
1 Understanding Some Basic
Statistical Concepts

1.1 Sample vs. Population

A concept that may not have been well explained in your statistics class of
long ago, is sample vs. population estimates. If your mission is to measure
weight on all patients with diabetes in the world (or what statisticians call
the “universe”), we must measure the mean and standard deviation (SD)
in a representative sample of patients that estimates the mean and variance
of weight in the universe (µ or standard error, SE). Thus, we make
estimates of population weight through a sample of diabetic patients, for
example. By examining samples of data, we are always estimating charac-
teristics of the universe. Ideally, these samples are randomly selected from
the population and thus, if we were to choose another random sample
from the same population, the results would be approximately equal,
within the acceptable bounds of random error. This is why the sample
selection becomes critical; the sample must be as representative of the
population being studied as possible.

1.2 General Data Management Considerations

If you have a binary variable, i.e., a variable with only two choices, such as
gender, in a dataset, it is necessary to always enter the binary code, or leave
it blank if it is missing. Too often I have received datasets for analysis that
contain a 1 for “yes” and blank for “no,” meaning to me that all of the
blanks are missing. However, when I asked the author of the dataset about
these missing values: “did the patient have cardiovascular disease (CVD)?,”
she said “oh, no, a blank means that they did not have the CVD.” Those
missing fields were corrected to receive a value of 0, while the truly missing
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values were simply left blank. Make no assumptions if you see a lot of
missing data.

Another tragic example was when a post-doc decided not to consult the
codebook to define who was on study drug and who was on placebo, so he
switched the assignments, and in his post-doctoral dissertation, he
reported that patients on the study drug did not benefit while the controls
did benefit, when indeed the reverse was true. Always document variable
codes in a codebook or in the database itself.

Laboratory personnel also need to have access to statisticians, or they
should possess a foundational and functional level of knowledge in statis-
tics in order to understand, apply, and interpret their laboratory results
and keep their instruments calibrated. Or, they are advised to speak to a
statistician at the very start of study development. There can be struggles
between laboratory personnel and statisticians/epidemiologists when it
comes to data handling or interpretation. As one who helped a lab to
optimize the performance of their assays, I would sometimes experience
comments like, “oh, we eliminated the outliers,” or when data are missing
for a certain field, they enter a QNS (quantity not sufficient) instead of
leaving it blank, or entering dates as month/day/year in some of the fields
and then day/month/year in others, thereby throwing off the date format
recognition of my analysis software. So, my best advice is to speak to your
statistician before designing your study and your database to discuss:

• study design

• developing the hypothesis and the null hypothesis

• sample size. . . sample size. . . sample size. . . sample size. . .

• Also, develop a data codebook (including strict formats for dates!).

• Keep ALL data and don’t throw out the outliers!

1.3 Central Limit Theorem

Another related concept is the Central Limit Theorem, which simply posits
that when one continually draws samples from a population and measures
their HbA1c levels, for example, the HbA1c values from multiple subjects
will eventually take on a normal distribution as one keeps sampling, that is,
when plotted the values will take on a bell-shaped distribution that is
centered around the mean and the median of the distribution, but only if
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the values are capable of being normally distributed in the first place. For
example, you wouldn’t expect a logarithmically distributed variable to even-
tually take on a normal distribution after repeated sampling because it will
always be logarithmically distributed. More on that in Section 2.2.

1.4 Parametric vs. Non-parametric Analyses

We will learn about different types of analyses to perform on different
types of data, but the initial question to ask is: “Are the data normally
distributed?” If yes, use the parametric statistics toolbox. If they are
otherwise, i.e., not normally distributed, use the non-parametric toolbox.
Parametric statistics are a set of statistical procedures that are conducted

on normally distributed, continuous variables. Parametric statistics are gen-
erally more robust than non-parametric statistics, so it becomes understand-
able why efforts are often made to “normalize” non-normally distributed
data (see Chapter 4) before subjecting them to parametric statistics. For
example, HIV viral load must be log10 transformed to assimilate a normal
distribution before being analyzed using the parametric T-test.
Non-parametric statistics are a set of statistical procedures that are

performed on non-normally distributed data like binary, ordinal, and nom-
inal variables, or on continuous variables that are not normally distributed.
Borrowed and adapted from Tanya Hoskin, a statistician in the Mayo

Clinic Department of Health Sciences Research who provides consult-
ations through the Mayo Clinic CTSA BERD Resource,1 Table 1.1 eluci-
dates which test to use in different circumstances by giving laboratory and
clinical examples.

