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THE EMPTY SPHERE 

R. M. ERDAHL AND S. S. RYSHKOV 

In 1924 at the Toronto meeting of the International Congress of 
Mathematicians, B. N. Delone introduced his empty sphere method for 
lattices. We have titled our paper after this method as a tribute to his 
memory. 

1. Introduction. We have studied the sets of integer solutions of 
equations of the form 

n n 

0 ) f(x) = a0 + 2 alxl + 2 ayXjXj = 0, 
/ = 1 ij = 1 

(aij = ajf> aip a» %> Xi G R ) 

where / satisfies the following condition in which Z denotes the 
integers, 

(2) f(z) g 0 , z G Z 

and have resolved this problem using the theory of L-types of lattices [3, 4, 
11]. We have been able to give a complete description of all such integer 
solutions when n ^ 4. 

This paper is a more lengthy discussion, with proofs of some of the 
results announced in [9]. 

Throughout, all of our functions will satisfy the above two conditions. If 
/ i s one such function then: 

1.1. Definition. The root figure of / i s the collection of integer solutions 
of f(x) = 0 and we denote it by Rr. 

For a given n, a complete solution of our problem amounts to a list of 
all the possible root figures, Rr, that can occur. 

Condition (2) on /forces the coefficient matrix As = {a-} to be positive 
semi-definite and requires that the portion of R'7 whose elements, x, satisfy 
the inequality f(x) < 0 to be free of integer points. 

Suppose for the moment that Rr is non-empty and that Ar is positive 
definite. Under these circumstances the surface determined by the 

Received September 21, 1984 and in revised form June 16, 1986. The authors are 
appreciative of the many helpful comments made by the reviewer. This work was supported 
by the Natural Sciences and Engineering Research Council of Canada, contract number 
A5355 and the Advisory Research Committee of Queen's University. 

794 

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-039-7


THE EMPTY SPHERE 795 

equation / = 0 is an ellipsoid, Ef. If the interior of Ef is not empty, since / 
assumes negative values there, it must be free of integer points. In both 
cases, empty or non-empty, the interior of Ef is free of integer points and 
we say that Ef is an empty ellipsoid in R". The root figure, Rf consists of 
the integer points lying on the empty ellipsoid, Ef in R". Moreover, any 
collection R c Zw, equal to the integer points on some empty ellipsoid in 
R" is a possible root figure in Zn. All such root figures are finite. 

If T is a general «-dimensional lattice and we blow up a sphere in one of 
its interstices in such a way that its interior is always free of lattice points, 
this empty sphere will eventually be held rigidly by the lattice when no 
further expansion is possible. At this time it must pass through at least 
n + 1 affinely independent lattice points. The convex hull of the lattice 
points lying on this sphere is a convex polytope which we will call an 
L-polytope. 

1.2. THEOREM. A root figure, R, corresponding to the collection of integer 
points lying on some empty ellipsoid in R", is affinely equivalent to the vertex 
set, V, of some L-polytope; dim V = dim R ^ n. 

We take as the dimension of a discrete set, D, that of its affine hull: 
dim D = dim aff(D). The affine hull of a set of points, X, is the smallest 
affine space containing X. 

Proof Suppose that R is the collection of integer points lying on the 
empty ellipsoid E'. Let 

T = IT n aff(#), E = E n affCR). 

Then R is also the collection of elements of T lying on the empty ellipsoid 
E. 

Let T be some affinity (invertible affine transformation) mapping 
E onto a sphere. Then T(E) is an empty sphere and the elements of 
T(T) lying on this sphere are precisely T(R). By construction dim 
T(R) = dim T(T) and therefore by the definition of L-polytope the 
convex hull of T(R) is an L-polytope. Thus R is affinely equivalent to the 
vertex set of some L-polytope. 

To illustrate the above ideas consider the equation 

/ 0 ( x , y) = 2 - 4x - Ay + 2x2 + 2y2 4- 2xy = 0. 

The curve defined by this equation is an ellipse passing through the three 
points (1, 0), (0, 1), (1, 1), whose interior is free of elements of Z2. Since it 
is only on the interior of this ellipse that the values of f0 become negative, 
f0 satisfies condition (2), and f0 = 0 is an equation of the type we have 
studied. The root figure of f0 consists of the three integer solutions of this 
equation which lie at the vertices of a triangle. The triangle appears as an 
L-polytope in two dimensional lattices (see Figure 1 of Section 4). 
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Regarding the overall structure of the paper we have the following 
comments. Due to its length, the proof of Theorem 2.1 of Section 2 was 
put into an appendix; a more complete discussion of some of this material 
will appear shortly (see reference [2] ). Many of the results presented in the 
appendix appeared previously in preprint form (see [1] ). 

