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Abstract
In this study, a novel kinematic calibration method is proposed to improve the absolute positioning accuracy of
6R robot. This method can achieve indirect compensation of the 25 parameters of modified Denavit–Hartenberg
(MDH). The procedures of the method are threefold. Firstly, the 25-parameter errors model of MDH is initially
established. However, only the errors of 10 parameters can be directly compensated in the 25-parameter errors
model, since the inverse kinematics algorithm has to meet Pieper criterion. Subsequently, a calibration method is
proposed to improve accuracy of the absolute position, which uses the Newton–Raphson method to transform the
25-parameter errors into 10-parameter errors (namely T-10 parameter model). Finally, the errors corresponding
to 10 parameters in the T-10 parameters model are identified through the least square method. The calibration
performances of T-10 parameters model are comprehensively validated by experimentation on two ER6B-C60
robots and one RS010N robot. After kinematic calibration, the average absolute positioning accuracy of the three
robots can be improved by about 90%. The results indicate that the proposed calibration method can achieve more
precise absolute positioning accuracy and has a wider range of universality.

1. Introduction
Recently, the repetitive positioning accuracy of most 6R industrial robots is higher than 0.1 mm, which
can meet the basic requirements of electronic product manufacturing, automobile production, welding,
and the other industrial applications. Nevertheless, with the development of technology, especially in
the fields of aerospace and precision manufacturing, high absolute positioning accuracy of robots are
requested to meet their production demands. The error factors impacting on the absolute positioning
accuracy of robots primarily include kinematic parameter errors, dynamic errors, environmental impact,
and load, etc. The errors of kinematic parameters account for 90% of the total error of the robot [1]. Many
researchers attempt to improve the absolute positioning accuracy of robots through a method of adjusting
kinematic calibration of robot [2–8], which only needs to modify kinematic parameters of the robots in
Robot system control software. The kinematic parameter calibration is regard as a simple, effective,
and economical method [2], usually including four steps: modeling, measurement, identification, and
compensation [3–6].

The Denavit–Hartenberg (DH) model is widely used in robot kinematic modeling; however, the orig-
inal DH model may cause a singular problem when joint axes are parallel or approximately parallel to
each other. To avoid this issue, Knasinski [7] and Hayati [8] introduced an additional rotational param-
eter about the Y -axis on the basis of the original DH model to build a new model named modified
DH (MDH) model, which could solve the problem of the incompleteness of DH model. The kinematic
error model established by MDH parameters is related to the structure of the robot, in which there
are interrelated parameter errors, called redundant parameters. There are redundant parameters in the
error model, which can affect the identification accuracy. Consequently, it is necessary to remove the
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redundant parameters [9–13]. Fortunately, Meggiolaro [14] proposed a method to remove the redundant
parameters by analyzing the structural characteristics of adjacent joints of the robot, and this method
promoted the accuracy of parameter identification. Gao [15] used singular value decomposition (SVD)
to remove these redundant parameters from the matrix. Furthermore, he proposed an innovative least
square identification algorithm to estimate the structure parameters of the robot.

Kong [16] employed the method of least square iteration in parameter identification and calculated
the generalized inverse matrix using the method of matrix SVD. Also, he introduced the limit value
of relative error tolerance to calculate the approximate values of parameters. In many studies, a high-
resolution camera is installed at the end of the robot to ensure the measurement accuracy. For example,
Wang [17] built a visual calibration method in terms of the point and distance constraints. This method
was able to capture a fixed reference ball as a point constraint using a camera and could record the joint
angle of the robot and the length of the measuring block as a distance constraint. In this research, the
kinematic parameters were identified by Levenberg–Marquardt algorithm and the calibration accuracy
increased from 2.05 mm to 0.24 mm. This method indicated the advantages of strong local convergence
and good robustness, but at the same time it has the disadvantage of high requirements on hardware
devices. Li [18] transformed the overconstrained mechanism into a non-overconstrained mechanism in
the robot, and he replaced the redundant constraint with generalized forces. He also established the kine-
matic model of the actual end position of the robot and the mechanical model of the non-overconstrained
mechanism of deformation. Based on the robot’s overall kinematics model and the measured data, the
structure parameters were identified by Newton–Raphson iteration and the least square method. The
calibration results showed that the absolute positioning accuracy could be improved from 1.635 mm to
0.155 mm. Li’s model included kinematic model and mechanics model, which could achieve a higher
accuracy. However, the established model is too complex for the practical applications. Joubair [19]
proposed a kinematic calibration method based on distance and spherical constraints, which could fit
multiple detection positions on the sphere to minimize the residual distance between the center of the
sphere and the probe. Applied for the FANUC LR Mate 200iC robot, the average calibration error was
reduced from 0.698 mm to 0.086 mm. Nevertheless, this method relied on external probe and required
high machining precision. Nubiola [20] adopted 29-parameter calibration error model, considering all
possible geometric errors. Based on the IRB-1600 robot, 29-parameter errors were obtained by the least
square method, and the average error was reduced from 0.968 mm to 0.364 mm. However, the entire
measurement process needs to collect numerous points (1000) in the robot workspace, which takes a
long time.

To enhance the absolute positioning accuracy of robots, more issues need to be solved. For instance,
the control systems of most robots are not open to the public. Even if we can obtain all the parame-
ter errors, we are not able to correct all of them. Additionally, the kinematic model has to satisfy the
Pieper criterion; otherwise, it will be difficult to calculate the inverse kinematics. To find solutions
for these two issues, this article proposed an innovative calibration method which transformes the 25-
parameter errors model into 10-parameter errors model (namely T-10 parameter model). First of all,
based on the MDH method, the 25-parameter error model is established, and the Automated Precision
Inc (API)’s high-accuracy Radian laser tracker is used to measure actual sampling points. Secondly,
redundant parameters in the error model were eliminated using the SVD. Thirdly, the error model with-
out redundant parameters was transformed into a 10-parameter error model through Newton–Raphson
method. Finally, 10-parameter errors were identified using the least squares methods, and the errors of
identified parameters were compensated in the control software of the robot to verify that the proposed
method can be applied to improve the absolute positioning accuracy of robot.