1.5 How to Calculate Some Basic Measures of Central Tendency

The mean, median, and mode are common indices used to describe the
characteristics of a sample. They are simple to calculate and give some
useful information on how sample values, like age and gender, are distrib-
uted; the indices can also be used to compare age and gender between
different populations. However, the value of these indices has limitations,
and misuse can yield misleading information. Following the definitions
and the way to calculate the mean, median, and mode (below), two
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examples of populations are illustrated to make the point of the use and
misuse of these measures.

1.5.1 Mean

The mean is calculated as the sum of the values divided by the number of
the values. Why are means important? Because they give us a single
summary value that describes one measure of the data that is useful for
comparing across two or more populations.

Calculation of the mean:

What is the mean of 2, 3, 6, and 10?
Answer: 2 + 3 + 6 + 10ð Þ=4 = 21=4 = 5:25.

However, if you have a distribution such as the following:
What is the mean of 20 + 2 + 500 + 2500?

Table 1.1 The selection of appropriate statistical tests is dependent on
data type

Analysis type Example
Parametric
procedure

Non-parametric
procedure

Compare means
between two
distinct and
independent groups

Mean systolic blood
pressure for patients
on placebo vs.
patients on study drug

Two-sample
T-test

Wilcoxon rank-
sum test

Compare two
quantitative
measurements
taken from the
same individual

Cell viability before vs.
after 3 days in �80F
freezer

Paired T-test Wilcoxon
signed-rank
test

Compare means
between three or
more distinct/
independent groups

We want to compare
the baseline ages of
3 groups: drug #1 vs.
drug #2 vs. placebo

Analysis of
variance
(ANOVA)

Kruskal–Wallis
test

Estimate the degree of
association between
two quantitative
values

Viral particles in urine
vs. saliva specimens

Pearson
correlation

Spearman–Rank
correlation
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You might decide that finding the mean of this distribution may be
meaningless since there is just so much space between the values. A way to
reduce the space is by “normalizing” these values before taking the mean of
them (see Section 1.4).

1.5.2 Median

The median is the midpoint of a frequency distribution where 50% of
values fall below it and 50% of values fall above it. The median can be
estimated by constructing a frequency distribution table.
As can be seen from Table 1.2, the midpoint of “Measured Blood Loss”

can be found by looking at the cumulative frequency and finding that the

Table 1.2 Frequency distribution of Measured Blood Loss

MBL

Frequency Percent Cumulative Percent

Valid 1.50 1 4.3 5.3
1.54 1 4.3 10.5
1.64 1 4.3 15.8
1.78 1 4.3 21.1
3.55 1 4.3 26.3
3.70 1 4.3 31.6
3.78 1 4.3 36.8
4.27 1 4.3 42.1
4.93 1 4.3 47.4
6.41 1 4.3 52.6
7.21 1 4.3 57.9
7.39 1 4.3 63.2
7.53 1 4.3 68.4
7.84 1 4.3 73.7
8.02 1 4.3 78.9
8.63 1 4.3 84.2
11.28 1 4.3 89.5
13.43 1 4.3 94.7
68.83 1 4.3 100.0
Total 19 82.6

Missing 4 17.4
Total 23 100.0
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50% mark of the distribution falls somewhere between 4.93 and 6.41. These
two values are almost equally distant from 50%, so we can approximate the
median by taking the mean of these two values: (4.93 + 6.41)/2 = 5.67 =
the median.

1.5.3 Mode

The mode is the number that is repeated most frequently in a distribution.
If there is a tie between two values, the distribution is said to be bimodal. If
three or more values are tied, it is said to be multimodal. Mode can also be
used in cases of ordinal variables like race; which race is most prevalent in
the ordinal continuum of the race values?

Calculation of the mode:

What is the mode of 1, 4, 2, 4, 7, 5, 6, 4, 3, 7, 4, 4, 7, 7, and 7?
Answer: 4 and 7. This is a bimodal distribution.

Now, let’s examine two different samples and see how the mean,
median, and mode represent the samples and their usefulness.

Mean, Median, and Mode

Group #A: There are 200 individuals in a study that describes blood
glucose levels. The data show that the blood glucose values
seem to be normally distributed (see Introduction) from 50 to
150 mg/mL. That is, there are persons with low values, mid-
values, and high values. If the data are plotted, they show a bell-
shaped curve that is normally distributed (Figure 1.1).

