POSITIVE FUNCTIONALS AND REPRESENTATIONS OF TENSOR PRODUGTS OF SYMMETRIC BANACH ALGEBRAS

HARVEY A. SMITH

1. Introduction. Except for using "algebra" rather than "ring" and "compact" rather than "bicompact", we adopt the terminology used in (6). Every symmetric algebra, A_{i}, will have an identity, e_{i}. All representations will be cyclic and symmetric. Sets of functionals will carry the relative weak* topology.
Gelbaum (1) and Tomiyama (10) studied Banach algebras which are tensor products of commutative Banach algebras completed in a cross-norm (see 7). A result of their work provides conditions under which the maximal ideal space of such a Banach algebra is homeomorphic with the direct product of those of the two factors. This result has been generalized in various ways. Replacing maximal ideals by multiplicative functionals, Gil de Lamadrid (3) extended the theorem to non-commutative Banach algebras. A partial extension to maximal ideals with hull-kernel topology is given in (2). In (9), Gil de Lamadrid's theorem was generalized to certain locally convex algebras.

If the commutative Banach algebras are symmetric, the tensor product having the inherited involution $(x \otimes y)^{*}=x^{*} \otimes y^{*}$, maximal ideals can be identified with indecomposable normalized positive functionals. There is a one-to-one correspondence between these indecomposable normalized positive functionals and equivalence classes of irreducible representations, therefore these equivalence classes can also be identified with maximal ideals. Since all these irreducible representations are one-dimensional, it is possible to identify maximal ideals only with equivalence classes of finite-dimensional representations.

In this paper we investigate the extension of the Gelbaum-Tomiyama result to non-commutative symmetric Banach algebras by replacing maximal ideals with these various objects. An appropriate generalization exists when maximal ideals are replaced by equivalence classes of irreducible finitedimensional representations, but no generalization of this type exists when maximal ideals are replaced by indecomposable positive functionals or simply by equivalence classes of irreducible representations.

2. Tensor products of positive functionals.

Lemma 1. Let A_{3} be the completion, with respect to a cross-norm, ν, of the tensor

Received February 3, 1967 and in revised form, July 26, 1967.
product, $A_{1} \otimes A_{2}$, of symmetric Banach algebras A_{1}, A_{2} and let A_{3} be a symmetric Banach algebra with the inherited involution. Every tensor product, $p_{1} \otimes p_{2}$, of two normalized positive functionals is extendible to a normalized positive functional on A_{3} if and only if
(*)

$$
\nu(a) \geqq \sup \left|p_{1} \otimes p_{2}(a)\right|
$$

for all a in $A_{1} \otimes A_{2}$, where the supremum is taken over all normalized positive functionals p_{i} on $A_{i}, i=1,2$.

Proof. Normalized positive functionals have bound unity; thus the condition is necessary. The functional $p_{1} \otimes p_{2}$ is positive on $A_{1} \otimes A_{2}$ for if $x=$ $\sum_{i=1}^{n} f_{i} \otimes g_{i}$, then

$$
p_{1} \otimes p_{2}\left(x^{*} x\right)=\sum_{i, j=1}^{n} p_{1}\left(f_{i}^{*} f_{j}\right) p_{2}\left(g_{i}^{*} g_{j}\right) .
$$

The arrays $p_{1}\left(f_{i}{ }^{*} f_{j}\right)$ and $p_{2}\left(g_{i}{ }^{*} g_{j}\right)$ are positive hermitian matrices. Schur (8) showed the Hadamard product of positive hermitian matrices to be positive, thus $p_{1} \otimes p_{2}\left(x^{*} x\right) \geqq 0$. If $p_{1} \otimes p_{2}$ is ν-bounded on $A_{1} \otimes A_{2}$, it can be extended to a positive functional on A_{3}. Normalization is immediate.

Henceforth, the conditions of Lemma 1 are assumed to hold. The continuous extension will be written simply as $p_{1} \otimes p_{2}$.

Lemma 2. The mapping, $\otimes:\left(p_{1}, p_{2}\right) \rightarrow p_{1} \otimes p_{2}$, of the direct product of the spaces of normalized positive functionals on A_{1} and A_{2} is a homeomorphism into the space of those on A_{3}. Moreover, $p_{1} \otimes p_{2}$ is indecomposable if and only if p_{1} and p_{2} are.

Proof. Given p, a positive functional on A_{3}, define $p_{1}(f)=p\left(f \otimes e_{2}\right)$, $p_{2}(g)=p\left(e_{1} \otimes g\right), f$ and g being arbitrary elements of A_{1} and A_{2}, respectively. The mapping of p to (p_{1}, p_{2}) is an inverse for the mapping \otimes when restricted to its range, therefore \otimes is one-to-one. Since the spaces of normalized positive functionals are compact Hausdorff spaces, it suffices to show that \otimes is continuous. For any $a \in A_{3}$, there is, for any $\delta>0, \sum_{i=1}^{n} f_{i} \otimes g_{i}=b \in A_{1} \otimes A_{2}$ such that $\nu(a-b)<\delta$. This implies that $|p(a-b)|<\delta$ for any normalized positive functional, p, on A_{3}. Let $M=\max \left\{\left\|f_{j}\right\|,\left\|g_{j}\right\|\right\}$ and let $p_{i}, p_{i}{ }^{\prime}$ denote normalized positive functionals on A_{i}. If $\left|p_{1}^{\prime}\left(f_{i}\right)-p_{1}\left(f_{i}\right)\right|<\gamma$ and $\left|p_{2}{ }^{\prime}\left(g_{i}\right)-p_{2}\left(g_{i}\right)\right|<\gamma$, then $\left|p_{1}{ }^{\prime} \otimes p_{2}{ }^{\prime}(b)-p_{1} \otimes p_{2}(b)\right|<2 n M \gamma$, thus

$$
\left|p_{1}^{\prime} \otimes p_{2}^{\prime}(a)-p_{1} \otimes p_{2}(a)\right|<2 n M \gamma+\delta
$$

By choosing first δ and then γ, we can make this last quantity arbitrarily small. As a runs over a finite set in A_{3} and defines a basic weak* neighbourhood in the dual, one obtains (for given δ) corresponding finite sets in A_{1} and A_{2}. Using these sets and an appropriate γ to define neighbourhoods in the dual spaces of A_{1} and A_{2}, one obtains in the product of the dual spaces a neighbourhood such that every pair (p_{1}, p_{2}) in this neighbourhood has its image in the originally chosen basic neighbourhood in the dual of A_{3}.