2. T-10 parameter calibration method
2.1. Robot error modeling
The Kawasaki RS010N industrial robot used in this study has an excellent environmental adaptability.
The coordinate system of each joint of the Kawasaki RS010N robot is established based on the DH
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Table I. DH parameters of the RS010N robot.

Number θi/
◦ αi/

◦ ai/mm di/mm
(1#) 0 −90 100 0
(2#) −90 0 650 0
(3#) 0 −90 0 0
(4#) 0 90 0 700
(5#) 90 −90 0 0
(6#) 0 0 0 0

Figure 1. The structure and DH parametric coordinate system of the Kawasaki RS010N robot.

method, and its construct is shown in Fig. 1. The DH parameters of the robot are displayed in Table I.
The joint rotation angle (θ ) is obtained from the angle encoder installed in the servo motor of each joint of
the robot. The link length (a), the link offset distance (d), and the joint twist angle (α) are generally fixed
values, mainly determined by robot structure design, manufacturing, assembly, and the other factors.

According to the principle of establishing homogeneous transformation matrix, the transformation
from the coordinate system {oi−1xi−1yi−1zi−1} to the coordinate system {oixiyizi} includes a rotation and
translation of a coordinate system. The four DH parameters of the robot linkage determine the spatial
kinematics morphology of each link.

When robot joints are parallel to the axis or near than, singularity problem may occur, and the robot
joints may be not able to satisfy the continuity of kinematics model. Therefore, increasing an additional
rotation angle β parameter on the Y -axis is to solve the adjacent joint axis parallel problem when caused
by tiny errors and parameter changes, and the MDH model was established. Using the MDH modeling
method, the transformation between linkage coordinate system {i − 1} and linkage coordinate system
{i} can be calculated through Eq. (1). i = 1 ∼ j. j is the degree of freedom of robot joints. Then, j>2

Ti
i−1 = Rot(zi, θi) · Trans(0, 0, di) · Trans(ai, 0, 0) · Rot(xi, αi) · Rot(yi, βi)⎡

⎢⎢⎢⎢⎣

cθicβi − sθisαisβi −sθicαi cθisβi + sθisαicβi aicθi

sθicβi + cθisαisβi cθicαi sθicβi − cθisαicβi aisθi

−cαisβi sαi cαicβi di

0 0 0 1

⎤
⎥⎥⎥⎥⎦

(1)

where s and c are short for sin and cos, respectively.
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For the robots with multiple degrees of freedom, the errors in the coordinate system of each joint are
transferred to the robot end, and the homogeneous transformation matrix of the joint to the robot end
can be expressed as Eq. (2):

0
j T = 0

1T
1
2T

2
3T · · · i−1

i T · · · j−1
j T =

j∏
i=1

i−1
i T (2)

The MDH parameters in Eq. (2) are all nominal values, and the homogeneous transformation matrix
between the two coordinate systems is denoted as Ti. After introducing the MDH parameter errors of
each joint �θi, �di, �ai, �αi and �βi, the resulting pose error dTi of the coordinate system can be shown
in Eq. (3):

dTi = Ti · �Ti = Ti ·
[
�θi �di �ai �αi �βi

]T (3)

�Ti can be calculated as following:

�Ti =
[

�R �P
0 0

]
(4)

where �R is the rotation matrix of 3×3:

�R =
⎡
⎣ 0 −sβi�αi − cαicβi�θi �βi + sαi�θi

sβi�αi + cαicβi�θ 0 −cβi�αi + cαisβi�θi

−�βi − sαi�θi cβi�αi − cαisβi�θi 0

⎤
⎦ (5)

and �P is the position matrix of 3×1:

�P =

⎡
⎢⎢⎣

cβi�ai − cαisβi�di + aisαisβi�θi

sαi�di + aicαi�θi

sβi�ai + cαicβi�di − aisαicβi�θi

⎤
⎥⎥⎦ (6)

According to the differential kinematics, �Ti can be also expressed as Eq. (7), and Eq. (7) includes
the differential translation vector of 3×1 (dxi, dyi, dzi) and the differential rotation vector of 3×1
(δxi, δyi, δzi):

�Ti =

⎡
⎢⎢⎢⎢⎢⎣

0 −δzi δyi dxi

δzi 0 −δxi dyi

−δyi δxi 0 dzi

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(7)

Combining Eq. (5) and Eq. (7) to get Eq. (8), which demonstrates the position errors caused by the
MDH parameter errors of any joint in the joint coordinate system {i}, Eq. (8) is abbreviated as ei = Gi�qi:

⎡
⎢⎢⎢⎢⎢⎢⎣

dxi

dyi

dzi

δxi

δyi

δzi

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

aisαisβi cαisβi cβi 0 0
aicαi sαi 0 0 0
−aisαicβi cαicβi sβi 0 0
−cαisβi 0 0 cβi 0
sαi 0 0 0 1
cαicβi 0 0 sβi 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�θi

�di

�ai

�αi

�βi

⎤
⎥⎥⎥⎥⎦ (8)

The error in each joint coordinate system is transferred to the actual position coordinates of a
robot’s tool center point (TCP), so the homogenous transformation matrix from the joint ith to the TCP
coordinate system is

nUi = Ti+1Ti+2 · · · Tt =
[

ni oi ai pi

0 0 0 1

]
(9)
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where ni = [nx ny nz]T is the orientation of the X-axis of the end tool coordinate system with respect to
the base coordinate system; where oi = [ox oy oz]T is the orientation of Y -axis of the end tool coordinate
system with respect to the base coordinate system; where ai = [ax ay az]T is the orientation of Z-axis of
the end tool coordinate system with respect to the base coordinate system; where pi = [px py pz]T is the
position of the origin of the end tool coordinate system with respect to the base coordinate system.