Group #B: There are also 200 individuals from a different area and
the distribution of blood glucose levels is assessed. In this
group, it can be noted that about two-thirds of persons have
very low glucose values (<50 mg/mL), while the upper third
have very high levels (>150 mg/mL); there are very few
persons with mid-range glucose values.

Interpretation of the mean and median in the two groups: when Groups
A and B are combined, Population 1 appears to have HbA1c levels that are
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normally distributed; the median is central and likely lies very close to the
mean of 100. So, seeing that the population data are normally distributed,
one may automatically consider running parametric analyses. However,
when broken into Groups A and B and C, the group means of Groups
A and B (i.e., 75 and 125), and likely their group medians, have shifted
away from the population mean of 100 and the group distributions also
appear to be statistically different from each other. Another visual obser-
vation is that Group C is likely not statistically different from Groups
A and B. In this situation, a non-parametric statistic should be considered
when the distributions of blood glucose in Groups A, B, or C are not
normally distributed after being stratified from the population, even
though the distribution of Population 1 appears to be normally distributed.
In summary, the characteristics of data are extremely important to

understand, and therefore simple measures should not be used exclusively;
other statistical tools must be considered to fully and correctly describe the
data. These include the standard deviation, the coefficient of variation, the
range, and the interquartile range.

Blood glucose
Mg/mL

Probability

50 150100
0.0

0.95 Mean popula�on 1 = 100
Mean group A = 75, Mean group B = 125

Group A Group B

Popula�on 1 

Group C

Figure 1.1 Dissimilar distributions of blood glucose levels.
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1.5.4 Range

The lowest number and the highest number of a sorted distribution
designates the range of the distribution. Ranges are useful when speaking
of normal and abnormal ranges for a biological characteristic.

Calculation of the range:

Example for the Clinician

Using the Measured Blood Loss distribution in Table 1.2, the smallest
number in the distribution of numbers is 1.50 and the largest number
is 68.83. That is the range of values in the Measured Blood Loss
distribution.

1.5.5 Interquartile Range

The interquartile range (IQR) is at the 25th and 75th percentile of the
distribution. This is a useful set of numbers because it presents a little more
information about how the data are distributed at a more granular level
than the range. In normal situations, the 25th and 75th percentiles of
distributions may not be conveniently obvious, as is shown in Figure 1.2,
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Figure 1.2 Boxplot showing comparison of weight loss by gender.
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where we must make decisions on where these distributional demarcations
are, as shown in the example below.
Calculation of the IQR:

Example for the Clinician

Again using the distribution of Measured Blood Loss (Table 1.2), the
25th percentile lies somewhere between 1.78 and 3.55 (mean ~ 2.66).
The 75th percentile is a judgment call in this case; since the cumulative
percentage 73.9% is closer to the 75th percentile than is 78.3%, we can
take the MBL value at the 73.9% value and take an MBL value of 8.02
to demarcate the 75th percentile of the distribution. Thus, 2.66–8.02 is
the IQR of the distribution.

One of the more informative plots is the boxplot (Figure 1.2), which
shows the 25th and 75th distributions, the means, the upper and lower
bounds of the 95% confidence intervals, and the points outside the 95%
confidence interval, which are otherwise known as “outliers.” Boxplots are
particularly informational and are attractive representations for illustrating
statistical differences in journal articles.
Evidently, males were not significantly heavier than females at 24 months

post-surgery, as can be determined by the overlap in confidence intervals
(Section 3.2).
Knowing these basic statistical calculations and permutations can lead to

a broader understanding of your data in terms of their distributions. This
understanding is a crucial element in choosing the correct statistical
approach. Know your data!

1.5.6 Skewness

Non-normally distributed data do not resemble a bell-shaped curve but
rather, they may be skewed to the left or to the right as shown in Figure 1.3.
Skewness is a term referring to the tail of the distribution, whether it leads
off to the right or the left. The skewness of a data distribution refers to the
symmetry of the values around the mean of the distribution.
Why do we care about skewness? Because it shows us if the data are

normally distributed and therefore, when we should and should not use
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parametric analysis techniques. When the mean is equal to the median (is
normally distributed), the value for skewness is 0, and is therefore appropriate
for parametric analyses. When the majority of values in your distribution are
concentrated together at the right or the left, the tail falls off to the right or the
left and is therefore called “skewed to the right” or “skewed to the left,”
respectively, as shown in Figure 1.3, and it is not appropriate for parametric
analyses. Skewness values between �2 and 2 are generally acceptable for
demonstrating that data are normally distributed, but values less than �2
and greater than 2 are good indications of skewness, or they are not normally
distributed, and again, are not good candidates for parametric analyses. For an
online skewness calculator, you can enter your data in a tool.2

Notice that when data are positively skewed, the mode and the median
lie to the left of the mean, while in negatively skewed data, the median and
the mode lie to the right of the mean.

