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Abstract

Whilst the Mal'cev product of completely regular varieties need not again be a variety, it is shown that
in many important instances a variety is in fact obtained. However, unlike the product of group
varieties this product is nonassociative.

Two important operators introduced by Reilly are studied in the context of Mal'cev products. These
operators are shown to generate from any given variety one of the networks discovered by Pastijn and
Trotter, enabling identities to be provided for the varieties in the network. In particular the join
O v BG of the varieties of orthogroups and of bands of groups is determined, answering a question of
Petrich.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 07.

Completely regular semigroups are semigroups which are unions of groups. They
form a variety CR of unary semigroups, determined by the identities xx~lx = x,
(x'1)'1 — x and xx'1 = x'lx.

Given subvarieties U and V of CR, their Mal'cev product U ° V consists of those
completely regular semigroups S which possess a congruence p whose quotient
S/p belongs to V and which is over U, that is, each class ep(e2 = e) belongs to
U. (This is a specialization of Mal'cev's original definition [5].) In general U ° V is
a quasivariety.

Two such products were considered (in different terms) by Reilly [10]: for any
subvariety V of CR, he put V+G°V and \ p = B°V, where G and B denote the
varieties of groups and of bands, respectively. The former is always a variety,
whereas Gp, for example, is not; it consists of all '£-unitary' completely regular
semigroups, whose homomorphic closure is the variety O of orthogroups (ortho-
dox completely regular semigroups).
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228 P.R.Jones [2]

The main results of this paper are as follows. Let S denote the variety of
semilattices. If S c U but S c V, then U°V is never a variety, unless it is
degenerately so, that is, unless U°V = U. If S c V, then U°V = (U n CS)°V,
where CS is the variety of completely simple semigroups. Since S c U if and only
if U c CS, it follows that these are the only cases of interest. (This is Theorem
3.1). If V c CS also, then (Theorem 4.1) U° V is always a variety (again in CS). If
V c CS, then (Theorem 5.1) U°V is a variety whenever U c RG, the variety of
rectangular groups (that is, completely simple orthogroups). The most difficult
case is RG ° V itself. Whether U ° V is always a variety when V c CS we do not
know.

From Theorem 5.1 it follows that V^ = RB°V is always a variety when
V c CS. Thus the example Gp is the exception rather than the rule. Another
interesting case is that of RG°B: bands of rectangular groups form a variety. This
variety is used to show that the Mal'cev product is nonassociative even when all
products are varieties (Proposition 6.6).

In the last sections the operators ( - ) + and {-)p are studied in more depth. In
Section 6, simple identities for \ p are given in terms of those for V. Identities for
V+ are given as an alternative to those given by Reilly.

Another purpose of this paper is to correlate these operators with 'networks' of
subvarieties of CR which were obtained by Pastijn and Trotter [7] by considering
fully invariant congruences on the free completely regular semigroup F on a
countably infinite set of generators. From any such congruence p (with associated
variety Vp) one such descending network is obtained by iterating the operations
P "~* Pmin a n d P ~~* P™1" (see Section 7) and taking intersections.

We show in Section 7 that, for p <z2, (that is, for Vp D S), we have VPm.n = Vp
+

and Vpmin = Vp
p, and we provide identities for each variety in the corresponding

network of varieties ascending from Vp; the joins in the network (corresponding to
the intersections mentioned above) are also described. In particular, the join
O V BG of the varieties of orthogroups and of bands of groups, which Pastijn and
Trotter showed belongs to the network ascending from S, is just O + n BG^, and
consists precisely of the subdirect products of orthogroups and bands of groups,
the defining identities being a consequence of the earlier results. This answers a
question of Petrich [8].

1. Completely regular semigroups

In the sequel 'completely regular' will generally be abbreviated to 'c.r.'.
Let S be a c.r. semigroup and let x e S. Then x'1 is the inverse of x in the

subgroup Hx. The set of idempotents of S will be denoted Es. Other notation and
terminology will generally follow Howie [3].
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[ 3 ] Mal'cev products of varieties 229

The lattice of subvarieties of any subvariety V of CR will be denoted
Various varieties were defined in the introduction and others will be defined later
when needed. We briefly discuss here the subvarieties of RG, the variety of
rectangular groups (completely simple orthogroups), for future reference. The
varieties of left zero semigroups, of right zero semigroups and of rectangular
bands are denoted LZ, RZ, and RB, respectively.

The lattice SC(RG) is the direct product of ^f(RB) and ^(G), according to
Figure 1. For any variety H of groups, the varieties LtH, RtH and RH consist of
those left groups, right groups and rectangular groups whose subgroups belong to
H; T denotes the trivial variety.

FUG

RB

FIGURE 1

Defining identities for many subvarieties of CR may be found in [8], to which
the reader is referred; [7] contains a fairly comprehensive bibliography.

In the remainder of this section we briefly discuss congruences on regular and
c.r. semigroups. Let S be a regular semigroup. Its lattice of congruences will be
denoted A(S). The trace trp of a congruence p is its restriction to Es; its kernel
kerp is the union of the classes ep, e e Es. Two important properties a con-
gruence p may possess are:

(i) p is idempotent separating, that is trp = i (the identical relation), and
(ii) p is idempotent pure, that is, kerp = Es.
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230 P.R.Jones [4]

The largest idempotent separating congruence n may be described as the largest
congruence contained in Green's relation Jff:

fi= {(a, b) e S X S: xayJfxby for all x, y in Sl},

or, upon specializing the characterization by Hall [1, Theorem 5] to a c.r.
semigroup, by:

jti = {(a, b) G 5 X S: a0 = b° and a~lea = b~leb for all e in Es, e < a 0 } .