Therefore, the total error model of the robot, which reflects the relationship between kinematics
parameter errors of each joint of the robot and the end pose errors, is shown in Eq. (10):

en =
n∑

i=1

njiei =
n∑

i=1

njiGi�qi (10)

where nji is

nji =

⎡
⎢⎢⎢⎢⎢⎢⎣

nix niy niz (pi × ni)x (pi × ni)y (pi × ni)z

oix oiy oiz (pi × oi)x (pi × oi)y (pi × oi)z

aix aiy aiz (pi × ai)x (pi × ai)y (pi × ai)z

0 0 0 nix niy niz

0 0 0 oix oiy oiz

0 0 0 aix aiy aiz

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

2.2. T-10 parameter identification algorithm
According to Eq. (10), the error model of the multi-degree of freedom robot can be expressed as Eq.(12)
[21] :

e = Mi
θ
�θ i + Mi

d�di + Mi
a�ai + Mi

α
�αi + Mi

β
�β i (12)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi
θ
= [

nik1
i + (pi × ni) k2

i oik1
i + (pi × oi) k2

i aik1
i + (pi × ai) k2

i

]T

Mi
d = [

nik2
i oik2

i aik2
i

]T

Mi
a = [

nik3
i oik3

i aik3
i

]T

Mi
α
= [

(pi × ni)k3
i (pi × oi)k3

i (pi × ai)k3
i

]T

Mi
β
= [

(pi × ni)k4
i (pi × oi)k4

i (pi × ai)k4
i

]
(13)

where k1
i =

⎡
⎣ aisαisβi

aicαi

−aisαicβi

⎤
⎦, k2

i =
⎡
⎣−cαisβi

sαi

cαicβi

⎤
⎦, k3

i =
⎡
⎣ cβi

0
sβi

⎤
⎦, k4

i =
⎡
⎣ 0

1
0

⎤
⎦.

For 6R industrial robots, Eq. (12) includes the errors of 25 parameters (�θ1 ∼ �θ6, �d1 ∼
�d6, �a1 ∼ �a6, �α1 ∼ �α6, �β2). However, in order to facilitate forward and inverse kinematics cal-
culation during robot modeling, we set the parameters (α1 ∼ α6, β2, d1 ∼ d3, d5, d6, a4 ∼ a6) to fixed
values. And the robot control system based on independent research and development only supports 10-
parameter (θ1 ∼ θ6, d4, a1 ∼ a3) error compensation. Therefore, the errors of other kinematic parameters
and their corresponding coefficient matrix columns in Eq. (14) are removed, and only 10 parameters
are retained, and the influence of other parameter errors on the terminal is equivalent converted to
these 10 parameters. By compensating the 10-parameter errors, the end position and pose errors are
reduced. Therefore, Newton–Raphson algorithm is used to transform the 25-parameter errors into the 10-
parameter errors that can be directly compensated, namely T-10 parameters model. The T-10 parameters
model is given by Eq. (14):

e = Mi
θ
�θ i + M4

d�d4 + Mk
a�ak (14)

where k = 1 ∼ 3.
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Figure 2. Industrial robots’ calibration experimental platform.

Equation (14) is a non-square matrix model. Consequently, SVD is used to get the generalized inverse
matrix of the extended Jacobi matrix (J), and J generalized inverse matrix can be expressed as Eq. (15):

J+ = Q
(

D−1 0
0 0

)
VT (15)

where V and Q are both orthogonal matrices. D = diag(σ1, σ2, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
(�θ1 ∼ �θ6, �d4, �a1 ∼ �a3) are the error values of T-10 parameter, which denote as �X, and can

be calculated by the least squares as shown in Eq. (16):

�X = J+e = Q
(

D−1 0
0 0

)
VTe (16)

3. Expermental verification
3.1. Experimental platform
The calibration experimental platform was built (see Fig. 2) to verify the T-10 calibration method. The
platform includes robot, Radian laser tracker, control cabinet, and Robot system control software.

The Radian laser tracker [22], produced by the automatic precision engineering company of the
United States, was used to measure position points. Since the Radian laser tracker has a resolution of
0.1 μm in the effective working space and its measurement range can be up to 40 m, it is often used in a
high-precision measurement. The primary performance indicators of Radian laser tracker are shown in
Table II.

3.2. T-10 calibration process
Since Eq. (12) contains 25 parameter errors, according to the least square theory, more than 25 equations
need to be established, the more equations there are, the higher the accuracy of parameter identification
will be. However, too many equations will increase the amount of calculation. After comprehensive
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Table II. Primary performance indicators of Radian laser
tracker.

Relevant technical parameters of Radian laser tracker
Space measurement range 40 m
Horizontal angle measurement range ±320◦

Vertical angle measurement range +79◦ ∼ −59◦

System resolution 0.1 μm
Operation temperature −10◦ ∼ 45◦C
Working air pressure 225 ∼ 900 mmHg

consideration, 50 spatial positions were selected to establish the equation and 25 parameter errors were
identified by the least square method.