The following is a perfect case in point. Presented in Figure 1.4(a) is a
frequency distribution and in Figure 1.4(b) a bar chart of a continuous
variable: “Days of Hospital Stay.” Upon visual scrutiny, this continuous
variable is skewed to the left, since most cases stayed 0 or 1 day; thus, Days
of Hospital Stay is not normally distributed around the mean. Also, in the
cumulative frequency column of the table, you can see that 79.9% of the
sample had a length of hospital stay of 2 days or less. Now, had you
assumed that Length of Hospital Stay was normally distributed and you
ran it through a parametric procedure, your result would be erroneous

Figure 1.3 Depiction of negative and positive skewness.
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Frequency
Valid 

percent
Cumulative 

percent

0 3097 36.9 44.5 44.6

1 1475 17.6 21.2 65.8

2 979 11.7 14.1 79.9

3 390 4.6 5.6 85.5

4 209 2.5 3.0 88.5

5 151 1.8 2.2 90.7

6 123 1.5 1.8 92.4

7 102 1.2 1.5 93.9

8 62 0.7 0.9 94.8

9 60 0.7 0.9 95.6

10 42 0.5 0.6 96.3

11 30 0.4 0.4 96.7

12 24 0.3 0.3 97.0

13 28 0.3 0.4 97.4

(a)

Days of
Hospital
Stay Percent

(b)
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Figure 1.4 (a) Frequency distribution and (b) bar chart of non-normally
distributed data.
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since it neglects the assumption of distributional normality where skew is
equal to zero. More information is available on normality.3 As an alterna-
tive to transforming the data to assume a normal distribution, it is advis-
able to use non-parametric techniques (Chapter 5).

So, by entering your data into the calculator,4 the skewness is 2.45,
which exceeds the 2 boundary and is thus a candidate for non-parametric
analyses, since it would not be possible to transform the data as they do not
take on any sort of predictable distribution, such as a logarithmic distribu-
tion (Section 2.2).

1.5.7 Kurtosis

Again, examining the distribution of your data before assuming normality
is essential when considering whether or not to perform parametric or
non-parametric techniques for analysis. Measuring the kurtosis of your
data is another way to examine the shape of the distribution of your data.
As shown in Figure 1.5, kurtosis is specifically a measure of the tails of your
distribution. You can see that the tails intercept the x-axis rather sharply
(where σ = 1) or more gently (where σ = 3). If σ = 3, your data are normally
distributed. If σ is greater than 3 or less than 3, your data are said to be
kurtotic, i.e., non-normal. Notice that when you run your data through the

µ = 1

µ = 2

µ = 3

Figure 1.5 Measures of kurtosis.
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skewness calculator,5 it also generates a value for kurtosis. You may use
these values to decide if your data are or are not normally distributed and
apply the appropriate set of statistics accordingly, i.e., parametric or non-
parametric.

1.6 Frequency Distributions

In Table 1.2 we examined the distribution of Measured Blood Loss during
surgery. This is called a frequency distribution of all data points in my data
file. When a statistician receives a new dataset, the first exploratory analysis
they often run is a frequency distribution as a first step to check the data for
accuracy and coding errors. They may run “frequencies” on all variables in the
dataset. The utility of the frequency distribution is that one can easily identify
values that are out of range and values that are character instead of numeric, or
vice versa.Onemay also run frequency distributions to findmeaningful cutoffs
if one wishes to categorize these variables by themean, the median, or the 25th
percentiles – e.g., age (0–2, 3–5, 6–12), weight (90–100, 100–150, 150–200), etc.
These are common data transformations that are made to continuous values
before entering the newly coded variables into other analyses.
For example, see Table 1.3.