With the exception of Theorem 4.4 the material in Sections 3 and 4 
is not new. It is a brief description of a portion of the results contained in 
[4, 6] and included in order that our treatment be complete ( [4] is difficult 
to obtain). The main result in Section 5, Theorem 5.1, is well known but 
we have supplied a new proof (see [4] ). 

We have broken the proof of our main result, Theorem 6.2, into two 
parts. The first of these parts is included in this article and the second, due 
to its length, will be published separately. 

2. The root figures and z-equivalence. Infinite root figures are possible 
when kernel (A A ^ 0. In this case, it is easy to show that the surface f = 0 
is a cylinder. The analysis of the infinite root figures is delicate and is 
analyzed in our appendix. From the major result obtained there (Theorem 
A.l) we have: 

2.1. THEOREM. The non-empty finite root figures R c Zn consist of all 
possible collections of integer points in R" lying on empty ellipsoids. The 
infinite root figures consist of all possible collections of integer points of 
the form R + T where, 

(1) R is a finite root figure, 
(2) r ¥= {0} is a sublattice ofXn which contains 0, 
(3) Any element in the lattice Zn n aîf(R 4- T) can be written uniquely as 

p + y where 

p e TT H aff(#), y G T. 

Since all of the infinite root figures are obtained from the finite ones by 
a simple construction, enumeration of the possible root figures amounts to 
classifying the finite ones. Affine equivalence is not sufficiently discrimi
nating for such a classification. In all dimensions n, there are root figures 
consisting of n + 1 elements, the vertices of a simplex. However, for n = 5 
there are two geometrically distinct types of such figures. This follows 
from the construction of the proof of Theorem 1.2 which relates 
L-polytopes to root figures, and the fact that with n = 5 there are two 
distinct types of simplexes which appear as L-polytopes. The edge vectors 
of the first generate the ambient lattice whereas those of the second 
generate a sublattice of index 2. For larger values of n the number of 
distinct geometrical types of "simplicial" root figures increases. 

The notion of z-equivalence is useful for classifying root figures. Besides 
the root figure it takes the ambient lattice into account. 
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2.2. Definition. Let Yx c R", T2 c Rm be lattices and Rl9 R2 be subsets of 
T,, T2 respectively. We say that Rx and R2 are z-equivalent if there is an 
affinity (an invertible affine transformation) 

T:aîf(R}) -> aff(R2) 

such that T(R}) = /?2
 a n d 

7xr, n aff(/?,)) = r2 n aff(#2). 

Typically .R] and R2 are root figures of say f and / 2 with Tx = Z", 
T2 = Zm. We will use the full generality of our definition when we 
consider L-polytopes whose vertices form a subset of some general lattice. 
We will say that two such polytopes are z-equivalent if their vertex sets are 
z-equivalent. 

The statement of Theorem 1.2 can now be strengthened appropriately 
so that it becomes useful in the classification of the root figures (the proof 
remains as before). 

2.3. THEOREM. A finite root figure, R c Zn is z-equivalent to the vertex set 
of some L-poly tope. 

By Theorem 2.3 and the comments following Theorem 2.1 it follows 
that a complete solution of our problem for a given n is equivalent 
to classifying all of the L-polytopes of dimensions 1, 2, . . . , n up to 
z-equivalence. 

3. L-decompositions and the classification of root figures. Suppose that 
Lx and L2 are two distinct L-polytopes of some lattice T. Then their 
interiors are disjoint and their intersection, if it is not empty, consists of 
an entire face, common to both of them, which is of some dimension less 
than n. The collection of all possible L-poly topes forms a decomposition 
of «-dimensional space called an L-decomposition: 

Typically, all of the L-polytopes of some «-dimensional lattice, Tj, are 
simplexes and its L-decomposition is simplicial. Such a lattice is called 
general. Sufficiently small deformations of general lattices will not change 
the affine structure of its L-decomposition, i.e., the L-decomposition of 
the perturbed lattice will be affinely equivalent to that of Tx. However, 
under more persistent deformations suddenly new combinatorial types of 
L-poly topes are formed as some of the simplexes join to form more 
complicated polytopes. The affine structure of the L-decomposition 
undergoes an abrupt change as a special lattice, T2, is formed. (A special 
lattice is one which has among its L-polytopes some which are not 
simplicial.) 

General lattices can be classified by the affine structure of their 
respective simplicial L-decompositions. A pair of general lattices whose 
L-decompositions are affinely equivalent belong to the same L-type and 
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the collection of lattices of a given type is called an L-type domain. An 
L-type domain is topologically connected in that any one of its members 
can be continuously deformed into any other in such a way that the affine 
structure of the intermediate L-decompositions remains constant. 

The lattices lying on the boundary of an L-type domain are special. 
Thus the collection of all lattices is composed of possibly several 
connected regions, L-type domains, and the boundaries, which correspond 
to special lattices. 

