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PLURIHARMONIC SYMBOLS OF
COMMUTING TOEPLITZ TYPE OPERATORS

YOUNG JOO LEE

Certain Toeplitz type operators acting on the Bergman space A1 of the unit ball
are considered and pluriharmonic symbols of commuting Toeplitz type operators
are characterised by using .M-harmonic function theory.

1. INTRODUCTION AND RESULT

Let B be the unit ball of the n-dimensional complex space C". The Bergman
space j 4 p ( l ^ p ^ o o ) i s the closed subspace of the Lebesgue space Lp = LP(B,V)
consisting of holomorphic functions where V denotes the Lebesgue volume measure on
B normalised to have total mass 1. Let Q be the integral operator on L1 defined by

= An / £— A^tMdvw {z e B)
JB(1-{Z,W))

for functions rjj E L1 where ( , ) is the ordinary Hermitian inner product on Cn and

1/An = JB (l — \w\ j dV(w). It is known that Q is a bounded linear operator

taking L1 onto A1. Moreover, Q has the following reproducing properties:

(1) Qf = f and Q / = 7(0)

for functions / € A1. See [6, Chapter 7] for more informations on the operator Q and
related facts. For u € L°°, the Toeplitz type operator Tu with symbol u is the linear
operator acting on A1 defined by

T.(/) = Q(nf)

for functions f £ A1. Clearly Tu is a bounded operator on A1. In the Hilbert
space context A2, the original Toeplitz operators are defined in terms of the Bergman
projection acting on L2. But since the Bergman projection is unbounded on L1, we
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68 Y.J. Lee [2]

natually consider the bounded projection Q on L1 to define the corresponding Toeplitz
type operators on A1.

A function u £ C2(B) is said to be pluriharmonic if its restriction to an arbitrary
complex line that intersects the ball is harmonic as a function of single complex variable.
As is well known [6, Theorem 4.4.9], a real-valued function on B is pluriharmonic if
and only if it is the real part of a holomorphic function on B. It follows that every
pluriharmonic function on B can be expressed, uniquely up to an additive constant, as
the sum of a holomorphic function and an antiholomorphic function.

In the present paper, we consider a characterisation problem of two pluriharmonic
symbols for which the associate Toeplitz type operators commute on A1. In the Hilbert
space case A2 , the corresponding commuting problem for the original Toeplitz oper-
ators was studied in [1] with harmonic symbols on the unit disk and in [4, 7] with
pluriharmonic symbols on the ball. The following theorem is the main result of the
present paper.

THEOREM 1. Let u and v be bounded pluriharmonic symbols on B. Then
TUTV = TVTU on A1 if and only if one of the following properties holds:

(o) u and v are both holomorphic on B;
(b) u and v are both antiholomorphic on B;
(c) tiere exist constants a and /?, not both 0, such that au+{3v is constant

on B.

In the course of the proof of Theorem 1, we shall use an idea in [4] to give a
slight variant of the characterisation of A4-harcnonicity given by the weighted area
version of the invariant mean value property (see Section 2 for relevent definitions) and
a recent result in [7] on jVf-harmonic products to characterise pluriharmonic symbols of
commuting Toeplitz type operators. In Section 2 we collect some facts on .M-harmonic
functions and then give a characterisation for .M-harmonic functions in terms of a
weighted area version of the invariant mean value property. The characterisation will
be used in Section 3 where we prove Theorem 1 and give a simple application.

2. JM-HARMONIC FUNCTIONS

For z,w £ B,z ^ 0, define

and <PQ(W) = —w. Then ipz £ M., the group of all automorphisms (=biholomorphic
self-maps) of B and <pz is an involution: tpz o<pz is the identity on B. Furthermore,
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each ip E M. has a unique representation <p = U o tpz for some z E B and U E U, the
group of all unitary operators on C™ . Then the real Jacobian JR<P of tp is given by

|2
i - N

ji-<»,*>r

71+1

(2) JHy(«)=[,/ , " , J (»€B)

and the useful identity

holds for every a,b E B. See [6, Chapter 2] for details. For u E C2{B) and z E B, we
define

where A denotes the ordinary Laplacian. The operator A is called the invari-

ant Laplacian because it commutes with automorphisms of B in the sense that

A(u o tp) = (Aw) o <p for tp E M. We say that a function u E C2{B) is M- har-

monic on B if it is annihilated on B by A. As is the case for harmonic functions

on the disk, .M-harmonic functions are characterised by a certain mean value property

