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Abstract. Data on a large sample (~400) of candidates for the classical Algol-type eclipsing binary 
configurations have been collected. The mass-ratio q has been calculated on the assumption of their 
semi-detached nature, and then compared with corresponding period for some subsets of the sample. 
The tendency to slight overluminosity (compared with corresponding MS stars) of the primaries in 
classical Algols is confirmed. 

The role of the loss of angular momentum in classical Algol evolution is considered, together with a 
method for determining representative parameters to characterize such effects using the sample data. 
The possible existence of a class of post-contact classical Algols is noted. 

1. Catalogue of Classical Algol Candidate Stars 

A list of some 400 candidate objects has been compiled to provide the basis for a 
catalogue of stars, which have been suspected at some time or other, for more or 
less well established reasons, as falling into that category of semi-detached binary 
exemplified by fi Per (Algol). One broad purpose of this undertaking is to provide 
a more extensive range of material which might be useful in providing statistical 
tests on some theories of binary evolution, rather in the way considered by 
Giuricin and Mardirossian (1981a), the receipt from whom of published and 
unpublished work the author is glad to acknowledge. 

Also of basic usefulness to the present work has been the catalogue of 
Brancewicz and Dworak (1980, hereafter referred to as BD) whose uniform 
procedure, even if carrying through systematic effects associated with uncertainties 
attaching to some adopted relations, provides a potentially important basis for 
statistical comparisons. 

A good proportion of the candidate systems (311) were previously compiled by 
the present author in a rather preliminary survey of their properties (Budding, 
1981). These systems were taken from the listing of those eclipsing binaries 
described as EA in the well-known General Catalogue of Kukarkin et al. (1969), 
and the designation EA2 was applied to the binaries in question to distinguish 
them from another group - EA1 - showing 'Algol' type light curves in the 
traditional sense, but being made up of pairs of essentially unevolved stars. The 
EA2 designation implies the classical semi-detached evolved star containing 
configuration as typified by Algol itself. 

* Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on 'Double Stars: Physical 
Properties and Generic Relations', held at Bandung, Indonesia, 3-7 June, 1983. 
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The first page of a provisional form of the catalogue is presented as Figure 1. A 
few remarks may be made about this. The name and period of each binary is 
straightforward enough, though a good many of the candidates show period 
variations affecting higher decimal digits of the period than those included. Each 
entry contains (where possible) the mass of the primary star as given by BD, (to 
two significant decimal figures). Sometimes additional estimates of this mass are 
included for comparison. These generally well-known examples will be remarked on 
subsequently. The spectra can be traced to the sources listed by BD. Their mass 
ratio qBD is also listed. Later, reasons will be given why it is thought that there has 
been a tendency to systematically overestimate this quantity (at least for EA2 
systems). Also of interest is the quantity tabulated by BD as RL2 - since it 
provides a clue to the likelihood of a semi-detached binary. 

The quantity qSD corresponds to the mass-ratio which would be implied by the 
quoted relative radius of the subgiant component, were this to be in contact with 
its surrounding Roche lobe. The value comes from an interpolation on the 
tabulated data of Kopal (1959) (rather than any use of formulae). Also supplied is 
the depth in magnitudes of the primary eclipse. This usually comes directly from 
Kukarkin et al. (1969), who supply the suffix p, v, etc., depending on the 
wavelength of observation. The key point here is the fact that EA binaries with 
deep primary (and shallow secondary) minima are very likely to conform to the 
EA2 type characteristics in other respects (i.e., to be semi-detached). The relative 
radius of the primary star rx is useful since, taken together with the other items, it 
can allow calculation of an overall picture of the salient physical quantities 
characterizing the binary system. 

The quantity described as SD status is meant to indicate the likelihood of a 
genuine classical evolved Algol binary based on the information available. It takes 
the 5 odd values from 0.1 up to 0.9 in steps of 0.2. 

The weight 0.9 refers to well-known cases, whose semi-detached state has usually 
been attested by a number of authorities. It is this group for which additional 
comparison data is often presented. 0.7 attaches to those binaries which show 
similar properties to the 0.9 examples, but have received relatively little attention. 
0.5 corresponds to candidates which might possibly be EA2 systems, but for which 
an alternative EA1 or other configuration is about equally likely. 0.3 is given to 
those candidates for which a semi-detached configuration may just be possible but 
the supporting evidence seems poor, or indeed an alternative arrangement seems 
more likely. 0.1 is given to those cases which have somehow appeared as 
candidates in an initial search, but further examination has made appear very 
unlikely to be EA2 binaries. An additional column contains a few brief words on 
possible peculiarities of the system in question. The author would be glad to 
receive early comments on the style of, or possible improvements which could be 
made to, this catalogue. 