For n = 1, 2, 3 there is a single unique L-type, and the affine structures 
of the L-decompositions of any pair of general lattices coincide for these 
cases. For n = 4 there are 3 and for n = 5 there are 221 distinct L-type 
domains [8]. 

We can now describe the program proposed in this paper to enumerate 
the L-polytopes up to z-equivalence. It follows directly from the definition 
of z-equivalence that corresponding L-polytopes in affinely equivalent 
L-decompositions are z-equivalent. Thus for a given n we need only look 
at the collection of L-polytopes occurring in each affinely inequivalent 
L-decomposition and then group these into z-equivalence classes. 

A list of z-inequivalent simplexes for a given n is established by looking 
at the L-decompositions of representative general lattices from each of the 
L-type domains that occur and classifying the simplexes appearing in 
these L-decompositions up to z-equivalence. We have found that for each 
of the cases n = 4 all of the simplexes that occur are z-equivalent. 

A list of the non-simplicial L-polytopes is obtained by examining the 
boundaries of the L-type domains. The L-polytopes found in these special 
lattices must be sorted into z-equivalence classes. 

4. The first L-type domain. Let T be some «-dimensional lattice with a 
system of vectors, {a}, a2, . . . , an, fl„ + i}, satisfying the three conditions: 

(1) {«j, a2, . . . , an) is a lattice basis for T 
(!) ax + a2 + • • . + an + x = 0 
(3) (ah dj) < 0, i ¥= j \ ( ( . , . ) is the Euclidian scalar product). 

The first L-type domain of Voronoi consists of all such lattices; it occurs 
for n ^ 2. 

Since {ax, a2, . . . , an) is a basis and an + x satisfies (2) it follows that any 
choice of n vectors from the system forms a basis for T. 

Saying that lattices are orthogonally equivalent when they differ only 
by an orthogonal transformation, then, up to orthogonal equivalence 
the lattices of the first L-type domain may be parametrized by the 
quantities 

Kl2, i = 1, . . . , « + 1, (ai9 dj) < 0, i ¥= j ij = 1, . . . , n. 

Special lattices on the boundary of this domain satisfy one or more 
equalities of the form: 
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(ah aj) = 0. 

The collection of L-polytopes of a lattice, T, meeting at y e T is the star 
of the L-decomposition at y. Any other L-polytope must be orthogonally 
equivalent to one contained in this star. 

Suppose now that T is a general «-dimensional lattice belonging to the 
first L-type domain with system {ax, al9 . - . , an9 an + x}. Starting at y0 e T, 
then moving to yj = y0 + a]9 then to y2 = yx + a2, . . . , we finally arrive 
a t yn = Y/i-i + an- S i n c e 

fl, + fl2 + . . . + £IW + 1 = 0 

it follows that y0 = yn -f aw + 1. The convex hull of the « + 1 points 
y0, y1? . . . , yw is a simplex. What is unanticipated is that the circumscribed 
sphere is an empty sphere, i.e., the simplex is an L-polytope of T. This 
simplex is denoted by (a]9 a29 . . . , an + {). 

By permuting the system vectors {a]9 a29 . . . 9an + {\ and carrying out 
similar constructions, (n + 1)! simplicial L-polytopes can be constructed 
at y0. These are all denoted by symbols of the form 

(a\, a'2,...,a'n + x) 

where the sequence in brackets is some permutation of the original. 
The entire collection of (n + 1)! simplexes forms the star of the 
L-decomposition at y0. 

Simplexes in the L-decomposition of T not belonging to the star at y0 

are denoted by symbols of the form 

(a\, a'2,...,a'n9a'„ + })b. 

This simplex belongs to the star at y0 + b and can be constructed as above 
but starting at the center of this star. It is the convex hull of the lattice 
points 

To = Yo + b, y', - yo + a\9 y'2 = y{ + a'2, . . . , yf
n = y'n_x + a'„. 

We will need the following easily established result on the combinato
rial structure of the L-decomposition of the first L-type domain: 

4.1. PROPOSITION. In the star at y0 two simplexes have an (n — 1)-
dimensional face in common if and only if the order of the system vectors in 
their symbol differ by a single transposition of two adjacent vectors. Each 
simplex in this star has n such neighbours. 

If (a\, a2, . . . , a'n, tf^ + i) is an arbitrary member of the star at y0 then 
(tf,'? + 1, a'2, a'3, . . . , a'yv a\)h, (// = a\ — ̂  + 1) is a neighbour with which it 
shares a (n — \)-dimensional face. Each simplex has one such neighbour. 

Thus (ax, a2, a3, . . . , afV an + x) has as neighbours the n simplexes 

<tf2, au fl3, . . . , a„9 flw + 1>, (al9 a39 a2, . . . , a„9 an + x)9 . . . , 
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as well as the simplex 

<** + b a29a39...9an9al)b (b = ax - aM + 1). 