Suppose that p_{1} and p_{2} are indecomposable, and that

$$
\lambda p_{1} \otimes p_{2}\left(x^{*} x\right) \geqq F\left(x^{*} x\right) \geqq 0
$$

for all x in A_{3}. For all u in A_{2}, define $\left(F_{1 u}(f)=F\left(f \otimes u^{*} u\right)\right.$, positive functionals on A_{1}. When these functionals do not vanish identically, they can be normalized. We denote the normalized functionals by $F_{1 u}{ }^{\prime}$.

For any f in A_{1} and u in A_{2}, if $F_{1 u}{ }^{\prime}$ exists, then

$$
\begin{aligned}
\lambda p_{1}\left(f^{*} f\right) p_{2}\left(u^{*} u\right)=\lambda p_{1} \otimes p_{2}\left(f^{*} f \otimes u^{*} u\right) \geqq & \\
& F\left(f^{*} f \otimes u^{*} u\right)=F_{1 u}^{\prime}\left(f^{*} f\right) F_{1 u}\left(e_{1}\right) \geqq 0
\end{aligned}
$$

which is $\left[\lambda p_{2}\left(u^{*} u\right) / F\left(e_{1} \otimes u^{*} u\right)\right] p_{1}\left(f^{*} f\right) \geqq F_{1 u}{ }^{\prime}\left(f^{*} f\right) \geqq 0$. Since p_{1} is indecomposable, $F_{1 u}{ }^{\prime}=c p_{1}$. By normalization, $F_{1 u}{ }^{\prime}=p_{1}$. Thus, if $F_{1 u}$ does not vanish identically, we have that $F\left(f \otimes u^{*} u\right)=p_{1}(f) F\left(e_{1} \otimes u^{*} u\right)$, and if $F_{1 u}$ does vanish identically, the equation holds trivially. Using the polarization identity, we conclude that $F(f \otimes g)=p_{1}(f) F\left(e_{1} \otimes g\right)$ for all f and g. A similar calculation yields $F(f \otimes g)=F\left(f \otimes e_{2}\right) p_{2}(g)$, thus

$$
F(f \otimes g)=F\left(e_{1} \otimes e_{2}\right) p_{1}(f) p_{2}(g)
$$

By linearity and continuity, $F=F\left(e_{1} \otimes e_{2}\right) p_{1} \otimes p_{2}$ on A_{3}. Thus $p_{1} \otimes p_{2}$ is indecomposable if both p_{1} and p_{2} are.

Suppose that $p_{1} \otimes p_{2}$ is indecomposable and that $\lambda p_{1}\left(f^{*} f\right) \geqq p\left(f^{*} f\right) \geqq 0$ for all f in A_{1}. By Lemma $1,\left(\lambda p_{1}-p\right) \otimes p_{2}$ is positive, thus

$$
\lambda p_{1} \otimes p_{2}\left(a^{*} a\right) \geqq p \otimes p_{2}\left(a^{*} a\right) \geqq 0
$$

for all a in A_{3}. Since $p_{1} \otimes p_{2}$ is indecomposable, $p \otimes p_{2}=C p_{1} \otimes p_{2}$ for some C. Since p_{2} is normalized,

$$
p(f)=p \otimes p_{2}\left(f \otimes e_{2}\right)=C p_{1} \otimes p_{2}\left(f \otimes e_{2}\right)=C p_{1}(f)
$$

for all f in A_{1}. Thus p_{1} is indecomposable. Similar arguments show p_{2} indecomposable.

Lemma 2 provides two homeomorphisms of interest, \otimes and its restriction to pairs of indecomposable elements. No indecomposable element of the range is excluded from the range of the restriction. Elementary counter-examples show neither of these homeomorphisms is, in general, onto. The range of \otimes need not be all normalized positive functionals, and if A_{3} is not commutative, the range of the restriction is not necessarily all indecomposable normalized positive functionals on A_{3}. (We can conclude from the previously mentioned fact, that no indecomposable element of the range of \otimes is excluded from the range of the restriction, that those indecomposable normalized positive functionals not in the range of the restrictions are also not in the range of \otimes.)
3. Tensor products of representations. Let P_{i} be the set of indecomposable normalized positive functionals and R_{i} the set of equivalence classes of irreducible representations of the symmetric Banach algebra A_{i}. There is a canonical mapping $\Pi_{i}: P_{i} \rightarrow R_{i}$ of P_{i} onto $R_{i}(\mathbf{6}, \S 17$, Theorem 2 and $\S 19$,

Theorem 2). We give R_{i} the quotient topology induced by the topology of P_{i} and the mapping Π_{i}, thus Π_{i} becomes continuous.

