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In this paper, recent numerical and analytical results of the 
author and others, concerning the stability of the solar system are 
presented. The results indicate that the actual planetary system could 
possibly have stable and bounded motion. 

In order to clearly distinguish the type of stability that will be 
referred to here, we will first discuss and define various types of 
stability of solutions of dynamical systems and, in particular, of 
gravitational systems. Perhaps one of the most stringent types of 
stability is asymptotic stability. This type of stability requires that 
the distance between two particles on neighboring solutions or orbits 
approaches zero as time approaches infinity. A weaker type of stability 
is Liapunoff stability. This type of stability requires that the 
distance between two particles on neighboring solutions can be made as 
small as desired as time goes to infinity, by adjustment of the initial 
conditions of the two solutions. An even weaker type of stability, 
often referred to as orbital stability, merely requires that the dis­
tance between two neighboring solutions or orbits can be made to remain 
as small as desired as time approaches infinity, by adjustment of the 
initial conditions. 

The first two of these types of stability are generally not en­
countered in gravitational systems. The third type is encountered in 
some gravitational systems, but in discussions on the stability of the 
major planetary system we usually do not need to require stability as 
stringent as orbital stability. 

Three somewhat weaker and less stringent types of stability may be 
defined as follows. The first type is often referred to as Laplacian 
stability. This type of stability requires that a solution for a system 
of particles have mutual distances bounded both from below and from 
above and that the particles have no close approaches or collisions and 
that no particle escapes to infinity. A second type of stability is 
referred to as the Komolgoroff-Arnol'd-Moser (KAM) stability. The KAM 
type of stability requires that a solution be represented by a quasi-
periodic function, possessing a finite number of non-commensurable 
basic frequencies. (If the frequencies were commensurable, then the 
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solution would be periodic.) A third type of stability is referred to 
as Poisson stability. This type of stability requires certain re­
strictions be placed on three of the osculating orbital elements that 
represent the orbits of the particles of the system. These three 
orbital elements are the semi-major axis, the eccentricity, and the 
inclination. One definition of Poisson stability places the restriction 
on these three elements that they have no secular trends. Another 
closely related deformation is that the functions of time that represent 
these three osculating elements be bounded functions both below and 
above. Some definitions of Poisson stability restrict their discussion 
to the semi-major axes, assuming that the eccentricity and inclination 
behave in a similar fashion to the semi-major axes. 

Laplacian stability, KAM stability, and Poisson stability, as they 
are defined above, are closely related in that they all insure bounded 
motion, and it is this property of bounded motion that is usually 
referred to in discussions of the stability of the solar system. The 
KAM stability is more stringent than the other two for it requires that 
the motion be represented by purely quasi-periodic functions. We will 
restrict our discussion here to bounded motion in either the Laplacian 
or Poisson sense. 

Many recent numerical results appear to show that for orbits of the 
planetary type there exists initial conditions for which the orbits of 
the planets have bounded motion with a lack of secular trends in the 
planetary semi-major axes, eccentricities and inclinations, at least for 
very long times. Cohen, Hubbard and Oesterwinter (1972) have recently 
provided a solution for the five outer planets by numerical integration 
over a period of one million years. Their solution shows no noticeable 
secular trends in these orbital elements, indicating that the motion of 
the outer planets is apparently bounded, exhibiting Laplacian and Pois­
son stability, at least for the one million year period. If secular 
trends d6 in fact exist, the one million year solution shows that they 
are so small that their detection would require a numerical integration 
over times very much longer than the one million year period. 

Using the method of surface of sections, numerical calculations 
have recently been made by Henon and Heiles (1964), Jefferys (1966) and 
Contopolous (1967). Their results confirm that the KAM type of sta­
bility exists for certain gravitational systems, and their results 
indicate that quasiperiodic motion is possible with masses that are at 
least as large as the planetary masses and perhaps much larger. 

The recent works of Harrington, Szebehely, Ovenden, Birn, Lecar and 
Franklin are related and all show that for systems of the planetary 
type, Laplacian stability can occur. Harrington (1972) and Szebehely 
(1972) show, separately, that if the planetary masses are small enough 
and their mutual distances are large enough, Laplacian stability can 
exist. Ovenden, et al (1974) shows that for small enough planetary 
masses and with mutual distances satisfying certain properties related 
to near-commensurabilities, Laplacian stability is possible. Birn 
(1973) and Lecar and Franklin (1974) show that for planetary masses 
small enough there are certain regions in the phase space which allow 
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stable motion in the sense of Laplace. Within these regions planetary 
orbits appear stable and outside these regions they appear unstable. 