On the boundary of the first L-type domain where one or more of the 
pairs of system vectors are orthogonal some of these neighbours join to 
form more complicated polytopes. These polytopes can be constructed in 
a systematic way using the: 

4.2. GLUEING THEOREM. When at JL A 

(a) Any simplex in the star at y0 with system vectors ai9 a lying adjacent in 
its symbol joins to its neighbour whose symbol is obtained by transposition of 
ai and a •. 

(b) Any simplex in the star at y0 with at lying first and a lying last joins to 
its neighbour in the star at y0 + at — a whose symbol is obtained by 
transposing at and aj. 

(c) Any simplex in the star at y0 with a lying first and at lying last joins its 
neighbour in the star at y0 + a- ~ a( whose symbol is obtained by 
transposition of at and a •. 

The geometrical content of this theorem can be visualized in the 
following way. Imagine a general lattice V being deformed until a point on 
the boundary is achieved where at _L a-. Just before this boundary point is 
achieved the empty spheres circumscribing the pairs of neighbouring 
simplexes mentioned in the glueing theorem are distinct. At the exact 
moment when this boundary point is achieved these spheres coincide and 
the resulting L-polytopes have simplicial decompositions which contain 
these pairs of neighbouring simplexes. The simplicial decompositions 
of these more complicated L-polytopes could contain additional simplexes 
depending upon whether or not other pairs of system vectors are 
orthogonal. 

As a simple consequence of the glueing theorem we have: 

4.3. COROLLARY. The affine structure of the L-decomposition of a lattice, 
r , belonging to the first L-type domain with system {a]9 a2, . . . , «w + 1} is 
completely determined by the orthogonalities occuring among the system 
vectors. 

Regarding the z-equivalence of L-polytopes we have the following 
result: 

4.4. THEOREM. If two L-polytopes belonging to lattices of the first L-type 
domain or its boundary are affinely equivalent, they are z-equivalent. 

Proof. Suppose that L is simplicial in T c R" belonging to the first 
L-type domain, i.e., 
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L = (a\9a'2,...9a'n + x)h. 

Then it is clear that the difference set formed from the vertex set of L, 
V(L) — V(L), contains a lattice basis for T and thus L determines T. 

Now consider some more general L-polytope, L]9 belonging to T]9 on the 
boundary of the first L-type domain. Since Lx is the union of simplexes of 
the form (a\, a2, . . . , a'n + x)b9 the difference set V(LX) — V(LX) also 
contains a lattice basis and thus Lx determines Tx. 

Thus arbitrary L-polytopes belonging to lattices of the first L-type 
domain or to its boundary determine their lattices and if T is some affinity 
mapping one L-polytope onto another it necessarily maps the lattice 
determined by the first onto the second and the two L-polytopes must be 
z-equi valent. 

As an illustration of the above material we describe the L-polytopes in 
the plane (the 1-dimensional case is trivial). Any general lattice, T, in the 
plane belongs to the first L-type domain and has a system of lattice 
vectors satisfying the conditions set forth at the beginning of this section. 
The star of its L-decomposition is easily constructed: 

System Star at YO 

Figure 1 

We have drawn empty spheres around the simplexes (ax, a2, a3) and 
(a29 al9 a3). 

Now imagine that we deform the lattice in such a way that we move 
from the interior of the first L-type domain to a point on the boundary 
where (ax, a2) = 0 (see figure 2): 
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Deformation of Lattice 

Figure 2 

As soon as this boundary point is achieved the empty spheres 
circumscribing (#,, a2, a3) and (a2, ax, a3) coincide and a new type of 
L-polytope is formed; a rectangle. This figure is obtained by joining the 
two neighbours (ax, a2, a3) and (a2, ax, a3) as described in the glueing 
theorem. The three pairs of neighbours 

{ <<*3>a\>a2>> <<*3*a2>a\)}> 

{ (ai> *3> a\)> <«h av ai)b (b = a2- ax) } and 

{ (a\> a^ ai)> (a2> a^ a\)b' (*' = a\ ~ ai) } 

also join to form rectangles. This new star is composed of 4 affinely 
equivalent (and therefore by Theorem 4.4, z-equivalent) rectangles. 