Fifty position points in the workspace of robot were randomly selected, and the actual positions
(xc, yc, zc) of robot terminal were measured by the laser tracker when the robot reached to these 50
position points. Then, the nominal positions (xn, yn, zn) were calculated through the Robot system control
software. The deviations between the actual position values and the nominal position values could be
computed for the 50 position points, respectively. The deviations values and joint rotation angle values
(θ1 ∼ θ6) of each point were substituted into the error model of Eq. (14) to identify the parameter errors.

The calibration process (see Fig. 3) were described as follows:
Step 1: The initial value of iteration was i = 1, and the error threshold was set at 0.1 mm. The Robot

system control software controlled the robot to randomly move to 50 position points in the working
space. At the same time, the Robot system control software recorded their θ1 ∼ θ6 and actual position
values (Pc) which were measured by the laser tracker.

Step 2: The θ1 ∼ θ6 of 50 points were substituted into the forward kinematics algorithm to calculate
the nominal position values (Pn

i) and the corresponding extended Jacobi matrix (J).
Step 3: The robot terminal errors (ei) were calculated through ei = Pc − Pn

i.
Step 4: The θ1 ∼ θ6 and ei of 50 position points were substituted in the error model Eq. (14).

Subsequently, the extended Jacobi matrix (Ji) was decomposed by the SVD algorithm Eq. (15) to
eliminate redundant parameters. The generalized inverse matrix (Ji

+) could be obtained by Eq. (16).
Step 5: The least square iteration method was used to estimate the linear equation (�Xi = �Xi−1 +

J+
i · ei), that is, the T-10 parameter error values (�Xi) were obtained, where “i” was the number of

iterations.
Step 6: The transformed 10-parameter error values (�Xi)plus the nominal MDH parameters into the

forward kinematic equation. Then, returned to Step 2 and Step 3 to recalculate Pn
i + 1 and recalculate

terminal errors (ei + 1).
Step 7: If ei + 1 was less than or equal to 0.1 mm, the transformed 10-parameter errors were outputs

(see Step 8); otherwise, the program would return to Step 4 and continue to execute the program.
Step 8: The T-10 parameter errors were compensated into the Robot system control software, to

complete the kinematic calibration.

3.3. Direct-10 (D-10) calibration
Since the robot kinematics model needs to meet the Pieper criterion, it is not able to compensate all the
identified parameters and it can only support the compensation of 10 parameters (�θ1∼6, �d4, �a1∼3).
Thus, the 10-parameter errors in identificated 25 parameters are used to modify the Robot system control
software for conducting compensation and calibration. This method is defined as direct compensation
for 10 parameters, abbreviated as D-10 parameters.

Kinematic parameter identification of robot was a nonlinear iterative process. In order to obtain higher
identification accuracy, 50 position points were randomly selected in the robot workspace. The kinematic
parameter errors were identified, and the corresponding 10 parameters were modified using the Robot
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Figure 3. The T-10 parameter identification process.

system control software to achieve compensation. After compensation, the Robot system controlled the
robot to move to another more 25 position points randomly in the workspace to confirm the effect of
compensation.

4. Results and discussion
4.1. Calibration test of ER6B-C60 robot
The MDH parameter errors of each joint were obtained (see Table IV) by calculating the 25-parameter
errors identification. In Table IV, we got 23 parameter errors after removing redundant parameters
of �d2 and �a6. The D-10 parameters were directly compensated through the Robot system control
software. The parameters of ER6B-C60 are shown in Table III.
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Table III. The main technical parameters of the two robots.

Efort ER6B-C60 Kawasaki RS010NA
Project parameter values parameter values
Number of joints 6 6
Maximum load capacity 6 kg 10 kg
Body weight 145 kg 150 kg
Installation Floor mounting Floor mounting

Range of joint rotation Joint 1 [−165◦, +165◦] [−160◦, +160◦]
Joint 2 [−76◦, +166◦] [−60◦, +135◦]
Joint 3 [−165◦, +75◦] [−180◦, +60◦]
Joint 4 [−180◦, +180◦] [−180◦, +180◦]
Joint 5 [−135◦, +135◦] [−85◦, +80◦]
Joint 6 [−360◦, +360◦] [−180◦, +180◦]

Table IV. Identification results of 25-parameter errors.

Joint �θ/◦ �d/mm �a/mm �α/◦ �β/◦

1 0.02083 0.53470 0.04155 −0.03796 –
2 −1.73232 – −0.77197 −0.04148 0.11612
3 1.85070 −0.55082 0.73684 0.02812 –
4 −0.24881 −2.76722 −0.31274 −0.00708 –
5 −2.83320 0.06210 0.62404 0.14762 –
6 1.82170 0.22057 – 0.01729 –
Note: ‘–’ represents an unrecognized parameter.

Table V. Identification results of T-10 parameters method.

Joint �θ/◦ �d/mm �a/mm �α/◦ �β/◦

1 −0.00822 – 0.09698 – –
2 −1.7421 – −0.06229 – –
3 1.8103 – −0.43142 – –
4 −0.01785 −1.9697 – – –
5 −2.8362 – – – –
6 1.7366 – – – –

According to the proposed T-10 parameter calibration method, 10-parameter errors which could be
compensated directly were calculated through transformation, and the results were shown in Table V.

By comparing Table IV to Table V, it indicates that the variation range of �θ1∼6 in the 10 kinematic
parameter errors directly compensated is not large, but the kinematic parameter errors of link offset
distance vary dramatically and the maximum difference (�d4) is around 1 mm. The T-10 parameter
calibration method mainly converts the remaining 13 parameter errors into the parameter errors of the
link offset distance.