Lemma 3. The mapping Π_{i} is open.
Proof. This is equivalent to showing the inverse image of the image of an open set to be open. For p in P_{i}, consider a neighbourhood of the form

$$
U=\left\{q \in P_{i}:\left|q\left(a_{j}\right)-p\left(a_{j}\right)\right|<\epsilon, j=1,2, \ldots, n\right\} .
$$

We recall that all representations in this paper are to be cyclic. For some representation ϕ and cyclic vector $\xi, p(a)=\langle\phi(a) \xi, \xi\rangle$ for all a in A_{i}. Any p^{\prime} is in the inverse image of the equivalence class of ϕ if and only if

$$
p^{\prime}(a)=\left\langle\phi(a) \xi^{\prime}, \xi^{\prime}\right\rangle
$$

for some cyclic vector ξ^{\prime}. About any such p^{\prime}, we exhibit a neighbourhood, V, contained in the inverse image of the image of U. Since ξ^{\prime} is cyclic, there is x in A_{i} such that

$$
\left\|\xi-\phi(x) \xi^{\prime}\right\|<\min \left\{\epsilon / 8\left\|\phi\left(a_{j}\right)\right\|,\left(\epsilon / 4\left\|\phi\left(a_{j}\right)\right\|\right)^{1 / 2}, \epsilon / 48\left\|a_{j}\right\|,\right.
$$

where the minimum of the five quantities for $j=1,2, \ldots, n$ is meant, zero denominators excluded. Define

$$
\begin{aligned}
& V=\left\{q^{\prime} \in P_{i}:\left|q^{\prime}\left(x^{*} a_{j} x\right)-p^{\prime}\left(x^{*} a_{j} x\right)\right|<\epsilon / 8, \mid q^{\prime}\left(x^{*} x\right)-p^{\prime}\left(x^{*} x\right)<1 / 8\right. \\
&\left.\left|q^{\prime}\left(x^{*} x\right)-p^{\prime}\left(x^{*} x\right)\right|\left\|a_{j}\right\|<\epsilon / 48 ; j=1,2, \ldots, n\right\}
\end{aligned}
$$

Each q^{\prime} in V can be expressed as $q^{\prime}(a)=\left\langle\psi(a) \eta^{\prime}, \eta^{\prime}\right\rangle$ for some irreducible representation ψ and cyclic vector η^{\prime}. We can define the normalized functional q by $q(a)=\left\langle\psi(a) \psi(x) \eta^{\prime}, \psi(x) \eta^{\prime}\right\rangle /\left\langle\psi(x) \eta^{\prime}, \psi(x) \eta^{\prime}\right\rangle=q^{\prime}\left(x^{*} a x\right) / q^{\prime}\left(x^{*} x\right)$ since

$$
\begin{aligned}
& \left|1-q^{\prime}\left(x^{*} x\right)\right| \leqq\left|1-p^{\prime}\left(x^{*} x\right)\right|+\left|p^{\prime}\left(x^{*} x\right)-q^{\prime}\left(x^{*} x\right)\right| \leqq \\
& \quad\left|\left|\xi \xi\left\|^{2}-\right\| \phi(x) \xi^{\prime}\left\|^{2}|+1 / 8 \leqq 2| \mid \xi-\phi(x) \xi^{\prime}\right\|+\left\|\xi-\phi(x) \xi^{\prime}\right\|^{2}+1 / 8<1 / 2\right.\right.
\end{aligned}
$$ thus $q^{\prime}\left(x^{*} x\right) \neq 0$. Variants of the preceding computation yield

$$
\left|1-q^{\prime}\left(x^{*} x\right)\right|\left\|a_{j}\right\|<\epsilon / 12
$$

$j=1,2, \ldots, n$, and $\left|1-p^{\prime}\left(x^{*} x\right)\right|<1 / 2$. We then have that

$$
\begin{aligned}
\left|q\left(a_{j}\right)-p\left(a_{j}\right)\right| \leqq & \left|q\left(a_{j}\right)-p^{\prime}\left(x^{*} a_{j} x\right)\right|+\left|p^{\prime}\left(x^{*} a_{j} x\right)-p\left(a_{j}\right)\right| \\
& \leqq\left|\left[q^{\prime}\left(x^{*} a_{j} x\right) / q^{\prime}\left(x^{*} x\right)\right]-p^{\prime}\left(x^{*} a_{j} x\right)\right| \\
& \quad+\left|\left\langle\phi\left(x^{*} a_{j} x\right) \xi^{\prime}, \xi^{\prime}\right\rangle-\left\langle\phi\left(a_{j}\right) \xi, \xi\right\rangle\right| \\
\leqq & \frac{\left|q^{\prime}\left(x^{*} a_{j} x\right)-p^{\prime}\left(x^{*} a_{j} x\right)\right|+\left|1-q^{\prime}\left(x^{*} x\right)\right|\left|p^{\prime}\left(x^{*} a_{j} x\right)\right|}{1-\left|1-q^{\prime}\left(x^{*} x\right)\right|} \\
& \quad+\left|\left\langle\phi\left(a_{j}\right) \phi(x) \xi^{\prime}, \phi(x) \xi^{\prime}\right\rangle-\left\langle\phi\left(a_{j}\right) \xi, \xi\right\rangle\right| \\
& <\epsilon / 2+\| \phi\left(a_{j}\right)| |\left(2| | \phi(x) \xi^{\prime}-\xi\|+\| \phi(x) \xi^{\prime}-\xi \|^{2}\right) \\
& <\epsilon
\end{aligned}
$$

which shows q to be in U. Since the representations are all irreducible, any non-zero vector is cyclic and q and q^{\prime} have the same image under Π_{i}.

Suppose that p belongs to an open subset G of P_{i} and p^{\prime} to have the same image under Π_{i}. Then p has a neighbourhood of the form U contained in G and there is a neighbourhood of p^{\prime} of the form V such that V is in the inverse image of the image of U, hence of G. Thus, every point of the inverse image of the image of an open set has a neighbourhood in this inverse image, i.e., the inverse image of the image of an open set is open.