Figure 2 shows the plot of qBD against qSD from which the general excess of qBD 

values can easily be ascertained. An explanation of this is offered as follows: the 
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302 E. BUDDING 

MASS RATIO ESTIMATES 

0.0 0.2 0.4 0.6 0.8 1.0 
QSD 

Fig. 2. Plot of qBD against qSD for 147 EA2 candidate binaries with primaries in the mass range 
2 < M1(BD) < 4 M Q . The trend of qBD > qSD is evident even for the s.d. status 0.9 systems (full circles). 

Open circles denote s.d. status 0.7 systems. 

five basic relations put together in BD - essentially the same as those considered, 
for example, by Hall (1974), and including a mass-luminosity relation which might 
be applicable, but only for the primary component in the case of EA2 systems -
refer to eight separate quantities, some of which can be regarded as known. The 
final reduced expression, obtained from elimination between these five relations, 
can be cast in the form 

logM, = / ( l o g P , l o g r 1 , l o g r 1 , l o g ( l + q ) , a,), (1.1) 

where M, is the primary mass, P the period, r, the primary's radius in units of the 
binary mean separation, Tx its surface temperature, q the mass ratio, and af are 
some known constants. 

The binaries considered all have known primary spectral type from which it is 
assumed Tx can be derived. P is, of course, known to high accuracy, while rx 

obtains from the solution of the light curves. We are left with M, and q, the former 
turning out to have a relatively small dependence on the assumed value of the 
latter. Subgiant components in semi-detached binaries are known to show 
luminosity excesses over the normal mass: luminosity law which, in some cases 
may be very considerable (see, e.g., Giannone and Gianuzzi, 1972). BD do not 
make clear what their procedure would be in the case of semi-detached suspects, 
though in those well-known cases where secondary masses have been more 
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confidently specified in source material (status 0.9 systems) the general agreement 
between qSD and qBD is better. 

If we concentrate just on the primary, however, and keep in mind the iterative 
improvement solution method of BD which starts with a q value of 0.75 (quite 
higher than average for a semi-detached system); the adopted Main-Sequence mass 
luminosity relation would tend to impart a Main-Sequence character to this 
primary star. A reasonable form for (1.1) can be shown to be 

log(l+<j) = 4.76 logMj-5.90 log 7;-1.95 logP-2.95 logrj+20.24, 
(1.2) 

where Tu P, and rt are taken to be known for a particular case. If a value of q 
satisfying the above equation is perturbed downwards in value, a corresponding 
reduction of Mj is clearly entailed - i.e., if M( were already in keeping with its 
derived Rl and Tj as a Main-Sequence star - a lower value would imply the star 
to be somewhat overluminous for its mass. This is indeed what has been found to 
be the case for certain well studies semi-detached binaries (Hall, 1974). The 
implication is that a more generally self consistent solution is found when the q-
values are reduced from those of BD to those of the trend of qSD, on the basis 
that the primaries in these systems tend, possibly as a result of processes 
connected with the binary evolution, to be rather over-luminous for their mass, 
compared with normal Main Sequence stars. 

2. Existence of Trends in the q-\og P Diagram 

In pursuing the aforementioned aim of providing material to test binary evolution 
theory the distribution of the systems in the q: log P plane was examined. These 
two quantities can be readily related to various schemes of binary evolution, and, 
for genuine EA2 stars with known light curve solutions (i.e., known r2) qSD 

(= q(r2)\ as well as P, is directly accessible. This distribution has been considered 
with such purposes in mind by such authors as Svechnikov (1969), Ziolkowski 
(1976), and Giuricin and Mardirossian (1981a). 

At first data was taken from the compilation of Giuricin and Mardirossian 
(1981a) for those 0.9 status systems for which a primary mass of less than 6MQ 

had been calculated. The distribution of 76 such relatively low-mass classical Algol 
candidates in the q: log P plane is shown in Figure 3. A negative correlation of q 
with logP can be eye-judged from this diagram (r = —0.45), and though the 
scatter in the plane is quite wide it can be observed that there are relatively few 
points with very small q and period, or relatively large q ( ^ 0.5) and large period. 