After compensating 10-parameter errors of D-10 method and T-10 method, respectively, another 25
position points in the robot workspace were selected and measured by the laser tracker. Table VI contains
the position errors of any 10 position points in the robot workspace along the X-, Y -, and Z-axes of the
robot. It can be seen that the position errors of the robot in three directions are greatly reduced after
compensation. For example, before calibration, the maximum error of the robot’s Z-axis is over 16 mm;
however, after D-10 calibration, the Z-axis errors were solely about 1 mm. Using the T-10 calibration
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Table VI. Position errors of the robot along the X-, Y-, and Z-axes randomly 10 measurement position
points.

Point number Before calibration Calibration by D-10 Calibration by T-10
(mm) method (mm) method (mm)

X-axis Y-axis Z-axis X-axis Y-axis Z-axis X-axis Y-axis Z-axis
1 3.7186 0.3389 0.8615 0.6353 0.6097 1.3670 0.0927 0.0326 0.1438
2 3.5369 1.2080 0.3567 0.8411 0.3617 1.2663 0.0031 0.1940 0.1567
3 3.4968 1.4499 3.0435 0.9433 0.4444 1.1218 0.0817 0.0877 0.1658
4 3.7956 0.8483 3.1877 0.9954 0.6627 0.9951 0.0040 0.1732 0.2399
5 3.4685 0.3191 5.9344 0.4738 0.3549 1.0227 0.1494 0.1281 0.0415
6 2.7166 1.0216 8.1295 0.5695 0.0083 0.7095 0.0384 0.3673 0.2125
7 0.2404 0.2052 12.0132 0.1058 0.0904 1.1699 0.4242 0.2350 0.2407
8 2.0801 2.0504 9.0866 0.6644 0.3047 0.8392 0.3307 0.4997 0.1996
9 17.3122 8.2657 14.2204 1.0224 0.0483 0.9694 0.0452 0.1035 0.2714
10 14.7488 3.2266 16.7739 1.2674 0.0256 1.0043 0.0851 0.0642 0.3007

Figure 4. MAE (mean absolute error) of the 25 poisition points within the workspace.

method proposed in this paper, the Z-axis errors could be below 0.4 mm and the position accuracy was
effectively improved.

To further analyze and compare the position errors (PE) of the 25 position points, Fig. 4 displays the
MAE (mean absolute error) of the 25 position points under before calibration, using D-10 calibration
method and using T-10 calibration method. MAE reflects the average accuracy of the robot. Before cal-
ibration, the mean Z direction position error is the largest in the mean direction position errors, which
is 10.614 mm. After D-10 calibration, the mean position error in Z-axis error is reduced to 1.123 mm,
and the accuracy is improved to some extent. Finally, the proposed T-10 calibration method is applied
to the calibration of kinematics parameters of the ER6B-C60 robot, and the mean Z-axis error is fur-
ther reduced to 0.247 mm. The average PE (PE = √

X2 + Y2 + Z2) is reduced from 16.320 mm before
compensation to 0.413 mm by T-10 calibration method, and the positioning accuracy was improved by
97.47%. The experimental results showed that the T-10 calibration method can effectively improve the
absolute positioning accuracy of the robot and reduce the fluctuation of position errors.

In order to confirm the compensation effect of T-10 calibration method, another robot of the same
model robot (ER6B-C60) was selected for testing. The calibration result is shown in Fig. 5. The absolute
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Table VII. Identification results of Kawasaki RS010NA robot.

Joint �θ/◦ �d/mm �a/mm �α/◦ �β/◦

1 0.01426 – 0.31498 – –
2 0.04950 – 0.09971 – –
3 0.39140 – 0.25817 – –
4 −0.17465 −0.89467 – – –
5 −0.92945 – – – –
6 0.07887 – – – –

Figure 5. MAE of the 25 poisition points within the workspace.

positioning accuracy reached 0.404 mm, and the calibration results indicated that the T-10 calibration
method had the same compensation effect to the same model robot.

4.2. Calibration test of Kawasaki RS010NA robot
In order to verify the universality of T-10 calibration method, using the T-10 method proposed in this
study, calibration tests were conducted on different model (Kawasaki RS010NA) industrial robot. The
parameters of RS010NA robot are shown in Table III. The T-10 parameter errors were calculated, and
the results were demonstrated in Table VII.

After T-10 calibration, the 50 position errors of Kawasaki RS010N robot were statistically analyzed
from X, Y, and Z directions and compared with the values of before calibration, errors as shown in Fig. 6.

After calibration, the position errors curves in the X, Y, and Z directions all approaches to the zero
line, and their mean error is about 0.5 mm. The accuracy in the Z-axis is more obviously promoted than
that in the X-axis and Y -axis. The PE after calibration is shown in Fig. 7.

In Fig. 7, comparing with position errors before calibration, the error after calibration mainly fluc-
tuated within the range of ±1.2 mm. For more intuitive display, 50 position points were statistically
analyzed and statistical. The result from Table VIII indicated that the Z-axis error before calibration was
the largest. After calibration, the maximum Z-axis error was decreased from 7.24793 mm to 0.91804 mm
(reduced 89.92%). In addition, the standard deviation of Z-axis decreased from 2.26890 mm before
calibration to 0.39034 mm.
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Figure 6. The calibration of before and after 50 points in X, Y, and Z direction errors.

4.3. Position accuracy test
In the previous section, error compensation verification was conducted on 50 randomly sampled points,
and the results showed a significant improvement in the end-point positioning accuracy of the robot
after compensation. To further validate the effectiveness of this calibration method in improving the
accuracy of the robot in other positions in its workspace, the end-point positioning accuracy of the
Kawasaki RS010NA industrial robot was tested according to the specifications of “GB/T12642-2013

https://doi.org/10.1017/S026357472300108X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472300108X


Robotica 3577

Table VIII. Results statistics of 50 test points.