(see [6, Theorem 4.2.4]): A function u E C(B) is .M-harmonic on B if and only if

(t» o <p)(0) = f (uo <p)(r() d<r(C) (0 < r < 1)
Js

for every ip E M.. Here <r denotes the rotation invariant probability measure on the
unit sphere 5 , the boundary of B. This is the so-called invariant mean value property.
The following weighted area version of this invariant mean value property also gives a
characterisation for .M-harmonicity of functions continuous up to S. In the case a = 0
the following characterisation was obtained in [6, Proposition 13.4.4], [5, Corollary 3.5]
and recently with bounded function in [3] on the ball. The case a > — 1 was proved in
[2, Proposition 10.2] on the disk. We now have the ball version where the case a = ra + 1
will be used in the course of the proof.

PROPOSITION 2 . Let u £ C(B) and a > - 1 . Tien u is M-harmonic on B
if and only if

(4) (

for every tp E M.. Here and elsewhere 1/Aa = JB (l — \w\ J dV(w).
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PROOF: First suppose u is .A/f-harmonic and let (p £ M.. By the invariant mean
value property, one obtains

for every 0 ^ r < 1. Multiplying both sides by 2nr2n~1 (l — r2)" and then integrating
in polar coordinates, we get

(uo<s>)(0) I (l - M2)Q dV(w) = f (uo<p)(w)(l-\w\2ydV(w),

so we have (4). To prove the converse implication, we may assume u is real without
loss of generality, and let U be the .M-harmonic function which is the invariant Poisson
integral of the restriction of it to S. Put h = U — u. Then h G C\B) a n f l h = 0 on S
(See [6, Chapter 3] for related facts.) Let m be the maximun of h on B and suppose
h(zo) = m for some ZQ £ B. Note that (4) holds for h. By a change of variables, (2)
and (3), one obtains

h(z) = (hoV,)(0)

= \aJ (Ao^)W(l - \w\2)adV(w)

| 1
1 " N , | 2 ) dV(w)

n+l+a

for every z £ B. On the other hand, by a change of variables and (2), one can easily
see that

( 2

is a probability measure on B for every z £ B. Since u is real, we have by the above
observations

m — h(z) = ft(zo) ~ Mz)

= I h{IZ0-Iz)dV
JB

JB

= 0
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for every z £ B, which implies that h = m on B. It follows that h = 0 on B because
h = 0 on 5 . Hence u = U, so that u is .M-harmonic on B. The proof is complete. D

The key step in our proof of Theorem 1 is adapted from that of [4]. That is, to
characterise pluriharmonic symbols of commuting Toeplitz type operators, we shall use
a slight variant of the characterisation of .M-harmonicity given by the weighted area
version of invariant mean value property. To state it, let us introduce some notation.
We associate with each v 6 C(B) its so-called radialisation A(v) defined by the formula

A{v){z) = I v{Uz)dU (z£B)
Ju

where dU denotes Haar measure on U. Using Proposition 1.4.7 of [6], one can easily
verify that

A(v)(z)= fv(\z\C)da(C) (zGB)
Js

and hence A(v) is indeed a radial function on B. We write A(v) £ C(W) if A(y) has
a continuous extension up to the boundary S. The following proposition was proved in
Proposition 4 of [4] in the case a = 0.

P R O P O S I T I O N 3 . Let u e C{B), a > - 1 and suppose

J \u(z)\(l-\z\2)adV(z)<oo.

Then u is M-harmonic on B if and only if

(5) (u o y,)(0) = XaJ (no <p)(w)(l - \w\2Y dV(w)

and

(6) A{uov)eC(B)

for every ip £ M .

PROOF: We first prove the easy direction. Suppose that u is .M-harcnonic on B

and let <p £ M . By the invariant mean value property again, we have

(7) («

for every r £ [0,1). Then (5) follows by the same argument as in Proposition 2. Also
(7) shows that A(u o ip) is constant on B, with value (rto^)(0), and therefore (6)
holds.
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To prove the other direction (which we need for the proof of Theorem 1 with
a = n + 1), suppose that (5) and (6) hold. Let tp g M. and put v = A(u o tp). We
first show that v is .M-harmonic on B. Since v £ C(B) by (6), it is sufficient by
Proposition 2 to show (4) for v. To do this, fix i/> £ M. Then

(8) \

where Fu = tp o JJ o ip £ M..