The existence of this general trend is in broad agreement with the Roche-lobe 
overflow (RLOF) theories of binary evolution, and even on fairly general grounds 
we might expect that if the contact component does tend to lose mass then lower 
mass ratios will tend to go with longer orbital periods. Further insight into Figure 
3 may thus be afforded by considering the form of how q would vary with log P 
according to some of the discussed evolutionary schemes. 
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Perhaps the simplest case to consider is the 'conservative' trend (which 
corresponds to the curves actually shown in Figure 3) which is given by 

logP = logP0 + 6 l o g ( l + q ) - 3 log<j-log64, (2.1) 

where P0 corresponds to the minimum period, obtaining when q — 1. The curve 
shown as a continuous line corresponds to P0 = 0.587 days, which might be 
appropriate for a conservative RLOF process for a pair of stars of total (constant) 
mass M about 5 MQ, which would just be in contact as an equal mass pair. P0 

(contact) is actually specified by 

P0 (contact) = 0.082a3/2 (M/2),3"-1)/2, (2.2) 

where n is a mass:radius relationship index, which might be expected to be ~0.7 
for the stars in question; while a expresses the ratio of separation of the centres of 
equal mass to the nominal ('volumetric') radii of the corresponding critical lobe 
surfaces (typically, a ~ 2.6). 

From (2.2) we may deduce that any appropriate abscissal shifts of the 
continuous curve shown in Figure 3, in dependence on the expected range of total 
mass of the 76 systems should be relatively slight (or order 0.1 either way). Hence, 
while the majority (~f) of the systems considered lying to the right of the 
continuous curve would not, on this evidence, be in conflict with a conservative 
RLOF scheme, a substantial number of systems exist which, if projected backwards 
along a conservative path in the q: log P plane, would, at some point, no longer be 
able to satisfy the initial premise of being a semi-detached system. This result is not 
new. The likelihood of non-conservative evolutionary trends in the properties of 
classical Algol systems has been considered by a number of authors, at least since 
the work of Paczyhski and Ziolkowski (1967), and the compilation of Svechnikov 
(1969), if not before. However, the accumulation of systems on the right of the 
conservative limit in Figure 3 is notable. The distribution of these EA2 systems 
over a range of possible values of log P0 is shown as a histogram in Figure 4. In 
what follows, features and possible interpretations of such diagrams as Figures 3 
and 4 will be considered. 

3. Possible Interpretations and Checks 

Apart from the majority of systems clustering somewhat above the continuous 
curve in Figure 3, there exists a group of systems rather more spread out, below 
and somewhat to the left of the curve. Some care may be required to establish facts 
in the case of such systems. For example, KO Aql would have appeared among this 
group if earlier solutions for q had been adhered to. Such solutions were calculated 
on the premise that the primary eclipse is caused by a transit of the smaller star 
across the disk of the larger one. It was shown, essentially already by Russell 
(1912), that occultation primary solutions producing a quite similar form of light 
curve can generally be found as an alternative to transit primary solutions (though 
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Contact at Pmjn for 2.5 M g Stars 

Conservative"evolution) 

-1-4 -0-2 
'OS Pmin 

Fig. 4. Numbers of Algols falling into successive intervals of 0.2 in log Pmin (days) on the assumption 
of 'conservative' evolution (Equation (2.1)). A sizeable number of systems (to the left of the contact 
limit) violate an initial premise of the conservative RLOF mechanism since their Roche lobes, at 
minimum period, are not large enough to contain both stars. Some of these systems may result from 
faulty photometric solutions producing too low q-values. On the other hand, the suggestion of a 'gap' 

may indicate a qualitative difference in the evolution progress for such systems. 

the reverse is not always the case). The more recent discussions of KO Aql (see, e.g., 
Blanco and Cristaldi, 1974; Giuricin and Mardirossian, 1981b) have shown, in a 
reasonable way, that the occultation alternative provides a much more satisfactory 
explanation of the evidence. Perhaps such an explanation might fit some members 
of the low q, log P group - transit primary hypotheses account for some 46 % of 
the solutions in this group, though only 30 % of the entire set are solved in this 
way. An occultation alternative for a given model, since it raises the secondary 
relative radius, will clearly increase the corresponding value of q, perhaps to allow 
a point to move into the majority domain. 