Direction Mean/mm Maximum/mm Standard
deviation/mm

Before After Before After Before After
X 1.47453 0.50037 5.54812 1.18521 1.95482 0.29340
Y 0.75471 0.53278 2.56532 0.95747 0.93756 0.36906
Z 3.82950 0.38695 7.24793 0.91804 2.26890 0.39034

Table IX. Average position value before fixed point compensation.

Point Theoretical position/mm Average actual position before
compensation/mm

x y z x y z
P1 965.6607 300.6489 515.6203 973.0886 306.3948 525.3373
P2 1217.1662 551.1526 767.0078 1227.9398 558.7088 776.1644
P3 1216.5330 48.1712 766.3737 1227.552 53.7302 777.5050
P4 713.2204 49.0693 263.1740 705.3447 55.1878 274.0659
P5 713.3463 551.6922 263.9914 705.3494 557.8093 274.7118

Figure 7. The calibration of before and after 50 points position errors.

Performance Specification and Test Methods for Industrial Robots” [23]. This experiment consisted of
three groups: pre-compensation position accuracy testing, direct 10-parameter compensation position
accuracy testing, and transformed 10-parameter compensation position accuracy testing.

The testing method is as follows: a square area is selected in the front of the robot’s workspace.
The theoretical position information of five test points is calculated and inputted into the robot’s upper
computer program in the format of teaching text. The theoretical point position data is shown in Table IX.
The robot is then controlled to move in a sequential order corresponding to the test points (Fig. 8 shows
the actual positions of the robot at the five test points). The robot stays at each position for 10 s, and the
actual positions of the five points are measured using a laser tracker. A total of 30 cycles are executed,
resulting in 30 sets of data with 5 points each, for a total of 150 measured position data points.
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Table X. Average position value after fixed point compensation.

Point Average actual positions after D-10
method (mm)

Average actual positions after
T-10 method (mm)

x y z x y z
P1 965.9846 299.5928 513.4325 965.3065 301.0657 516.1259
P2 1219.3398 551.8468 765.2464 1216.374 550.8265 767.2448
P3 1219.552 48.4465 763.4252 1215.37 47.9314 765.5899
P4 712.4559 49.9132 261.176 713.2136 49.2417 263.0496
P5 712.6559 550.9562 262.6248 713.4674 551.1348 264.7639

Figure 8. Actual location of five test points.

The first group of experiments is the precision testing of the test points before compensation.
Following the aforementioned steps, the positions of the test points before compensation are measured,
and the recorded data is shown in Table IX.

In the second group of experiments, the parameter errors identified are compensated using the D-10
method. The instruction poses for these five validation points are re-issued to the robot. The robot is
then operated in the same manner, repeating the cycle of motion 30 times. The actual positions reached
by the five validation points after compensation are measured using a laser tracker. The average position
for each measured point is shown in Table X.

In the third group of experiments, the parameter errors identified are compensated using the T-10
method. The instruction poses for these five validation points are re-issued to the robot. The robot is
then operated in the same manner, repeating the cycle of motion 30 times. The actual positions reached
by the five validation points after compensation are measured using a laser tracker. The average position
for each measured point is shown in Table X.

To better illustrate the advantages of the T-10 method, the position data before compensation, the
position data after compensation using the D-10 method, and the position data after compensation using
theT-10 method are processed. The deviations between these data and the theoretical position data in
the X, Y , and Z-axis directions are calculated. The results are shown in Table XI and Fig. 9(a–c).

To better illustrate the advantages of the D-10 method, the PE errors for the five position points are
calculated for each method. The average of the absolute values of the PE errors is also calculated. The
results are shown in Table XII and Fig. 9(d).

It can be seen from Table XI that before compensation, the error of the robot’s fixing point in the
X-axis direction can reach up to 11.019 mm, the error of Y -axis can reach up to 7.5562 mm, and the error
of Z-axis can reach up to 11.1313 mm. After compensation by D-10 method, the X-axis direction error is
reduced to 3.019 mm, Y -axis error is reduced to 1.0561 mm, and Z-axis error is reduced to −2.9485 mm.
After compensation by T-10 method, the deviation of the X-axis is reduced to 1.1628 mm, the Y -axis
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Table XI. Position errors of the robot along the X, Y, and Z axes.

Point Before calibration (mm) Calibration by D-10 method
(mm)

Calibration by T-10 method
(mm)

X-axis Y-axis Z-axis X-axis Y-axis Z-axis X-axis Y-axis Z-axis
P1 7.4279 5.7459 9.717 0.3239 −1.0561 −2.1878 −0.3542 0.4168 0.5056
P2 10.7736 7.5562 9.1566 2.1736 0.6942 −1.7614 −0.792 −0.3261 0.237
P3 11.019 5.559 11.1313 3.019 0.2753 −2.9485 −1.1628 −0.2398 −0.7838
P4 −7.8757 6.1185 10.8919 −0.7645 0.8439 −1.998 −0.0068 0.1724 −0.1244
P5 −7.9969 6.1171 10.7204 −0.6904 −0.736 −1.3666 0.1211 −0.5574 0.7725
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Figure 9. Actual location of five test points.

error is reduced to 0.5574 mm, and the Z-axis error is reduced to 0.7838 mm. Table XII shows that
after D-10 method compensation of the robot, the average value of the absolute PE error at five points
decreased from 15.1280 mm to 1.1546 mm, and after T-10 method compensation, the average value of
the absolute PE error at five points decreased to 0.4256 mm. Through these data, it can be seen that the
error of the robot is obviously reduced and the position accuracy of the robot is greatly improved after
the compensation by T-10 method.
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Table XII. The difference between the actual position PE value and the theoretical PE
value for each method.