An inner product is defined on the tensor product of two Hilbert spaces by $\left\langle h_{1} \otimes h_{2}, k_{1} \otimes k_{2}\right\rangle=\left\langle h_{1}, k_{1}\right\rangle\left\langle h_{2}, k_{2}\right\rangle$. The resulting norm, σ, is a uniform cross-norm and the σ-completion of $H_{1} \otimes H_{2}$ is a Hilbert space (see 5 and 7). If ϕ_{i} is a representation of the symmetric Banach algebra A_{i} by operators on $H_{i}, i=1,2$, then $\phi_{1} \otimes \phi_{2}$ is a representation of $A_{1} \otimes A_{2}$ on the completion of $H_{1} \otimes H_{2}$. (A cyclic element is exhibited in the proof of Lemma 4.)

Lemma 4. Under the conditions of Lemma $1,(*)$ is necessary and sufficient for every tensor product $\phi_{1} \otimes \phi_{2}$ of representations ϕ_{i} of A_{i} on $H_{i}, i=1,2$, to be extendible to a representation of A_{3} on H_{3}, the σ-completion of $H_{1} \otimes H_{2}$.

Proof. We first show that if ϕ_{i} has a cyclic vector ξ_{i}, then $\xi_{1} \otimes \xi_{2}$ is a cyclic vector of $\phi_{1} \otimes \phi_{2}$ as a representation of $A_{1} \otimes A_{2}$, and, consequently, of any extension. It suffices to show that the orbit of $\xi_{1} \otimes \xi_{2}$ has an element arbitrarily close to every element $\sum_{j=1}^{n} h_{1 j} \otimes h_{2 j}$ of $H_{1} \otimes H_{2}$. For each j and every $\epsilon>0$ there are $a_{1 j}, a_{2 j}$ in A_{1} and A_{2}, respectively, such that
$2 n\left\|h_{2_{j}}\right\|\left\|\phi_{1}\left(a_{1 j}\right) \xi_{1}-h_{1 j}\right\|<\epsilon \quad$ and $\quad 2 n\left\|\phi_{1}\left(a_{1 j}\right) \xi_{1}\right\|\left\|\phi_{2}\left(a_{2 j}\right) \xi_{2}-h_{2 j}\right\|<\epsilon$,
therefore

$$
\begin{aligned}
& \left\|\phi_{1} \otimes \phi_{2}\left(\sum_{j=1}^{n} a_{1 j} \otimes a_{2 j}\right) \xi_{1} \otimes \xi_{2}-\sum_{j=1}^{n} h_{1 j} \otimes h_{2 j}\right\| \mid \leqq \\
& \quad \sum_{j=1}^{n}\left\|\phi_{1}\left(a_{1 j}\right) \xi_{1} \otimes\left[\phi_{2}\left(a_{2_{j}}\right) \xi_{2}-h_{2_{j}}\right]\right\|+\left\|\left[\phi_{1}\left(a_{1 j}\right) \xi_{1}-h_{1_{j}}\right] \otimes h_{2 j}\right\|<\epsilon
\end{aligned}
$$

Let $p_{i}\left(a_{i}\right)=\left\langle\phi_{i}\left(a_{i}\right) \xi_{i}, \xi_{i}\right\rangle, i=1,2$. Then

$$
p_{1} \otimes p_{2}\left(a_{1} \otimes a_{2}\right)=\left\langle\phi_{1} \otimes \phi_{2}\left(a_{1} \otimes a_{2}\right) \xi_{1} \otimes \xi_{2}, \xi_{1} \otimes \xi_{2}\right\rangle
$$

thus, if $\phi_{1} \otimes \phi_{2}$ is extendible to A_{3}, then $p_{1} \otimes p_{2}$ is also. Thus if every $\phi_{1} \otimes \phi_{2}$ is extendible, every $p_{1} \otimes p_{2}$ is extendible, which implies (*).

Assuming (*), we show that every tensor product of positive functionals can be extended. To show that any $\phi_{1} \otimes \phi_{2}$ can be extended, it suffices to show it is of bounded norm as an operator from $A_{1} \otimes A_{2}$ into the bounded operators on H_{3}. (The range of $\phi_{1} \otimes \phi_{2}$ consists of bounded operators because σ is a uniform cross-norm, thus $\left\|\phi_{1} \otimes \phi_{2}\left(a_{1} \otimes a_{2}\right)\right\|=\left\|\phi_{1}\left(a_{1}\right)\right\| \| \phi_{2}\left(a_{2} \|\right)$.) Consider any representation ϕ, with cyclic vector ξ_{0}, of a symmetric normed algebra, A,
on a Hilbert space H. Define the positive functional f on A by

$$
f(a)=\left\langle\phi(a) \xi_{0}, \xi_{0}\right\rangle
$$

Then

$$
\begin{aligned}
\|\phi(a)\| & =\sup _{\xi \in H}|\langle\phi(a) \xi, \xi\rangle /\langle\xi, \xi\rangle| \\
& =\sup _{b \in A, \phi(b)} \xi_{0 \neq 0}\left|\left\langle\phi(a) \phi(b) \xi_{0}, \phi(b) \xi_{0}\right\rangle /\left\langle\phi(b) \xi_{0}, \phi(b) \xi_{0}\right\rangle\right| \\
& =\sup _{b \in A, \phi(b) \xi_{0} \neq 0}\left|\left\langle\phi\left(b^{*} a b\right) \xi_{0}, \xi_{0}\right\rangle /\left\langle\phi\left(b^{*} b\right) \xi_{0}, \xi_{0}\right\rangle\right| \\
& =\sup _{b \in A, f\left(b^{*} b\right) \neq 0}\left|f\left(b^{*} a b\right) / f\left(b^{*} b\right)\right| .
\end{aligned}
$$

If all positive functionals are extendible to the completion of A, f can be extended so that $f\left(b^{*} a b\right)$ is a positive functional on a symmetric Banach algebra, whence $\left|f\left(b^{*} a b\right)\right| \leqq\|a\| f\left(b^{*} b\right)$ for all b. From this, $\|\phi(a)\| /\|a\| \leqq 1$, thus ϕ can also be extended. Applying this argument to $\phi_{1} \otimes \phi_{2},(*)$ guarantees the extendibility of $\phi_{1} \otimes \phi_{2}$ to A_{3}.