For a fixed unitary operator U £ Z/, consider the inverse mapping Gu € M of

and put a = Fu(Q) = (ip o U o iP)(0). Then, since |y?—x(0)| = \ip(0)\, we have by (3)

(9) 1 - \a\2

On the other hand, we have by (3) again

and by (2)

, ( 1-14

for every w £ B. It follows that

n+l+a(
1 -

f
n+l+a

Now a change of variables and the above, together with (9) show

/ f \uo Fu{z)\(l-\z\*y dV{z)dU

= ( I \u\ (l - \Gu\2YJRGudVdU
Ju JB V '

< CO
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since JB \u(z)\ 11 — |z| J dV(z) < oo by assumption. Now one can interchange the

order of integrations on the right side of (8) to obtain

(uoFv){z){\ -

= I (u o Fv)(0)dU
Ju

= I {u o <p o U){i>(0))dU
Ju

= A(uo<p)(rl,(0))

where the second equality holds by (5). Hence v is .M-harmonic on B. Since v is
radial, the invariant mean value property shows that v is constant. Consequently,

(« o p)(0) = v(0) = v(z) = f (u o <p)(\z\ C)da(C) (z G B).
Js

Since tp £ M. is arbitrary, the above shows that u has the invariant mean value property
and hence that u is jW-harmonic on B as desired. The proof is complete. D

Before turning to the our proof, we need a recent result of Zheng [7] on .M-harmonic
products to characterise the symbols. (The original statement in [7, Theorem 2] is in a
slightly different form.)

LEMMA 4 . Let u = f + g and v = h + k be two bounded pluriharmonic symbols
on B. If fk — Kg is M-harmonic on B, then u and v are aJJ holomorphic or antiholo-
morphic or there exist constants a and /?, not both 0, such that au + fiv is constant
on B.

3. PROOF

First, we recall some well known facts on the Hardy space H2 consisting of holo-
morphic functions f on B for which

<M0
0<r<l JS

Note that H2 C A2 by an integration in polar coordinates. In addition, it is shown in
[4] that A(fg) eC(B~) for every f,g£H2.

Next, before turning to the proof of Theorem 1, we prove a couple of lemmas. For
<p 6 M., let Uv denote the linear operator on L1 defined by

uvf = (f o <p)(J<e)2
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2 •
where Jtp is the complex Jacobian of ip. Since \Jf\ is the real Jacobian of ip, one
obtains by a change of variables

/ \Uvf\ dV = [ \foV\ \J<p\2 dV= f | / | dV
JB JB JB

for every / 6 L1. Hence Uv is an isometry of L1 into L1 and clearly Uv takes A1

onto A1. Moreover it is easy to see that UvU^-i = Uv-iUv is the identity operator
on L1. The following lemma is essentially contained in [8] (in a slightly different case).
But we here give a proof for the sake of completeness.

LEMMA 5. Let tp e M. Then QUV - UVQ on L1.

PROOF: Let ip € M with the representation <p~x — U o (pa for some a £ B and
U eU. Note by [8, Section 2] that

(10) (J<pa){z) = (-1)" | l_{Zja) I (* e B).

It follows from a straightforward calculation that

(11) ('»>)'(*>-'(*)) = ' ' ' ' • " +, (* e B).

Let / G L1 and pick a point z £ B. By a change of variables and a simple manipulation
using (2) and (3), one can see from (11) that

r ( i - M )Q{Uvf)(z) = Xn / £— fa+
JB{1-{Z,W))

( , ,2\n+1

l-lip-^w) \)

i - k l 2 ) f

JB
On the other hand, (10) shows that the last expression of the above is just the same as
(Jtp) (z)Qf(tp(z)), which is exactly Uv>Qf(z). Hence UVQ — QUV on L1, as desired.
The proof is complete. D

LEMMA 6 . Let <p e M and u £ L°°. Then

^-i — Tuoip.
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PROOF: Let / 6 A1. By Lemma 5, one obtains

T^Vvf = W ( / o <p)(J<p)2} = Q[(u o <p)(f o v){Jipf]

= QU^uf) = UvQ(uf) = UvTuf.