Point Before calibration Calibration by D-10 Calibration by T-10
(mm) method (mm) method (mm)

P1 13.5133 1.667087 0.744857
P2 16.03153 3.035699 0.888692
P3 16.62007 4.284695 1.422656
P4 14.76808 2.502851 0.212705
P5 14.70702 0.933942 0.960269
P 13.5133 1.667087 0.744857

(a) (b) (c)

Figure 10. TCP test of Kawasaki ER6B-C60 robot. (a) Before compensation. (b) D-10 calibration. (c)
T-10 calibration.

4.4. Tool center point (TCP) test
TCP testing was conducted to further verify the effect of the calibration. Usually, the test of the TCP
rotating around thimble performs the robot’s dynamic precision, and it reflects the dynamic effect after
calibration. TCP testing is divided into three steps: (1) using the six-point method to calibrate TCP; (2)
carrying out the centering test of TCP; and (3) measuring the result of TCP winding test.

Before TCP testing, the values of the MDH parameter errors were calculated and compensated into
the Robot system control software. Furthermore, the TCP coordinate system was re-calibrated. The TCP
of robot was controlled to rotate around thimble with a certain angle. The robot calibration effect was
verified by measuring the error of TCP after rotation.

Without calibration, the ER6B-C60 robot TCP rotates along the Z direction of the base coordinate
system, and the maximum TCP error is 15 mm (see Fig. 10a). After D-10 calibration, the maximum
TCP error is about 2 mm (see Fig. 10b), while after T-10 calibration, the maximum TCP error is about
1 mm (see Fig. 10c). It indicates that T-10 calibration is more effective to improve the dynamic accuracy
of the robot. The TCP accuracy of Kawasaki RS007L robot has been improved from 5 mm to 1 mm (see
Fig. 11).

All the above experimental results show that compared with the D-10 calibration method, the T-10
calibration method could further improve the absolute positioning accuracy of the robot. As mentioned
earlier, the D-10 calibration method adopted the direct compensation of 10 parameter errors, which
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(a) (b)

Figure 11. TCP test of Kawasaki RS007L robot. (a) Before calibration. (b) T-10 calibration.

is difficult to compensate the errors of the other kinematic parameters. However, the T-10 calibra-
tion method converted all identified kinematic parameter errors into 10 parameter errors which can
be directly compensated by the Newton–Raphson method; therefore, it can indirectly realize full kine-
matic parameter error compensation and further improve the absolute positioning accuracy of the robot.
In the 29-parameter calibration model adopted by Nubiola, he also used the laser tracker to obtain the
actual error value of the robot; however, 1000 position points were measured in the entire measurement
process, and the calibration efficiency was low. In terms of compensation accuracy, the T-10 calibration
method proposed in this research only needs 50 points selected in the robot workspace, and obviously
the calibration efficiency was improved significantly. By converting to 10 parameters for compensation,
the actual compensation effect was similar as or even better than the effect proposed by the Nubiola’s
method.

5. Conclusion
To improve the absolute positioning accuracy of industrial robots without modifying kinematic structure
and requiring the opening of controller, an innovative calibration method to compensate all parameter
errors of 6-DOF industrial robots is proposed. The procedures of the calibration method are threefold.
Firstly, the robotic 25-parameter error model is established, in which all possible 25 parameter errors of
kinematics were considered. However, the robot structure may result in redundant parameters in the error
model, and therefore, SVD algorithm is adopted to remove these redundant parameters. Subsequently,
the error model without redundant parameters is transformed into a 10-parameter error model through
Newton–Raphson method. Finally, 10-parameter errors are identified using the least squares methods,
and the errors are directly compensated to the corresponding nominal MDH parameters. In order to
explore the compensation’s effect, some robot workspace position points (e.g., 50 or 25 points) are
randomly selected and the absolute positioning accuracy is measured by Radian laser tracker. And the
TCP test (rotating around thimble) is conducted to estimate the error. The entire experimental results
indicate that the T-10 method can greatly improve the absolute positioning accuracy of the robots.

The method proposed in this research has the following advantages. First, in the method, the opening
of the control system is not required, and parameters can be easily modified in the software of the upper
control. Second, without modifying the forward and inverse kinematics, all the kinematic parameter
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errors can be indirectly compensated, and the positioning accuracy of the robot can be effectively
improved. Finally, the measurement process is relatively simple.

Admittedly, the calibration methods should be improved in two aspects. For instance, in this study,
only the impact of kinematic parameter error is considered. To further improve the absolute positioning
accuracy, the non-kinematic parameters should be also applied to the model. Additionally, the influence
of measurement noise may impact the accuracy of parameter identification; therefore, measurement
noise should be considered in the future research.

Acknowledgments. Not applicable.

Author contributions statement. Pinguang Nie and Chengqi Meng were the experimental designers and executors of the study.
They completed the data analysis and wrote the first draft of the paper. Xuhong Chen and Bingqi Jia participated in the experimental
design and analysis of experimental results. Lin Chen and Haihong Pan were the framers and principals of the project, guiding
the experimental design, data analysis, paper writing and revision. All the authors read and agreed to the final text.

Funding statement. The author thanks the National Natural Science Foundation of China (No.51465005), Guangxi Innovation-
Driven Development Special Project (No.AA18118002), 2017 Nanning High-level Entrepreneurial and Innovative Talents
Funding Project for financial support.