As with the positive functionals, we denote the extension simply by $\phi_{1} \otimes \phi_{2}$. We thus have a mapping $\otimes:\left(\phi_{1}, \phi_{2}\right) \rightarrow \phi_{1} \otimes \phi_{2}$ of pairs of representations of A_{1} and A_{2} into the representations of A_{3}. If ϕ_{i} is equivalent to $\phi_{i}{ }^{\prime}, i=1,2$, $\phi_{1} \otimes \phi_{2}$ is equivalent to $\phi_{1}{ }^{\prime} \otimes \phi_{2}{ }^{\prime}$, thus the mapping \otimes defined on pairs of representations induces a mapping $\otimes^{\#}$ of pairs of equivalence classes of representations of A_{1} and A_{2} to equivalence classes of those of A_{3}.

Lemma 5. The mapping $\otimes \#$ of pairs of equivalence classes of representations is induced by the mapping \otimes of pairs of positive functionals. The representation $\phi_{1} \otimes \phi_{2}$ of A_{3} is irreducible if and only if both ϕ_{1} and ϕ_{2} are.

Proof. Suppose that the p_{i} 's are normalized positive functionals associated with representations $\phi_{i}, i=1,2$. We show that $p_{1} \otimes p_{2}$ is associated with $\phi_{1} \otimes \phi_{2}$, i.e., \otimes induces $\otimes \#$. We have $p_{i}\left(a_{i}\right)=\left\langle\phi_{i}\left(a_{i}\right) \xi_{i}, \xi_{i}\right\rangle$ for all a_{i} in A_{i}, $i=1,2$, and for ξ_{i} a cyclic vector associated with ϕ_{i}. Then

$$
\begin{aligned}
p_{1} \otimes p_{2}\left(a_{1} \otimes a_{2}\right)= & p_{1}\left(a_{1}\right) p_{2}\left(a_{2}\right)=\left\langle\phi_{1}\left(a_{1}\right) \xi_{1}, \xi_{1}\right\rangle\left\langle\phi_{2}\left(a_{2}\right) \xi_{2}, \xi_{2}\right\rangle= \\
\left\langle\phi_{1}\left(a_{1}\right) \xi_{1} \otimes \phi_{2}\left(a_{2}\right) \xi_{2}, \xi_{1} \otimes \xi_{2}\right\rangle= & \left\langle\left[\phi_{1}\left(a_{1}\right) \otimes \phi_{2}\left(a_{2}\right)\right] \xi_{1} \otimes \xi_{2}, \xi_{1} \otimes \xi_{2}\right\rangle= \\
& \left\langle\left[\phi_{1} \otimes \phi_{2}\left(a_{1} \otimes a_{2}\right)\right] \xi_{1} \otimes \xi_{2}, \xi_{1} \otimes \xi_{2}\right\rangle,
\end{aligned}
$$

and the equality holds on all A_{3} by linearity and continuity. This, the fact that a positive functional is indecomposable if and only if the associated representation is irreducible, and Lemma 2 yield immediately the result on the irreducibility of $\phi_{1} \otimes \phi_{2}$.

From Lemma 5 it follows that the diagram

commutes. In Lemma 2, \otimes was shown to be a homeomorphism into P_{3}. The mappings Π_{i} are continuous by definition of the topology of R_{i} and in Lemma 3 they were shown to be open. The product mapping $\Pi_{1} \times \Pi_{2}$ also is continuous and open.

Lemma 6. The mapping $\otimes \#$ is one-to-one and continuous.
Proof. By continuity of Π_{3}, the inverse image in P_{3} of an open set in R_{3} is open. Since \otimes is a homeomorphism into P_{3}, the inverse image of this open set is open in $P_{1} \times P_{2}$. As $\Pi_{1} \times \Pi_{2}$ is open, its image is open in $R_{1} \times R_{2}$. This is just the inverse image under $\otimes^{\#}$ of the original open set in R_{3}, therefore $\otimes \#$ is continuous. (This type of argument does not show that $\otimes \#$ is open unless if the image of $P_{1} \otimes P_{2}$ is open in P_{3}.) To show that $\otimes \#$ is one-to-one, for any representation ϕ of A_{3} construct the following representations of A_{1} and A_{2}, namely, $\phi_{1}\left(a_{1}\right)=\phi\left(a_{1} \otimes e_{2}\right)$ and $\phi_{2}\left(a_{2}\right)=\phi\left(e_{1} \otimes a_{2}\right)$. The mapping of the equivalence class of ϕ to the pair of equivalence classes of ϕ_{1} and ϕ_{2} is an inverse for $\otimes^{\#}$ when restricted to its range.
4. Tensor products of finite-dimensional representations. The mapping $\otimes^{\#}$ is not onto R_{3} in general. Mackey (4) has exhibited two locally compact groups such that not every irreducible unitary representation of their direct product is equivalent to a tensor product of representations of the two groups. Using the corresponding group algebras, one can construct a counter-example to the supposition that $\otimes \#$ is necessarily onto R_{3}. We now restrict consideration to the finite-dimensional representations. Denote the set of equivalence classes of finite-dimensional irreducible representations of A_{i} by $R_{i}{ }^{\prime}$, the set of associated indecomposable positive functionals by $P_{i}{ }^{\prime}$. Restrict the previous diagram to these finite-dimensional parts by attaching primes to each symbol. Since the range of $\otimes^{\#^{\prime}}$ is clearly in $R^{\prime}{ }^{\prime}$, that of \otimes^{\prime} is in $P_{3}{ }^{\prime}$ and \otimes^{\prime} is a homeomorphism into $P_{3}{ }^{\prime}$. The mappings $\Pi_{i}{ }^{\prime}$ are continuous. Since the open mappings Π_{i} carry the complements of $P_{i}{ }^{\prime}$ onto the complements of $R_{i}{ }^{\prime}$, the restrictions $\Pi_{i}{ }^{\prime}$ are also open, and $\Pi_{1}{ }^{\prime} \times \Pi_{2}{ }^{\prime}$ is continuous and open.