Thus TUOV>UV = UVTU on L1. Now use the fact U^U^-i is the identity operator to get

the desired result. This completes the proof. D

We axe now ready to prove Theorem 1.

PROOF OF THEOREM 1: We begin with the easy direction. First suppose that
( a ) holds, so that u and v are holomorphic on B, which means that Tu and Tv

are, respectively, the operators on A1 of multiplication by u and by v by (1). Thus
TUTV = TVTU on L1. Now assume (6), so that u and v are holomorphic on B. By the
explict formula for the operator Q and an application of Fubini's theorem, one can see
that TuTvf = Q(uvf) for every bounded function / i n A1. Note that the set of all
bounded functions in A1 forms a dense subset of A1. It follows from continuity that
Tu and Tv commute, as desired. Finally suppose (c) holds and assume a ^ 0 (the
other case is similar). Then u — c\v + cz for some constants c\ and C2 , which implies
Tu = cxTv + c2 , so that TUTV = cxTvTv + c2Tv = TVTU on A1.

Now we prove the converse implication. Write u = / + ~g and v = h + k for some
holomorphic f,g,h, and k. It is shown in the proof of Theorem 1 in [4] that functions
f,g,h, and k are all in H2. Since H2 C A2 C A1, in particular, functions f,g,h, and
k are all in A1. Let 1 denote the constant function 1 on B . Then we have by (1)

= Q(fh + k(O)f + hg+gk(O))

= fh + ife(O)/ + Q{hg) + g(0)k(0).

Note that JB F dV = F(0) for holomorphic functions F £ L1. It follows that

r

JB
(12) = /(o)fc(o) + /(o)fc(o) + 5(0)^0) + g(fe»)(o)

+ Xn f h{w)g(w)(l - \w\2Y+1 dV(w).
JB

 v y

Similarly,

(13)

/ {TvTul)dV = f(Q)h(0) + h(0)g(0)+g{0)k(0) + \ n [ f(w)k{w)(l - \w\2Y+1 dV(w).
JB JB V '
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Since TUTV = TVTU by assumption, letting 6 = fk-hg, we have by (12) and (13) that

(14) An j 6(w) (l - M2)"+ 1 dV(w) = 6(0).

We also have (by a remark mentioned at the beginning of this section) that

(15) A(S)EC(B).

Let ip E M. Multiplying both sides of the equation TUTV = TVTU by Uv on the
left and by Uv-i on the right, we obtain since Uv-iUv is the identity operator that

UvTuUv-iUvTvUv-i = UvTvUv-iUvTuUv-i

and therefore by Lemma 6

(IDJ J-uotpJ-voip = J-vOipJ-uoip'

Equations (14) and (15) were derived under the assumption that TUTV = TVTU. Thus
(16) says that (14) and (15) remain valid with 6 o <p in place of 6. That is,

J (S O <p)(w) ( l - \W\2Y+1 dV(w) = (6 O <p)(0)

and A(6 o tp) £ C(B) for any (p € M.. It follows from Proposition 3 with a = n+1 that
6 = fk — Kg is .M-harmonic on B. Now Lemma 4 gives the desired characterisation.
This completes the proof. U

We conclude this paper with a simple application. We note that pluriharmonic
functions are closed under complex conjugation.

COROLLARY 7 . Let u be a bounded pluriharmonic symbol on B. Then TUT^ =
TuTu on A1 if and only if the image of B under u lies on some Hne in C.

PROOF: If u(B) lies on some line in C, a rotation and a translation show that
there exist constants c (|c| = 1) and d such that cu + d is real valued on B. Since
Tu - {Tcu+d ~ d)/c and T» = (TCJi+d -d)/c, one can show that Tu and T* commute.
Conversely assume TUT^ — T^TU on A1 and then Theorem 1 implies that u and u
are holomorphic on B or a nontrivial linear combination of u and u is constant on B.
The first case implies u is constant on B, so we are done. Also, a simple manipulation
shows that the latter case implies u(B) lies on some hne in C. This completes the
proof. U
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