This point can be carried a little further by considering what radii of primaries 
might be reasonably expected for the mass of systems involved, and following 
through the implications on the relative dimensions of components. In this way, it 
would be very difficult to expect any real EA2 system, of any normally encountered 
mass ratio (i.e., q < 0.6), of total mass several M Q with a period less than one day, for 
example, to have a secondary star actually larger than the primary. Similarly, cases like 
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AS Eri or R V Oph, for which occultation primary solutions have already been advanced, 
presumably cannot allow larger q values, despite their relatively short periods. Systems 
which might, perhaps, be profitably re-examined to check the assumed eclipse type, 
however, include SU Boo, XX Cep, IM Aur, UX Her, V338 Her, and AL Gem. 

Prominent among those stars well to the lower right of Figure 3 is the well-
known system R CMa, once regarded as the prototype for a subgroup of peculiar 
overluminous Algol systems (Kopal, 1959). The particular problems posed by the 
original members of the 'R CMa group' appear to have been largely disposed of 
with careful reobservation and analysis (Sahade and Ringuelet, 1970; Okazaki, 
1977; Hall and Neff, 1979). In the case of RCMa itself, its overluminosity problem 
was made less acute by reducing the adopted mass ratio; however, let us note here 
that this operation would accentuate its evolution problem in the sense previously 
mentioned. The careful consideration which has been given to R CMa, as well as 
some other members of the low <j:logP group, such as AS Eri (cf. Popper, 1973; 
Refsdal et a/., 1974), do allow us to have confidence that at least some of these 
points really do lie below the main congregation. 

Keeping in mind the matter of confident positioning of points in the q: log P 
plane, Figure 4, nevertheless, directs attention to the possibility of some definite 
gap between the main aggregation and the low q: log P group. This possibility is 
enhanced by the fact that of the 6 binaries in the range 0.372 < P0 < 0.587, 3 
(RYAqr, RX Hya, and RWTau) are re-positioned outside this region by the q-
values of the catalogue, while the case of ZZ Cyg as a bona fide EA2 system is not 
so well established (Hall and Cannon, 1974). The possible existence of a gap in the 
q: log P distribution at the minimum period-contact limit, raises intriguing notions 
about the possible role of a common envelope in providing angular momentum 
loss in binary evolution. Derivation of specific information on possible mass or 
angular momentum loss was perhaps the immediate stimulus to the compilation of 
the catalogue, so that further testing of any particular features of the distribution 
might be checked from a larger data-base of systems confined within a smaller 
range of masses. 

Let us also note in this context, however, the third body in the R CMa-system 
(cf. Radhakrishnan et al., 1983). Total angular momentum, in the evolution of 
some Algol systems, might not be so much lost as redistributed, if there happened 
to be some third orbit in which it could be deposited. 

The distribution of 147 points corresponding to BD primary masses in the range 
2 to 4 MQ is shown in Figure 5, together with some possible interactive evolution 
tracks generalized to mass and angular momentum loss by the / and g parameters, 
which have become widely referred to (see, e.g., Paczyhski and Ziolkowski, 1967; 
Thomas, 1977), and corresponding histograms to Figure 4, can be drawn up for a 
range of values of / and g. Some examples are shown in Figure 6. 

There appears to have been some confusion in the literature over the precise 
meaning of/' and g. Here we shall adopt / to mean the fraction of matter lost by the 
loser which is subsequently lost entirely from the system, (with the implication that 
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1 - / is the fraction transferred to the gainer). The orbital angular momentum of the 
system J (= {PG2/2nM)1/3 M1M2) is taken to decrease with a power law 
dependence on the total mass (J/J0) = {M/M0f. The formulae (5) and (6) of 
Giuricin and Mardirossian (1981a), attributed to Vanbeveren et al. (1979), are then 
straightforward to derive, and are general enough to encompass a range of 
possibilities. 

In what follows, it will be convenient to write p in place of log P. An 
interpretation may be put on the observed frequencies h( in histograms like those 
of Figure 6, by referring to the observed density of points in the p, (/-plane, a = a(p,q\ 
X(Po)> /i> 9u aj)> where p and q are regarded as the basic independent variables. 
X(Po) represents a range of initial condition, for given mass, in terms of a distribution of 
the logarithm of the minimum period p0, and / and g are the parameters already referred 
to. The additional quantities a,- are meant to refer to other matters influencing the 
observed density distribution, or possible selection effects; we shall neglect the role of 
such quantities in the vicinity of the highest density of points. An estimate of the 
particular values J\ andg1 which best characterize the observed distribution might be 
empirically arrived at in the following way. 