Before proceeding, we consider briefly the representations of finite-dimensional reduced symmetric algebras and their tensor products. A reduced algebra is semi-simple. If it is finite-dimensional it is the direct sum of simple ideals each isomorphic to the algebra of all linear transformations on some finite-dimensional vector space. (It is easily seen that a simple ideal of a reduced symmetric algebra is symmetric and an inner-product can be assigned to the finite-dimensional vector space so that the isomorphism of the simple ideal with the algebra of all linear transformations is symmetric.) Any irreducible representation of a finite-dimensional reduced symmetric algebra vanishes except on a single simple ideal. Its restriction to that ideal is a symmetric isomorphism with the algebra of all linear transformations on a finite-dimensional inner-product space. Each simple ideal induces an irreducible
representation and representations induced by the same simple ideal are equivalent.

Consider the tensor product of two finite-dimensional reduced symmetric algebras. Decomposing each factor as a direct sum of simple ideals yields a decomposition of the tensor product as a direct sum of tensor products of simple ideals. Each of the simple ideals being isomorphic to the algebra of all linear transformations on a finite-dimensional vector space, the tensor product of two of them is isomorphic to the algebra of all linear transformations on the tensor product of the two spaces and is therefore simple. The decomposition of the tensor product as a direct sum of tensor products of simple ideals is thus also the decomposition as a direct sum of simple ideals. Each simple ideal induces an irreducible representation, and any non-zero element has a non-zero component in some direct summand, therefore the tensor product of finitedimensional reduced symmetric algebras is reduced. Each simple ideal of the tensor product is a tensor product of simple ideals and the representation associated with it is equivalent to the tensor product of those associated with its factors.

Theorem. The mapping $\otimes^{\#^{\prime}}$ is a homeomorphism of $R_{1}{ }^{\prime} \times R_{2}{ }^{\prime}$ onto $R_{3}{ }^{\prime}$.
Proof. By Lemma 6, $\otimes^{\#}$ is one-to-one and continuous, therefore $\otimes^{\#^{\prime}}$ is also. We must show $\otimes{ }^{\#^{\prime}}$ to be onto $R_{3}{ }^{\prime}$ and open.

Let $\phi \in r_{3} \in R_{3}{ }^{\prime}$. To show that $\otimes^{\# \prime}$ is onto $R_{3}{ }^{\prime}$ we must show that there exist $\phi_{i} \in r_{i} \in R_{i}{ }^{\prime}(i=1,2)$ such that $\phi_{1} \otimes \phi_{2} \in r_{3}$. To this end define M_{i}, closed symmetric ideals of $A_{i}(i=1,2,3)$ by $M_{1}=\left\{a_{1}: \phi\left(a_{1} \otimes e_{2}\right)=0\right\}$, $M_{2}=\left\{a_{2}: \phi\left(e_{1} \otimes a_{2}\right)=0\right\}, M_{3}=\left\{a_{3}: \phi\left(a_{3}\right)=0\right\}$. Each M_{i} is the kernel of a representation of the corresponding A_{i} and thus contains its reducing ideal. Since ϕ is finite-dimensional, all the M_{i} are of finite co-dimension. Thus A_{i} / M_{i} is a finite-dimensional reduced symmetric algebra and, by the remarks preceding the theorem, so is $\left(A_{1} / M_{1}\right) \otimes\left(A_{2} / M_{2}\right)$.

It is easily seen that $M_{3} \supset A_{1} \otimes M_{2}+M_{1} \otimes A_{2}$, thus we can define a representation, $\phi^{\#}$, of $\left(A_{1} / M_{1}\right) \otimes\left(A_{2} / M_{2}\right)$ by

$$
\phi^{\#}\left(\left(a_{1}+M_{1}\right) \otimes\left(a_{2}+M_{2}\right)\right)=\phi\left(a_{1} \otimes a_{2}\right) .
$$

The image of $\phi^{\#}$ is the image of ϕ, since ϕ is finite-dimensional, therefore $\phi^{\#}$ is irreducible. Again by the remarks preceding the theorem, there are irreducible representations $\phi^{\#}{ }_{i}$ on $A_{i} / M_{i}(i=1,2)$ such that $\phi^{\#}$ is equivalent to $\phi^{\#}{ }_{1} \otimes \phi^{\#}{ }_{2}$. This means that there is an isometry U such that

$$
\left.\phi^{\#} U=U\left(\phi^{\#}{ }_{1} \otimes \phi^{\#}\right)_{2}\right) .
$$

Defining irreducible representations ϕ_{i} on $A_{i}(i=1,2)$ by

$$
\phi_{i}\left(a_{i}\right)=\phi_{i}{ }_{i}\left(a_{i}+M_{i}\right)
$$

we have that $\phi U=\phi^{\#} U=U\left(\phi^{\#}{ }_{1} \otimes \phi^{\#}{ }_{2}\right)=U\left(\phi_{1} \otimes \phi_{2}\right)$ on $A_{1} \otimes A_{2}$. By the standing assumption, (*) guaranteeing a continuous extension of $\phi_{1} \otimes \phi_{2}$,
these relations hold on A_{3}. Thus ϕ is equivalent to $\phi_{1} \otimes \phi_{2}$ and the mapping $\otimes \#^{\prime}$ is onto $R_{3}{ }^{\prime}$.