The study that we have undertaken extends the solution of Cohen, 
Hubbard and Oesterwinter by increasing the values of the planetary 
masses (Nacozy, 1976 and 1977). It is hoped that a system having in­
creased planetary masses would partially and in some sense simulate the 
solutions with the actual masses over much longer intervals of time. 
For the solution with increased masses, the amplitudes of some of the 
periodic perturbations and the trends of the secular perturbations, if 
they exist, will be increased as long as the general character of the 
motion remains unaltered. In particular, third-order secular terms in 
the semi-major axes, factored by the third power of the masses, if they 
exist, should be apparent sooner if the planetary masses are increased. 
If third-order secular terms do exist they would occur in 1/1000 of the 
time if the planetary masses were increased by ten times. Since, as 
Kuiper (1973) has pointed out, the stability of the Jupiter-Saturn 
system is obviously the dominant criterion for the continued existence 
of the planetary system, we undertook a study in a general three-body 
problem consisting of Jupiter, Saturn and the Sun. The system utilized 
the actual mutual inclination of Jupiter and Saturn and the actual 
osculating initial conditions. The masses of Jupiter and Saturn were 
increased by a factor y so that the ratio of the mass of Jupiter to the 
mass of Saturn remained constant. The factor y was increased from 
y = 1 (the actual planetary masses) to y = 1000 (which gives Jupiter the 
mass of the Sun). Solutions were obtained by a numerical integration 
wherein regularization was employed for the closest pair and two dif­
ferent types of integration methods were used; one being an eighth-order 
Runge-Kutta and the second being a variable-order recurrent power series 
method. In the integration, various stepsizes were used in order to 
obtain an estimate of the global truncation error. In addition the 
energy integral of the system was monitored and its constancy was held 
to one part in 109 (Nacozy, 1977). 

For the mass parameter y less than about 29, our results show that 
the motions of Jupiter and Saturn are qualitatively similar to the one 
million year solution of the outer planets by Cohen, Hubbard, and 
Oesterwinter. As y is increased beyond 29, the system is altered sig­
nificantly and unbounded motion is immediately apparent. For y between 
29 and 100, Saturn is ejected from the system after about one or two 
thousand years, on a highly elliptical orbit. For y greater than about 
100, Saturn is ejected from the system much quicker on a hyperbolic 
orbit. The crucial result here is that there is apparently a range of 
values of y (y < 29) that provide only bounded and stable motion and a 
range of large values (y > 29) that provide only unbounded and unstable 
motion with a very sharp transition from the stable character to the 
unstable character for the value of y = 29. These results are related 
to the results of Henon and Heiles, Jefferys, Contopoulos and others 
using the method of surface of section where they show that quasi-
periodic and bounded motion exist for small values of the mass parameter 
and as the mass parameter is increased past a certain value they also 
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show a sudden disruption of the system and sudden transition from quasi-
periodic motion to non-quasi-periodic motion. 

All of the above mentioned numerical results indicate that the 
actual Jupiter-Saturn-Sun system has masses of Jupiter and Saturn that 
are much smaller than those causing breakup of the system. The results 
might imply that the actual Jupiter-Saturn-Sun system is stable in the 
sense of Laplace (and Poisson) probably at least for many millions of 
years and perhaps for very much longer times. 

Our results also may be placed in context with a result given by 
Szebehely (1977) and an additional analytical result that has been 
obtained recently by Nacozy and Kwok (1978) and Hadjidimetriou (1978). 
Szebehely has found that the Hill curve corresponding to the general 
three-body problem considering the Jupiter-Saturn-Sun system is closed 
around Jupiter and the Sun, excluding Saturn for the mass parameter 
Y < 14. As the mass parameter is increased beyond 14 the Hill curve 
opens allowing Jupiter, Saturn and the Sun to have the possibility of an 
interchange and hence a subsequent Saturn ejection. Our result, showing 
that Saturn is ejected when the mass parameter y is increased beyond 29 
shows that even after the Hill curve opens, bounded motion can still 
persist for larger values of the mass parameter. This result is ana­
logous and possibly an extension of similar results in the circular 
restricted problem of three bodies where a zero-velocity curve around 
one of the primaries can open as the mass parameter y increases while 
bounded motion persists for the infinitesimal particle until the mass 
parameter is increased further. The additional result recently found by 
Nacozy and Kwok, and separately by Hadjidemetriou, shows that the 
periodic orbit that is close to the actual Jupiter-Saturn-Sun system 
having the commensurability ratio of 5:2 and having the actual masses of 
Jupiter, Saturn and the Sun, is stable in the linear sense. As we 
increase the mass parameter and obtain the family of periodic orbits 
with the mass parameter as the parameter of the family, we obtain 
stability up to the mass parameter y = 39. For y > 39, instability 
occurs. This result shows that a periodic orbit can persist and remain 
stable, for larger values of the mass parameter than that which causes 
breakup for a non-periodic (but possibly quasi-periodic) orbit. 
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