Table 1.3 Utility of frequency distributions

Race Frequency Percent
Valid
percent

Cumulative
percent

Valid 0.0 5 0.1 0.1 0.1
1.0 Caucasian 4656 67.7 68.0 68.0
2.0 African

American
1854 27.0 27.1 95.1

3.0 Asian 71 1.0 1.0 96.1
4.0 Hispanic 161 2.3 2.4 98.5
5.0 Other 101 1.5 1.5 100.0

6.0 2 0.0 0.0 100.0

9.0 1 0.0 0.0 100.0
Total 6851 99.6 100.0

Missing System 25 0.4
Total 6876 100.0
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By running a frequency distribution, you can note in Table 1.3 that the
0s, 6s, and 9s are errors and that race is missing for 25 records in your raw
data. This simple table should prompt the data crew to find these missing
values and complete them, and also find the records containing the errors
and fix them. This process is known as “cleaning your data.”

Frequency Distribution

Moving from left to right in Table 1.4, the value in the first column is
the actual value for number of post-surgical complications.

Table 1.4 How to interpret a frequency distribution table

Number of post-surgical
complications Frequency Percent

Valid
percent

Cumulative
percent

0 6420 76.4 97.7 97.7
1 131 1.6 2.0 99.7
2 16 0.2 0.2 100.0
3 1 0.0 0.0 100.0
Total 6568 78.2 100.0
Missing 1832 21.8
Total 8400 100.0

The frequency represents the number of times the value appears in the
dataset. The percent column shows the proportion of that value within
the whole distribution, including those with missing values. There are
8400 total records in the database, of which 1832 are missing values for
number of post-surgical complications. The valid percent shows the
proportion of that value in your database when you exclude missing
values. And finally, the cumulative percent shows the increasing (or
cumulative) percentage of values from the lowest value in the
distribution to the highest value (0% to 100%). When reporting
frequencies in manuscripts or reports, it is best to state the total
number of records in the database, the number of missing values,
and the valid percentage of values in the dataset.

Because Estimated Blood Loss (EBL) is a continuous value (Table 1.5),
one would tend to examine the mean and standard deviation of EBL,
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which is an appropriate way to summarize normally distributed, continu-
ous data.
For example, look at mean weight compared across categories of EBL

groupings of the EBL distribution (Table 1.6). When grouped into such
clinically meaningful quartiles, i.e., �200, 201–400, 401–500, 501+, you
can then use these categories to compare another continuous variable, say,
the mean baseline weight between these EBL categories to answer the
question: Do patients who lose more blood during surgery weigh more
than those who lose less blood?
So, the importance of this example is to show the utility of frequency

distributions and how they can aid in the manipulative grouping of data in
order to conduct meaningful statistical analyses.

Table 1.5 A frequency distribution of Estimated Blood Loss

Estimated Blood
Loss (in dL) Frequency Percent

Valid
percent

Cumulative
percent

100.00 1 4.3 4.3 4.3
150.00 3 13.0 13.0 17.4
200.00 1 4.3 4.3 21.7
300.00 4 17.4 17.4 39.1
400.00 3 13.0 13.0 52.2
450.00 1 4.3 4.3 56.5
500.00 4 17.4 17.4 73.9
800.00 2 8.7 8.7 82.6
1000.00 2 8.7 8.7 91.3
1100.00 1 4.3 4.3 95.7
6250.00 1 4.3 4.3 100.0
Total 23 100.0 100.0

Table 1.6 Making clinically relevant stratifications of continuous data

EBL (dL) Mean baseline weight SD P

�200 214.53 10.22
<0.001201–400 220.64 12.32

401–500 228.43 10.56
�501 258.22 13.65

Understanding Some Basic Statistical Concepts 17

https://doi.org/10.1017/9781108769457.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108769457.003


1.7 Measures of Dispersion and Variance

1.7.1 Standard Deviation

The standard deviation is one way to describe the variation of your data in
relation to the mean of your data. It is a sum of the difference between each
data point and the sample mean divided by the number of records in your
dataset. The distance of each value from the mean is squared to ensure we
do not obtain negative values, since the standard deviation must always be
an integer whether it be lower or higher than the mean. Later, we take the
square root of this difference divided by n, to negate the squaring:

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x � �xð Þ2
n

s

where

σ = standard deviationP
= sum of

x = each value in the dataset
�x =mean of all values in the dataset
n = number of values in the dataset.

Calculation of the standard deviation:

What is the standard deviation of 2, 3, 6, and 10?
Answer: Firstly, find the mean of these four values:

2 + 3 + 6 + 10 = 21
21=4 = 5:25

SD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5:25ð Þ2 + 3� 5:25ð Þ2 + 6� 5:25ð Þ2 + 10� 5:25ð Þ2

4

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:56 + 5:06 + 0:56 + 22:56

4

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9:685

p
= 3:11:

It might be more intuitive to make the calculations of the standard
deviation in tabular form, as shown in the next example.
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Standard Deviation

Table 1.7 shows the temperature in a very hot African city over a
20-day period and the 20-day average (mean) temperature for the
20 consecutive days.