The images under $\Pi_{i}{ }^{\prime}$ of any basis for the topology of $P_{i}{ }^{\prime}$ form a basis for the topology of $R_{i}{ }^{\prime}$. If $r \in W$, an open set of $R_{i}{ }^{\prime}$, the pre-image of W under $\Pi_{i}{ }^{\prime}$ is open in $P_{i}{ }^{\prime}$ and any p in the pre-image of r is in some U, a member of a basis for the topology of $P_{i}{ }^{\prime}$, contained in the pre-image of W. Then r is in $\Pi_{i}{ }^{\prime}(U)$ which is open and contained in W.

It follows that any open set in $R_{1}{ }^{\prime} \times R_{2}{ }^{\prime}$ containing the pair of equivalence classes of ψ_{1} and ψ_{2} contains a product $\Pi_{1}{ }^{\prime}\left(U_{1}\right) \times \Pi_{2}{ }^{\prime}\left(U_{2}\right), U_{i}$ being subsets of $P_{i}{ }^{\prime}$ of the form $U_{i}=\left\{q_{i}:\left|q_{i}\left(a_{i j}\right)-p_{i}\left(a_{i j}\right)\right|<\epsilon_{i}, j=1,2, \ldots, n_{i}\right\}$, where $p_{i}\left(a_{i}\right)=\left\langle\psi_{i}\left(a_{i}\right) \xi_{i}, \xi_{i}\right\rangle, i=1,2$. Define a neighbourhood of $p_{1} \otimes p_{2}$ in $P_{3}{ }^{\prime}$ by

$$
\begin{aligned}
V & =\left\{s:\left|s\left(a_{1 j} \otimes e_{2}\right)-p_{1} \otimes p_{2}\left(a_{1 j} \otimes e_{2}\right)\right|<\epsilon_{1}, \quad j=1,2, \ldots, n_{1}\right\} \\
& \cap\left\{s: \mid s\left(e_{1} \otimes a_{2 j}\right)-p_{1} \otimes p_{2}\left(e_{1} \otimes a_{2 j}\right)<\epsilon_{2}, \quad j=1,2, \ldots, n_{2}\right\} .
\end{aligned}
$$

For s in $P_{3}{ }^{\prime}$ define $s_{1}\left(a_{1}\right)=s\left(a_{1} \otimes e_{2}\right), s_{2}\left(a_{2}\right)=s\left(e_{1} \otimes a_{2}\right)$. Assume for the moment that the s_{i} are indecomposable. For s in V, each s_{i} is in U_{i}, thus $s_{1} \otimes s_{2} \in U_{1} \otimes U_{2}$.

Let θ be a member of the equivalence class $\Pi_{3}{ }^{\prime}(s)$. By the fact that $\otimes^{\#^{\prime}}$ is onto $R_{3}{ }^{\prime}, \theta$ is equivalent to $\theta_{1} \otimes \theta_{2}$ with θ_{i} an irreducible representation of A_{i} on a finite-dimensional inner-product space $H_{i}, i=1,2$. Therefore

$$
s(x)=\left\langle\theta_{1} \otimes \theta_{2}(x) \eta, \eta\right\rangle
$$

and $s_{1}\left(a_{1}\right)=\left\langle\theta_{1}\left(a_{1}\right) \otimes I_{2} \eta, \eta\right\rangle, s_{2}\left(a_{2}\right)=\left\langle I_{1} \otimes \theta_{2}\left(a_{2}\right) \eta, \eta\right\rangle$, where $I_{i}=\theta_{i}\left(e_{i}\right)$ is the identity operator on H_{i} and η is a vector of $H_{1} \otimes H_{2}$ (which has the usual inner-product structure). The orbits of η under the action of the images of $\theta_{1} \otimes I_{2}$ and $I_{1} \otimes \theta_{2}$ are subspaces, H_{3} and H_{4}, respectively, of $H_{1} \otimes H_{2}$. The representations $\theta_{1} \otimes I_{2}$ on H_{3} and $I_{1} \otimes \theta_{2}$ on H_{4} are equivalent to θ_{1} on H_{1} and θ_{2} on H_{2}, respectively; thus $\left(\theta_{1} \otimes I_{2}\right) \otimes\left(I_{1} \otimes \theta_{2}\right), \theta_{1} \otimes \theta_{2}$, and θ all belong to the same class in $R_{3}{ }^{\prime}$. The positive functionals s_{i} are indecomposable, as assumed, and

$$
\begin{aligned}
s_{1} \otimes s_{2}\left(a_{1} \otimes a_{2}\right)=s_{1}\left(a_{1}\right) s_{2}\left(a_{2}\right) & =\left\langle\theta_{1}\left(a_{1}\right) \otimes I_{2} \eta, \eta\right\rangle\left\langle I_{1} \otimes \theta_{2}\left(a_{2}\right) \eta, \eta\right\rangle= \\
& \left\langle\left(\theta_{1} \otimes I_{2}\right) \otimes\left(I_{1} \otimes \theta_{2}\right)\left(a_{1} \otimes a_{2}\right) \eta \otimes \eta, \eta \otimes \eta\right\rangle
\end{aligned}
$$

thus θ is an element of $\Pi_{3}{ }^{\prime}\left(s_{1} \otimes s_{2}\right)$.
We have shown that if an equivalence class of representations is a member of $\Pi_{3}{ }^{\prime}(V)$, then it is also a member of $\Pi_{3}{ }^{\prime}\left(U_{1} \otimes U_{2}\right)$. But

$$
\Pi_{3}^{\prime}\left(U_{1} \otimes U_{2}\right)=\Pi_{1}^{\prime}\left(U_{1}\right) \otimes \Pi_{2}^{\prime}\left(U_{2}\right)
$$

thus there is a neighbourhood, $\Pi_{3}{ }^{\prime}(V)$, of $\Pi_{3}{ }^{\prime}\left(s_{1} \otimes s_{2}\right)$, contained in

$$
\Pi_{1}{ }^{\prime}\left(U_{1}\right) \otimes \Pi_{2}{ }^{\prime}\left(U_{2}\right)
$$

and thus also contained in the image of the original open set containing ($\Pi_{1}{ }^{\prime}\left(s_{1}\right), \Pi_{2}{ }^{\prime}\left(s_{2}\right)$), the pair of equivalence classes of ψ_{1} and ψ_{2}. Thus $\otimes \#^{\prime}$ is open.