It follows by the symmetry of the construction that we also obtain four 
rectangles if, instead of (ax, a2) = 0 we require that either (ax, a3) = 0 or 
(a2, a3) = 0. Requiring that two distinct pairs of system vectors be 
orthogonal leads to a contradiction. For example, if (ax, a2) = {ax, a3) = 0 
then by using the equation ax -f a2 + a3 = 0 it follows that 

\ax\
2 = - ( a , , a2) - (a,, a3) = 0, 

a contradiction. 
Thus by the above argument and by Theorem 4.4 we have: 

4.5. THEOREM. Up to z-equivalence there are two types of L-polytopes in 
the plane: the triangle and the rectangle. 

5. L-polytopes in 3-space. All of the general lattices in R belong to the 
first L-type domain and the special lattices to the boundary of this 
domain. Up to affine equivalence the L-decompositions of these lattices 
can be enumerated with the help of the Delone symbol. For any one of 
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these lattices let {ax, a2, a3, a4} be a system of lattice vectors as described 
in Section 4. We represent this system by a graph, the Delone symbol, 
which is constructed using the following rules: 

(1) the graph has 4 vertices, one each for the four system vectors. 
(2) We pencil in an edge joining vertex i and j if and only if 

(ai9 aj) < 0. 
Thus a general lattice is represented by a graph with 4 vertices which is 

complete and a special lattice by such a graph with edges missing. A pair 
of Delone symbols which differ by a permutation of vertices correspond to 
lattices with affinely equivalent L-decompositions. Up to a permutation of 
vertices, the following forms a complete list of the graphs on 4 vertices. 
(We assume that the vertices of all these graphs are numbered as F .) 

TABLE I 

Graphs on Four Vertices 

There are no lattices corresponding to the graphs F3 through F of 
Table I. For example, F3, would represent a lattice, T, with system 
vectors, [al9 a2, a3, a4}, satisfying the conditions 

(fll9 a2) = (a2, a3) = (a2, a4) = 0. 

By virtue of the fact that ax + a2 + a3 + a4 = 0 it follows that 

\a2\
2 = —(a2, ax + a3 + a4) = 0 

which is clearly impossible. 
Also graphs F 1 and F2 represent lattices whose L-decompositions are 

affinely equivalent. If {al9 a2, a3, a4} is a system for T which is represented 
by F2 then these vectors satisfy the conditions: 

(1) (al9 a2) = (al9 a3) = (a2, a3) = 0; 

(2) (au a4\ (a2, a4), (a3, a4) < 0. 
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But bx = ax, b2 = a3 — a2, b3 = a2 also forms a basis for T and by adding 
b4 = — ax — a3 we have another system, {bx, b2, b3, b4), for T since 

bx + b2 + b3 + b4 = 0 and 

(1) (Z>„ Z>2) = (ô l s b3) = (b39 b4) = 0; 

(2) (b2,b3) = - | Û 2 | 2 , ( 6 2 , Ô 4 ) = - | f l 3 | 2 , 

(6i,64) = - h l 2 < o . 

But this system has the graph F\. 
Thus up to affine equivalence, graphs F5 through Fx correspond to the 

five distinct types of L-decompositions which occur in R . 
We are now in a position to enumerate the L-polytopes occurring in 

these L-decompositions and start with a system {ax, a2, a3, a4} for a 
general lattice T whose projection on some plane is: 

System for R3 

Figure 4 

Now consider the simplex (ax, a2, a3, a4) belonging to the star at y0 of this 
general lattice I\ Without modifying the two-dimensional representation 
of the system vectors imagine that various combinations of pairs of system 
vectors become orthogonal as indicated by the Delone symbols F5 through 
Fx. This results in the joining of other simplexes to the original one as 
described in the glueing theorem. All in all five distinct L-polytopes are 
formed in this way, one each for the five Delone symbols F through Fx 

(see Table II). 
By further investigation the entire stars of the five types of L-

decompositions may be constructed and when this is done it is found that 
up to affine equivalence the only L-polytopes which occur are those which 
appear in our list of five (Table II). The numbers of these various types of 
L-polytopes appearing in these stars is recorded in Table III. Therein we 
denote the various L-polytopes by their numbers of vertices denoting the 
octahedron by 60 and the triangular prism by 6X. 
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L-decom-

posi t ion 

r5 

T A B L E II 

L-Polytopes in R 

Figure Simplicial decomposi t ion Descript ion 

of figure 

<«,, a2t «3 , ci4) 

<fl,, A2 , a3, a4) 
(a2, fll, «3 , «4> 

<</,, a 2 , « 3 , fl4> 

<"2< Al- «3' ^4> 

<fl2, «3' Û,, "4> 

<a,, a2, fl3, a4) 

(a2, ah a3, a4) 

<«!, fl2, «4' «3> 

<a2, a{, a4, a3) 

<tf,, fl2, fl3, tf4> 

<A2 , a,, «3 , a4) 

(ai> a2> «4> ^3> 

(a2, A , , a4, A3> 

<fl2, a 3 , fl,, a 4 > 

<a3, a2, A4 , a , ) 

simplex 

pyramid 

tr iangular 

prism 

octahedron 

box 

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-039-7


806 R. M. ERDAHL AND S. S. RYSHKOV 

TABLE III 

L-decomposition 
4 

Stars of L-decomposil 

5 6, 

ions in R 

6o 8 

F5 24 0 0 0 0 

F4 8 10 0 0 0 

F] 0 0 12 0 0 

F\ 8 0 0 6 0 

F\ 0 0 0 0 8 

By virtue of Theorem 4.4 and the information appearing in Table II we 
have: 

5.1. THEOREM. Up to z-equivalence there are five distinct L-polytopes 
which occur in R3. These are pictured in Table II. 