Table 1.7 Calculation of standard deviation

Close 20-Day mean Deviation Deviation squared

1 109.00 112.30 �3.30 10.91
2 103.06 112.30 �9.24 85.38
3 102.75 112.30 �9.55 91.26
4 108.00 112.30 �4.30 18.52
5 107.56 112.30 �4.74 22.47
6 105.25 112.30 �7.05 49.75
7 107.69 112.30 �4.62 21.30
8 108.63 112.30 �3.68 13.53
9 107.00 112.30 �5.30 28.12
10 109.00 112.30 �3.30 10.91
11 110.00 112.30 �2.30 5.30
12 112.75 112.30 0.45 0.20
13 113.50 112.30 1.20 1.43
14 114.25 112.30 1.95 3.79
15 115.25 112.30 2.95 8.68
16 121.50 112.30 9.20 84.58
17 126.88 112.30 14.57 212.34
18 122.50 112.30 10.20 103.97
19 119.00 112.30 6.70 44.85
20 122.50 112.30 10.20 103.97

2246.06 112.30 921.28
DevSqr/20 46.06
StdDev 6.787

To calculate the standard deviation, the distance of each daily
temperature from the mean temperature is calculated and then
“squared” to obtain a positive value for the negative deviations
from the mean. These squared distances are then summed together
and divided by the n of your sample. Then, the square root of that
value is taken to normalize the squared value back to the unsquared
value (the correction).
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1.7.2 Standard Error

The standard error is a value that pertains to the variance of the population
mean, not the sample mean! Mathematically, it is SD=

ffiffiffi
n

p
. Conceptually, it

is a measure of how precise a parameter is in the population. That param-
eter can be the mean or the correlation coefficient (Section 4.3.3). If we
were to repeatedly pull samples from the same population and measure the
mean weight for each sample, the SE of all the repeated weight measure-
ments is the measure of precision of all sample mean estimates.

1.7.3 Coefficient of Variation

The coefficient of variation (CV) is another measure that describes the
dispersion of measurements in terms of the standard deviation from the
mean. It is commonly used in reproducibility and repeatability studies to
determine how steady the measurements are (or are not) from an identical
sample or person. Usually, if you are repeatedly testing the same sample
over and over, it is preferred that the value for the CV is small. The CV is
calculated by dividing the standard deviation by the mean of a distribution
which is derived from the same sample or subject. It is just an expression
used to show the ratio of the standard deviation from the mean.

CV for a sample:

CV=
SD
�x

� 100%

where SD is the standard deviation and �x is the sample mean.

Using the values above, the mean (5.25) and standard deviation (3.11)
give a CV of 0.59, or 59%, which is quite high. Keep in mind that this
calculation of CV is only appropriate for normally distributed measure-
ment data, meaning that one would not normally calculate a mean or
standard deviation or CV for heavily skewed data (Section 1.5.6).

Calculation of the coefficient of variation:

Example for the Laboratorian

Laboratory A and Laboratory B have each been given 10 replicate
aliquots of blood from one healthy volunteer to test for blood
glucose. Both labs performed their tests using the same measurement
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procedure, used the same tester, the same measuring instrument under
the same conditions, in the same location, and the test repetition
occurred over a short period of time.

Laboratory A gets a mean of 81.1 and SD of 15.7.
Laboratory B gets a mean of 82.5 and SD of 20.4.

Which lab had better test repeatability?

Laboratory A CV= 15:7=81:1� 100 = 19:35%:
Laboratory B CV= 20:4=82:5� 100 = 24:73%:

Clearly, Laboratory A had less variation in blood glucose levels in
relation to the mean value, and thus had better test repeatability.
CVs are also computed when reproducibility or precision (Section 8.3.3)

of one test is being assessed for variation. Ideally, the CV of a test should
not change if tested in two different labs; that is, the one test should
perform identically in both labs.

Links to Online Tools
1 www.mayo.edu/research/documents/parametric-and-nonparametric-
demystifying-the-terms/doc-20408960

2 www.socscistatistics.com/tests/skewness/default.aspx
3 www.wessa.net/rwasp_skewness_kurtosis.wasp#output
4 www.socscistatistics.com/tests/skewness/default.aspx
5 www.socscistatistics.com/tests/skewness/default.aspx
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