Ethical statement. The authors declared that they have no conflicts of interest to this work. We declare that we do not have any
commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References
[1] Y. Wu, A. Klimchik, S. Caro, B. Furet and A. Pashkevich, “Geometric calibration of industrial robots using enhanced partial

pose measurements and design of experiments,” Robot. Comput. Integr. Manuf. 35, 151–168 (2015).
[2] T. Sun, B. Lian, S. Yang and Y. Song, “Kinematic calibration of serial and parallel robots based on finite and instantaneous

screw theory,” IEEE Trans. Robot. 36(3), 816–834 (2020).
[3] H. Wang, T. Gao, J. Kinugawa and K. Kosuge, “Finding measurement configurations for accurate robot calibration:

Validation with a cable-driven robot,” IEEE Trans. Robot. 33(5), 1156–1169 (2017).
[4] M. R. Driels and L. W. Swayze, “Full-pose calibration of a robot manipulator using a coordinate measuring machine,” Int.

J. Adv. Manuf. Technol. 8(1), 34–41 (1993).
[5] C. Li, Y. Wu, H. Löwe and Z. Li, “POE-based robot kinematic calibration using axis configuration space and the adjoint

error model,” IEEE Trans. Robot. 32(5), 1264–1279 (2016).
[6] W. K. Veitschegger and C.-H. Wu, “A Method for Calibrating and Compensating Robot Kinematic Errors,” In: Proceedings

of the IEEE International Conference on Robotics and Automation (1987) pp. 39–44.
[7] R. P. Judd and A. B. Knasinski, “A technique to calibrate industrial robots with experimental verification,” IEEE Trans.

Robot. Autom. 6(1), 20–30 (1987).
[8] S. Hayati and M. Mirmirani, “Improving the absolute positioning accuracy of robot manipulators,” J. Robot. Syst. 2, 397–413

(1985).
[9] H. Hage, P. Bidaud and N. Jardin, “Practical Consideration on the Identifification of the Kinematic Parameters of the Stäubli

TX90 Robot,” In: Proceedings of the 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico (2011)
p. 43.

[10] J.-M. Renders, E. Rossignol, M. Becquet and R. Hanus, “Kinematic calibration and geometrical parameter identification for
robots,” Robot. Autom. IEEE Trans. 7(6), 721–732 (1991).

[11] A. Y. Elatta and L. P. Gen, “An overview of robot calibration,” Inf. Technol. J. 3(1), 74–78 (2004).
[12] L. J. Everett and A. H. Suryohadiprojo, “A Study of Kinematic Models for Forward Calibration of Manipulators,” In: IEEE

International Conference on Robotics and Automation, 1988. Proceedings, vol. 792 (1988) pp. 798–800.
[13] A. Joubair and I. A. Bonev, “Kinematic calibration of a six-axis serial robot using distance and sphere constraints,” Int. J.

Adv. Manuf. Technol. 77(1-4), 515–523 (2014).
[14] M. A. Meggiolaro and S. Dubowsky, “An Analytical Method to Eliminate the Redundant Parameters in Robot Calibration,”

In: International Conference on Robotics & Automation (2000) p. 3609.
[15] G. Gao, G. Sun, J. Na, Y. Guo and X. Wu, “Structural parameter identification for 6 DOF industrial robots,” Mech. Syst.

Signal Process. 113, 145–155 (2017).
[16] L. Kong, G. Chen, Z. Zhang and H. Wang, “Kinematic calibration and investigation of the influence of universal joint errors

on accuracy improvement for a 3-DOF parallel manipulator,” Robot. Comput. Integr. Manuf. 49, 388–397 (2018).
[17] R. Wang, A. Wu, X. Chen and J. Wang, “A point and distance constraint based 6R robot calibration method through machine

vision,” Robot. Comput. Integr. Manuf. 65, 101–959 (2020).

https://doi.org/10.1017/S026357472300108X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472300108X


Robotica 3583

[18] F. Li, Q. Zeng, K. F. Ehmann, J. Cao and T. Li, “A calibration method for overconstrained spatial translational parallel
manipulators,” Robot. Comput. Integr. Manuf. 57, 241–254 (2019).

[19] A. Joubair and I. A. Bonev, “Kinematic calibration of a six-axis serial robot using distance and sphere constraints,” Int. J.
Adv. Manuf. Technol. 77(1-4), 515–523 (2015).

[20] A. Nubiola and I. A. Bonev, “Absolute calibration of an ABB IRB 1600 robot using a laser tracker,” Robot. Comput. Integr.
Manuf. 29(1), 236–245 (2019).

[21] C. H. Wu, “A kinematic CAD tool for the design and control of a robot manipulator,” Electr. Eng. Comput. Sci. 3(1), 58–67
(1984).

[22] S.-H. Ye, Y. Wang, Y.-J. Ren and D.-K. Li, “Calibration of robot kinematic parameters based on laser tracker,” J. Tianjin
Univ. 2, 202–205 (2007).

[23] Y. Shuping, J. Li and W. Haidan, GB-T12642-2013 Performance Specification and Test Methods for Industrial Robots (China
Standard Press, Beijing, 2013).

Cite this article: L. Chen, P. Nie, C. Meng, X. Chen, B. Jia and H. Pan (2023). “Robot 10 parameter compensation method based
on Newton–Raphson method”, Robotica 41, 3565–3583. https://doi.org/10.1017/S026357472300108X

https://doi.org/10.1017/S026357472300108X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472300108X
https://doi.org/10.1017/S026357472300108X

	Robot 10 parameter compensation method based on Newton"2013`Raphson method
	Introduction
	T-10 parameter calibration method
	Robot error modeling
	T-10 parameter identification algorithm

	Expermental verification
	Experimental platform
	T-10 calibration process
	Direct-10 (D-10) calibration

	Results and discussion
	Calibration test of ER6B-C60 robot
	Calibration test of Kawasaki RS010NA robot
	Position accuracy test
	Tool center point (TCP) test

	Conclusion