6. The L-poly topes in R4. The general lattices in R4 belong to one of 
three different L-type domains [9]. We first enumerate all of the 
L-polytopes appearing in the first L-type domain and on its boundary as 
in the 3-dimensional case. Here the Delone symbol for such a lattice has 
five vertices and as before the absence of an edge corresponds to a pair of 
orthogonal system vectors. A complete list of the graphs on 5 vertices, up 
to permutations of vertices is given in Table IV. As before, only a portion 
of these graphs correspond to Delone symbols of lattices. In addition there 
are some instances where two or more of these graphs correspond to the 
same lattice. This of course can only happen when a lattice has two 
distinct systems of vectors with different orthogonality relations among 
them. In these cases a lattice has two or more Delone symbols. 

The graphs F% F4
6, F\ F3

3, F
3
S, F

2
l9 F% F\ F% F[, F\9 F° do not corre

spond to lattices at all. Consider, for example, F6. The system vectors 
{#], a2, a3, a4, a5} of any such lattice would have to satisfy the 
equalities 

(a2, ax) = (a2, a3) = (a2, a4) = (a2, a5) = 0, 

but this is impossible. 

Also some graphs represent lattices whose L-decompositions are 
affinely equivalent; F\ and F5

2 in such a case. If 

{ax, a2, a3, a4, ~(al + a2 + a3 + a4) } 

is a system for some lattice, T, represented by F5
2 then 

{ax - a2, a2, a3, a4, —{ax + a3 + a4) } 

is also a system for T but this system has the graph F j . In addition: 
(a) F,, F 2, F 3 represent lattices with af finely equivalent L-decomposi-

tions. For if 
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TABLE IV 

Graphs on Five Vertices 

2 

5 4 

Fl 

F]^ "*'- n^~ F W Fiv_y 
F\ rJX^ ft K A >, *i. A . ^ K F' \ 

/I K A . F̂  K / \ , F\ 

ft . A , ^ . / \ • Ft 

F\ 

O V 

^ *^7 \^r \ 
^4 . / „ ^ . 

{^j, fl2>
 û3» fl4> ~ ( # 1 + a 2 "*" a3 "+" ad ) 

ystem for T with symbol F j then 

{ax - a3, a2, a3, a4, —(ax + a2 + a4) } 

and 

{ax, a2, a3, ~a3 + a4, ~{ax + a2 + a4) } 
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are also systems for T. But these have graphs F 2 and F 3 respectively. 
(b) F j , L4, F6 represent lattices with affinely equivalent /.-decomposi

tions. If 

{ax, a2, a3, a4, ~(ax + a2 + a3 + a4) } 

is a system with symbol F6 then 

[ax, a2, a3 — a4i a4, ~(ax + a2 + a3) } 

and 

{ax, a2, <23 - a4, a4 - Û2, - ( a , + «3) } 
3 3 

are also systems for the same lattice but with graphs Fx and F4 respec
tively. 

Thus there are a total of 16 affinely inequivalent L-decompositions that 
can occur in R and these can be represented by the 16 Delone symbols 
F\ F\ F], F\ f t F\9 F*39 F\9 Fl Fl F% F5

59 F{ F% Fl Fl Starting 
with the simplex (ax, a2, a3, a4, a5) and proceeding through this list of 
possible L-decompositions, glueing simplexes as we go as dictated by the 
glueing theorem we obtain 16 distinct L-polytopes, one each for the 16 
distinct types of L-decompositions that can occur. Two dimensional 
representations of all of these figures are included in Table V. We label the 
figures by the symbol for the L-decomposition in which they occur. 

By further investigation a complete list of the L-polytopes occurring 
in the star of any given L-decomposition can be obtained. In Table VII, 
along with the designation for the L-decomposition, we include a list of 
these additional L-polytopes. Since no new L-polytopes occur which 
have not been accounted for in the original list we have, by virtue of 
Theorem 4.4: 

6.1. THEOREM. Up to z-equivalence there are exactly 16 L-polytopes which 
occur in or on the boundary of the first L-type domain in R . 

Three additional L-polytopes can be found on the boundaries of the 
other two L-type domains that occur in R4 but due to its length we will not 
include a description of how we obtained them. Thus the proof of our 
main Theorem 6.2 below is incomplete. All of this will be the subject of a 
second paper on the present topic. 