It is of interest to note the existence of important examples in which all irreducible representations are finite-dimensional, such as the commutative symmetric Banach algebras and the group algebras of compact groups. In such cases, of course, the theorem characterizes the space of equivalence classes of all irreducible representations. One might study, for instance, the algebra of integrable functions on compact groups having values in a symmetric commutative Banach algebra much as such algebras were studied for locally compact Abelian groups in (1).

There is another natural topology for $R_{i}{ }^{\prime}$. Kernels of finite-dimensional irreducible representations are the primitive symmetric ideals of finite codimension. These representations are equivalent if and only if they have the same kernel, therefore we can identify points of $R_{i}{ }^{\prime}$ with ideals and introduce the hull-kernel topology. Our topology need not agree with this hull-kernel topology.

Remark 1. The given topology for $R_{i}{ }^{\prime}$ is not weaker than the hull-kernel topology.

Proof. We show that any point in the closure of a set is in the hull of its kernel. Let S be a set in $R_{i}{ }^{\prime}, F$ its pre-image under Π_{i}. We must show that if p is in the closure of F in $P_{i}{ }^{\prime}$, then the ideal $\Pi_{i}(p)$ contains the intersection of the ideals S. The ideal $\Pi_{i}(f)$ for any positive functional f is the set of x such that $f(u x v)=0$ for all u and v in A_{i}. The ideal $\Pi_{i}(p)$ contains the intersection of all the ideals of S if and only if $f(u x v)=0$ for all u, v, and all f in F implies $p(u x v)=0$ for all u, v. Let $\left\{U_{k}\right\}$ be a basis for a (finite-dimensional) complement of the ideal $\Pi_{i}(p)$ in A_{i}. Since p is in the closure of F, for any x and any $\epsilon>0$ there is f in F such that $\left|p\left(u_{j} x u_{k}\right)-f\left(u_{j} x u_{k}\right)\right|<\epsilon$ for all j and k. But if x is in the intersection of the ideals of $S, f\left(u_{j} x u_{k}\right)=0$ for all f in F; thus $p\left(u_{j} x u_{k}\right)=0$. Since p vanishes on the ideal $\Pi_{i}(p)$, we have $p(u x v)=0$ for all u, v.

Remark 2. The spaces $R_{i}{ }^{\prime}$ are T_{1}-spaces.
Proof. Showing a point is closed is equivalent to showing that the inverse image under $\Pi_{i}{ }^{\prime}$ is closed. Let $\phi \in r$, the point being considered. Every element of the pre-image of the point is of the form $p(a)=\langle\phi(a) \xi, \xi\rangle$ for some ξ, where $\langle\xi, \xi\rangle=p\left(e_{i}\right)=1$. Suppose that p_{0} is a limit point of the pre-image in $P_{i}{ }^{\prime}$. Then each neighbourhood $U=\left\{q:\left|q\left(a_{j}\right)-p_{0}\left(a_{j}\right)\right|<\epsilon, j=1,2, \ldots, n\right\}$ contains a point of the pre-image, thus for each $\epsilon>0$ and every finite set $\left\{a_{j}\right\}$, there is a vector ξ of unit norm such that $\left|\left\langle\phi\left(a_{j}\right) \xi, \xi\right\rangle-p_{0}\left(a_{j}\right)\right|<\epsilon$.

Since ϕ is in a member of $R_{i}{ }^{\prime}$ and p_{0} is in $P_{i}{ }^{\prime}$, each is determined by its value on some finite set of points of A_{i}. Choose the set $\left\{a_{j}\right\}$ to be the union of such a set for ϕ with such a set for p_{0}, then for any positive integer n, if we set $\epsilon=1 / n$, there is a vector ξ_{n} of unit norm such that

$$
\left|\left\langle\phi\left(a_{j}\right) \xi_{n}, \xi_{n}\right\rangle-p_{0}\left(a_{j}\right)\right|<1 / n
$$

The vectors of unit norm in a finite-dimensional space form a compact set, thus there is a subsequence of ξ_{n} converging to a vector ξ_{0} of unit norm. But

Since a subsequence of ξ_{n} converges to ξ_{0}, the bound becomes arbitrarily small. Since ϕ and p_{0} are both determined by their values on the finite set $\left\{a_{j}\right\}$, we have $p_{0}(a)=\left\langle\phi(a) \xi_{0}, \xi_{0}\right\rangle$, therefore p_{0} is in the inverse image of r.

References

1. B. R. Gelbaum, Tensor products of Banach algebras, Can. J. Math. 11 (1959), 297-310.
2. - Note on the tensor product of Banach algebras, Proc. Amer. Math. Soc. 12 (1961), 750-757.
3. J. Gil de Lamadrid, Uniform cross norms and tensor products of Banach algebras, Bull. Amer. Math. Soc. 69 (1963), 797-803.
4. G. W. Mackey, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193-221.
5. F. J. Murray and J. von Neumann, On rings of operators. I, Ann. of Math. 87 (1936), 116-229.
6. M. A. Naĭmark, Normed rings (P. Noordhoff, Groningen, 1959).
7. R. Schatten, A theory of cross-spaces, Ann. Math. Studies, No. 26 (Princeton Univ. Press, Princeton, N.J., 1950).
8. I. Schur, Bemerkungen zur Theorie der Beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Math. 140 (1911), 1-28.
9. H. A. Smith, Tensor products of locally convex algebras, Proc. Amer. Math. Soc. 17 (1966), 124-132.
10. J. Tomiyama, Tensor products of commutative Banach algebras, Tohoku Math. J. 12 (1960), 147-154.

Oakland University, Rochester, Michigan