Curves a = const, represent contours of constant density in the p, q-plane. One such 
curve a = <xmax, say, refers to an elongated region of minimum diameter ~Ap0, wherein 
the point density attains a maximum. Now the curve cj)ev (p,q; f,g) = const. (p0) 

Q - LOGP DISTRIBUTION FOR CLASSICAL ALGOLS 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

LOG P 
Fig. 5. Similar to Figure 3, but with the data corresponding to the 147 system from the catalogue, 

referred to also in Figure 2. 
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Fig. 6. Similar to Figure 4, but with the inclusion of non-conservative evolution trends such as those 
shown in Figure 5. The low g histograms clearly involve unacceptably low initial periods for the 
protomorph systems, as well as indicating non-parallelism between the densest region of the p — q plane 
and the evolution tracks. The matching ameliorates with higher g and lower / Thus the / = 0.5, g = 4 
combination clearly aligns well with the density maximum as well as allowing the great majority of 
evolution tracks to be free from the 'over-contact' problem of Figure 4. With all considered 
combinations of / and g, however, there is a persistent knot of low p, q-systems whose explanation 

ipust remain puzzling. 

represents a trial evolution track dependent on the parameters / and#, and specified for 
given p0. In the most straightforward approach, we attribute the observed density 
distribution, for given mass, in the p, g-plane, only to different values of p0 as expressed by 
,the function x{p0). The existence of some maximum density region <r = amax would 
imply, neglecting any observational selection effects, some largest value in the frequency 
XiPo) 0 l EA2 binaries, at, say P0max- The number of points h^g) between 
<£ev = c(p0-{Ap0)/2) and 0ev = c(p0 + {Ap0)/2), will be maximal when 0ev = c(p0) 
coincides with the major axis of the elongated region a = trmax. This condition occurs 
when/ = J\,g = #,(andp0 = p0max);i.e.,maximizingthehistogrammaximum/jimaxin 
terms of/ and# is equivalent to determining their best representative values, and will also 
lead to an estimate for p0 max (which might be compared to the 'contact' p0, for example). 
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The conservative case considered previously proves to be something of a 
discriminant in this context. Thus log P specified by (2.1), = pc say, we can now 
compare with the more generalized formula of (for example) Vanbeveren et al. 
(1979). We will then have 

P-Pc = (3.9-5) log —- -y—jr . 

If / is ~ 0 the difference in <j> curves is not too sensitive to g. For / > 0. if y > §, 
</>ev will lie above c/>ev(cons) = c, and below if y < §. A tendency of the data to 
congregate roughly parallel to the </>ev(cons) curve might be interpreted as 
evidencing relatively little systemic mass loss in general, however the two 
parameters may not be so clearly resolved in this way - i.e. the effect of higher / 
may be simulated, to some extent, by higher g. 

In view of this, the numerous uncertainties surrounding this rather simplistic 
approach and inherent noise in the histogram distributions which is not negligible, 
it would be dangerous to place too much weight on any of its results so far; 
though indications are that / is not likely to be so far from zero for many EA2 
systems, while g > f, and indeed a value of g significantly larger than J may be 
considered appropriate*. A value for / ~ 1 with g < § leads to unacceptably low p0 

for a large faction of the binaries. This is in general agreement with the conclusion 
of other authors, such as Giuricin and Mardirossian (1081a), and Popov (1970). on 
low-mass Algols. 

A few more general remarks may be made about the enlarged sample 
distribution shown in Figure 5. Again there are a number of cases of possible 
incorrect eclipse type assumption, and, even if the basic type of eclipse is right, the 
accuracy of the solutions for r2 may be doubtful, particularly in the case of the 
status 0.7 systems. Also, the gap of Figures 3 and 4.seems to have disappeared on 
Figures 5 and 6. It is still, perhaps, too preliminary to rule out a possibly 
qualitative change in the evolution pattern which may occur with over-contact at 
p0, though we have found no clear corroboration of this possibility by taking into 
account a larger number of classical Algols whose primaries fall into the mass 
range 3+1 MQ. 
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