We remark that the simplexes occurring in the L-decompositions of the 
second and third L-type domain are all z-equivalent to those occurring in 
the first. Thus any new figures that occur must appear on the boundaries 
of either the second or third L-type domain. But any portion of the 
boundary of either of these domains which is shared by the first L-type 
domain will yield no new L-polytopes since we have already enumerated 
all of these. Figure A, included in Table VI below occurs only on the 
boundary of the third L-type domain, Figures B and C lie on portions of 
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the boundary of the third £-type domain shared by the second L-type 
domain. 

6.2. THEOREM. Up to z-equivalence there are a total of 19 distinct 
L-polytopes in R , those appearing in Tables V and VII. 

Appendix. Kernel {A A ¥= 0. We will prove the following: 

A. 1. THEOREM. Suppose that Rj c Zn is not empty and 0 ^ V = 
ker(Af). Then Rfis of the form 

Rf=R + T, 

where R, T satisfy the three conditions; 
(1) R is the collection of integer points lying on some empty ellipsoid in 

R\ 
(2) T is a sublattice of IT containing 0. 
(3) The two lattices TR = Zn n aff(i^) and T form a decomposition of 

Zn n aff(# + T): 

zn n aff(# + T) = rR + r, (r^ - r )̂ n r = o. 
Such a root figure is finite or infinite depending upon whether 
dim(T) > 0. 

Moreover any subset of Zn of the form R + T where R, T satisfy these 
three conditions is a root figure in R". 

In the course of our proof we will make use of two subspaces of R" 
which are equal to the affine hulls of their integer elements and are related 
to V. We define (a), V0 to be the largest linear subspace of R" which is the 
affine hull of its integer elements and is contained in V and (b), Vx to be 
the smallest linear subspace which is the affine hull of its integer elements 
and contains V. Both are uniquely determined: 

V0 = aff(Z" n V)9 Vx = (V-1 n z")-1, 

where _L denotes the orthogonal complement with respect to the usual 
scalar product. The two containments V0 c V c Vx become equalities if 
and only if V is the affine hull of its integer elements. 

The following three propositions, proved in [2], describe some useful 
properties of the subspaces V, Vx. 

A.2. PROPOSITION. If 0 ¥= V = ker(^4A then f is constant on the 
translates of V by elements x G Rn:f(x + V) = f(x). 

A.3. PROPOSITION. Let 0 ¥= V = ker(^4y). Then the set M, where 

M = {m e Rn\f(m) ^ f(m + Vx) }, 

is an affine subspace ofRn with 

(1) (M - M) n Vx = V, 

(2) R" = M + Vv 

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-039-7


810 R. M. ERDAHL AND S. S. RYSHKOV 

A.3. PROPOSITION. If 0 =£ V = ker(AA, then f is non-negative on the 
translates of Vx by elements z e Zn:f(z 4- Vx) = 0. 

A.l. Proof of theorem. Consider / w i t h properties as in the statement of 
Theorem A.l. Let 

Tf = Zn n aff(i^). 

By Proposition A.2 Rf + TT O V = Rf so 

Tf + Z* n v = I). 

Choose a sublattice T* c Iy so that r = Z" Pi F, T* form a decomposition 

ofr/: 

r7 = r* + r, (r* - r*) n r = o. 
Using this decomposition we write, for m E L m = r + v, where r G T*, 
v G T. By Proposition A.2, / ( m ) = f(r) and m ^ Rf if and only if 
r <= /?y. Defining R to be equal to Rf n T* it follows that 

fly = rt + I\ 

Regarding the properties of T, i? we have: 
(1) If m e i? then / ( m ) = 0 and by Proposition A.4 

f(m) ^ f(m + V}); 

m is therefore an element of M, the affine space defined in Proposition 
A.3. Since aff(i^) c M property (1) of Proposition A.3 implies that 

(aff(fl) - aff(i^)) n Vx c K 

Since the two subspaces (aff(i^) — aff(R) ), Vx both have integer bases the 
same is true of ther intersection and 

(aff(*) - 3ff(R)) n Vx c V0, 

which implies that 

(aff(R) - aff(fl)) n V cz V0. 

But by the construction of T* it follows that 

(afnT*) - afnT*)) n VQ = 0 ( ^ = aff T). 

Since i£ c T* we conclude that 

(aff(A) - aff(/*)) n F = 0 

and the restriction of the surface defined by the equation / = 0 to aff(R ) 
must be an empty ellipsoid in aff(i^); R is the collection of integer points 
lying on an empty ellipsoid in aff(.R). This being the case R can also be 
realized as the collection of integer points lying on some empty ellipsoid in 
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R" and therefore satisfies condition (1). 
(2) Since O E T J satisfies condition (2). 
(3) Since R c T* and since 

dim(R) = dim(Rf) - dim(T) = dim(I}) - dim(r) = dim(r*) 

we must have Z" n aff(7?) = T*. With this identity, condition (3) of the 
theorem is a restatement of the fact that T*, T form a decomposition of 
r/-

The last statement of the first part of the theorem regarding the 
finiteness of the root figure is obvious. 

