radar sounding, at least at the wave-lengths
used at present (0.7 m to 10 m), will not provide the answer.

There are two possible sources of inaccuracy in values of basal shear stress calculated from
Equation (2): inaccuracies in allowing for the effect of the shape of the glacier channel, and
neglect of the effect of variations in longitudinal stress along the glacier. Use of the shape
factor appears to be the best method available for allowing for the effect of the channel. The
method is only approximate, however, and it is difficult to estimate the amount by which the
calculated value may differ from the actual shear stress. *

Lliboutry (1958) has shown that, when the longitudinal stress varies along the glacier, a
correction term should be added to Equation (2). Collins (1968) has derived the formula
rigorously and made clear the assumptions on which a calculation of the correction term must
be based. These assumptions are:

(1) The slope of the bed is small.

(2) The shear strain-rate €y is small compared with the direct strain-rates é;, €,, where
bars denote average values over the ice thickness. (Collins assumed that all strains
involving z are zero.)

() €z does not vary with depth.

The slope of the bed of Athabasca Glacier, in the area in question, reaches 17°. We know that
the third assumption does not hold. The second assumption can be tested at the bore holes,
where all the strain-rates have been measured. At hole 322, €z is —o0.012 2" and € is
—o0.011 a~*. Athole 209, €;,1is —0.049 a ' and €, 1s —0.003 a~'. Thus the second assumption
also breaks down. We are therefore unable to calculate Collins® correction term. Lliboutry
(1968, equation (54)) has also derived a correction term to the equation for the shear stress.
However the correction includes a term involving @a;/éx integrated over the ice thickness,
where o, denotes longitudinal stress. It does not appear possible to evaluate this term.

For comparison with results from Athabasca Glacier, Table 11 lists all published measure-
ments (as distinct from estimates) of sliding velocity known to us. (Haefeli (1951) made
observations in a tunnel in Glacier du Mt Collon. However, the tunnel reached the glacier
bed at a point where the ice descended over a vertical cliff, 60 m high, and was separated
from the rock by a gap of 2 to 4 m. We do not consider that the ice velocity can be regarded
as a sliding velocity. Theakstone (1967) has measured basal sliding in a natural tunnel near
the edge of @sterdalsisen, but he does not state the ice thickness or surface slope.) In some
cases the data were insufficient for calculation of a shape factor, so all shear stresses were
calculated without it. Thus the values of 7 are not very reliable, particularly in the cases of
Vesl-Skautbreen, a small steep corrie glacier, and Blue Glacier, where the measurements were
made near the side of the glacier in an ice fall. In the Blue Glacier tunnel, the smoothness of
the glacier bed was measured and Weertman (1964[b]) showed that the sliding velocity was in
reasonable agreement with the value calculated from Equation (8).

Regression analyses of the data in Table II gave results similar to those from Athabasca
Glacier: no significant relation between sliding velocity and basal shear stress, but a significant

* A referee has pointed out that the lowest value of shear stress, 0.5 bar at Lai, is found in an overdeepened
area, where the subglacial channels are probably under hydrostatic pressure, a fact which is consistent with
Lliboutry’s theory of sliding.
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relation between sliding velocity and ice thickness. These data thus lend no support to
LEquation (8). Asin the case of the Athabasca Glacier data however, the discrepancy could be
accounted for by variations in roughness of the glacier bed, inaccuracies in calculated values
of shear stress, or both.

TABLE II. PUBLISHED MEASUREMENTS OF SLIDING VELOCITY, 1CE THICKNESS, SURFACE SLOPE AND
BASAL SHEAR STRESS

Glacier s y h a T Reference
ma’ ma' m deg bar

Vesl-Skautbreen 2.6 2.3 50 25 1.9 McCall (1952)
Tuyuksu 4.2 2.8 52 9 0.7 Vilesov (1961)
Blue 6.6 5.8 26 28 0.7 Kamb and LaChapelle (1964)
Athabasca 28.8 6.5 200 6.3 2.0 Savage and Paterson (1963)
Aletsch 35 17.5 137 4.0 0.8 Gerrard and others (1952)
Athabasca 38.9 30 322 925 1.75  Savage and Paterson (1963)
Salmon 78 34 490 2.0 1.4 Mathews (1959)

For the combined data in Tables I and I1, the regression of sliding velocity on ice thickness

1s
up = 0.1 1K%95 (9)

with & in meters and up in m a~'. Figure 2 shows this relation and the observations. This
relation is presented merely as an empirical fit to the data. We do not suggest that it implies
any causal relation between ice thickness and sliding velocity. Nor do we suggest that an
equation of this form has any wide application. In fact, we can see, by considering the situa-
tion in an ice fall, that such a relation cannot be true everywhere. The ice is relatively thin in
an ice fall; yet velocities are high and sliding probably accounts for a large part of the total

motion. Moreover, up must be related to other factors as well as ki, otherwise the direction of
sliding would be undetermined.
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Fig. 2. Relation between sliding velocity and ice thickness. The line represents Equation (g).
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