To begin the proof of the second part of the theorem assume that R, Y 
satisfy conditions (1) through (3) of A.l. By condition (1), R can be 
realized as the integer points lying on some empty ellipsoid in R/7. Let g 
be a function satisfying the two conditions stated in the introduction and 
such that the surface determined by the equation g = 0 coincides with this 
empty ellipsoid. Then R = Rg. Let 

r, = Zn n aff(R) 

or, if need be, let Tj be equal to some extension of Z" n aff(R) so that Tj, T 
form a decomposition of Z": 

z" = Tj + r, (Y{ - r,) n r = o. 

That such a Tj can be constructed is guaranteed by conditions (2), (3) on 
T, R. If Y, = afuTj), Y = aff(T) then an element x G R'7 can be written 
uniquely as yj + j w i t h ^ j G ^ , j E Y. Now define the function h by the 
formula 

h(x) = h(yl + y) = g(y{). 

Since^] is related to x by an affine transformation, h(x) can be written as 
in equation (1) of the introduction. For z G Z", 

h(z) = h(yx + y) = g(7 l) ^ 0 

since yj G Zn by the construction of T}. Thus h satisfies condition (2) of 
the introduction and 

Rh = {z G Zn\h(z) = 0} 

is a root figure. Since it is clear that R + Y = Rtv R + T is a root figure 
and our proof is complete. 

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-039-7


812 R. M. ERDAHL AND S. S. RYSHKOV 

P. 

a 
i/5 

S 
B < 
^ d > 

^ 13 ft 
£ (U U 
Q u aj 

O J3 

G 
O 
c/i 

G • <u 
S nh 

TD 

ba
se

 

0 

£ en 

te
x 

T3 ~0 J-i 

a> 
«' 6 > 

yr
a 

yr
a 

A
dd

 

eu a A
dd

 

^t V i «n «ri in 

co co ^t -sf ^f 

c i of r-f en rn 

«n \o m vo t̂" «n 
TJ- in ^1- i n m r^ 

of ^ rn Tf r i <N 

c c c i m - -

G 
O 

'âl O 

lic
i 

a 0 
S 0 

C/3 Q 

a1 a" 

a" a* 

a 
o 

Q 

o 

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-039-7


THE EMPTY SPHERE 813 

o 

*rt o 
IX 

lie
 

a OH o 
a w Q 

8 £ 

73 
73 

£ < 

VO h h ^û 

r- vo in vo m" rr~ 
i n i n m m ^î m 
<N TT <N TI- m (M 

^ CO - — CN ~ 

a a a 

a1 a" sT 

a" o4 a* 

o 

S o ^ 

a ^ in 

13 'S «5" 

vo' 73 
(U 

• 5 ^ «*H 
73 , O £ 
m N aj O 

< £ §-§ 

ci) 

oo 
X 

73 
73 

< 

^O OO 0 0 OO 

i n oo A o oo rt" o" in" ^o" 

Tt" i n m" \Q co" m" ^t" in" 

r l r i -̂ t" -^f CN" r f m" f̂" 

~S ~ rS ,-T ~ _T cj c^ 

a a a a 

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-039-7


814 R. M. ERDAHL AND S. S. RYSHKOV 

'5 
G 

(/) G <U 
(U c/5 

<u <u 
o o 

O <3 

o 

_op 

O 

00 ;£ 

g 2 
a> 

oo 

r-

>? < 

S 3 

o 
O N 

T3 
< 

r- oo 

OO OC h 00 \ d h 

oo \6 r-" vd vd ^f io' 
SO m in m m m TJ-

i n CM (N ^f Tf CM m 

— — rv C C — (N 

so ON r-- ON r--

r - ON so ON in so in r - so 
i n h i n so co m TJ- ^t i n 

(N <N ^f Tf M (N (^ CO "fr 

—< .— co m *-* —i (N CN — 

<n o (X 
B 

a o 
a en Q 

Q a ^ a a 

Q 53 a a a 

a a a a s a 
t£> m <N ci m <N 

a a a a a a 

Q Q a a a Q1 

o 
Z k oo 

o 
Z 

https://doi.org/10.4153/CJM-1987-039-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-039-7


T H E EMPTY SPHERE 815 

X < 

< 

<3 • i n 

£> UH 

<D 
a > 
o 

T3 
o TJ 

Si < 

o ' ^ ^ . - ^ 
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T A B L E VII 

Stars of L-decomposit ions first L-type domain 

L-decomposition Figure number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

79 120 

F* 60 36 

F] 20 24 28 

F\ 40 24 14 

Ft 10 28 16 

FÎ 20 24 16 

n 48 

F\ 72 18 

Fl 10 14 18 

FÎ 36 

Fl 16 20 

Fl 36 10 

F\ 10 20 

fl 24 

Ft 16 12 

Fl 16 
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