The largest idempotent pure congruence T is the 'syntactic' congruence on Es:

T = {(a,b) e S X S: xay G Es if and only if xby G Es, for all x, y in S1}.

Whilst this description is not very useful in practice, the following simple
description of T O 3) on a c.r. semigroup will be used in Section 6.

LEMMA 1.1. Let S be a c.r. semigroup. Then

T n 3= {(a,b) e S): (xay)(xby)~l G Esforallx, yinS).

PROOF. We first prove that for any ^-related elements a and b of S, if a, ab~l

and a°b° e Es, then b e Es. For we may write b = b{ab~l) = ba°b~l (since
a*"1 G £ 5 n Lfc), whence b2 = ba%'lbaob-1 = ba^bWb-1 = b (since a°6° e
Es n * a ) .

Now let (a, b) G ̂ , with (xayXxby)'1 e £ s for all x, y in S. Let u, v e 51

and suppose that nay e £s. We will show that MZW e £s. Put c = uav and
J ^ (@d). Then

y1(d^d^d-1 = (d°cdo)(dodd°yl = (douavd°)(doubvd°y

since d°u, vd'1 ^ S. But docd°Jf?d (since £>c = Z)d is completely simple), so
rf = ^°c^° and J ° = dd~l = dQ(cd-1), whence a T 1 e £5. Similarly

since C°M, ui/-1 G S. Again c ^ - ^ c 0 ^ 0 , whence c°c?0 = a/"1 G £ S . By the first
paragraph of the proof, d e Es, as required. A similar argument shows that if
ubv G Es, then uav G £ s . Hence (a, b) G T PI QI.

Conversely, l e t ( a , Z > ) G T n ^ and let x, y G S. Since T is a congruence, we
have jcoyTxfey and (jcay)(xii>')"1T(A:Z)y)0 e Es, whence, since T is idempotent
pure, {xay){xby)~l G £ S .

The next, well known, result will be used frequently.

LEMMA 1.2. Let S be a regular semigroup and let a, /? G A(S), aCjS. 77ie«
tra = tr/? [kera = ker/3] if and only if ft/a is idempotent separating [idempotent
pure] on S/a.

https://doi.org/10.1017/S1446788700028226 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028226


[si Mal'cev products of varieties 231

When S is c.r. and p e A ( S ) , then kerp = {x: xpx0}. Thus p is idempotent

pure if and only if p n ^ F = t. The following technical lemma, false for con-

gruences in general, will be needed in the sequel.

LEMMA 1.3. Let S be a c.r. semigroup and let a j e A ( S ) , i J c r f i i Then

ker(a V /?) = kera.

PROOF. Suppose that x e ker(a V /?), that is, (x, x°) e a V /?, and put e = x°.
There is a sequence x = x0, xl,...,xn-e with each (*,_!, JC,-) e a U /? and
(since x = exe) with each xt e eSe. The proof is by induction on n.

For n = 1, either xae or x/?e, the latter case yielding x = e, since /? is
idempotent pure.

Assume that the existence of any shorter such sequence implies xax°. Now if
x/3xv then xx e De n e5e = i/e, so x = xx and the induction hypothesis applies.
Hence we may suppose that xaxl and, similarly, that xn_lae. Now x^aeaxn^Y,
so applying the induction hypothesis to the sequence xv x®x2x±,..., x°xn_xXi,
x® yields x^x®, whence xaxfae.

2. Mal'cev products

For any variety A of universal algebras Mal'cev [5, Chapter 32] defined the
product U o V of subvarieties U and V of A to consist of those algebras A in A
which possess a congruence p over U, (that is, each p-class which is a subalgebra
belongs to U), such that A/p belongs to V. (This specializes to the definition in
the introduction for c.r. semigroups.) He showed that the product of (quasi-)
varieties is always a quasi-variety (that is, defined by implications) and is thus
closed under subalgebras and direct products. Thus in any particular instance
only homomorphic closure need be shown in order to prove that the product is
again a variety. For varieties of groups, for example, this is a consequence of
'congruence permutability' (see Lemma 2.3 below).

We first present some general remarks on products of universal algebras. For
any sub variety V of A, p v will denote the least V-congruence on any A e A. It is
obvious that U°V = {A e A: p v is over U}.

LEMMA 2.1. Let U, V be subvarieties of A, let A eU»V, and let p be a
congruence on A. If a is a [the least] V'-congruence on A, then (a V p)/p is a [the
least] \'-congruence on A/p. Thus if (a V p)/p is over U, then A/p eU»V.
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232 P. R. Jones [6]

PROOF. The unbracketed statement is immediate from the isomorphism theo-
rem:

(A/p)/(a V p/p) sA/aV ps (A/a)/(a V p/a) e V.

If a is the least V-congruence on A, and if m is the congruence on A,
containing p, which induces the least V-congruence on A/p, then a c m, since
A/m = (A/P)/(TT/P) G V, so that (a V p)/p c m/p. Equality follows from the
previous paragraph.

We now concentrate on subvarieties of CR (although some of the following
results may be generalized to ' polar' varieties of universal algebras (see [5])).

LEMMA 2.2. Let S be a c.r. semigroup and let a, p e A(S), p c a. For any
idempotent e of S, the class (ep)(a/p) of S/p is the quotient of the class ea modulo
the restriction of p. Thus if a is over U, then so is a/p.

Hence if U, V e if (CR), then U ° V is closed under quotients modulo congruences
contained in p v .

PROOF. The statements in the first paragraph are obvious. If S e U ° V, and if
p c p v on S, then, since p v is over U, so is py/p, and so by the previous lemma
we have S/p e U°V.

The general form of the next lemma is proven in [5]. We sketch the proof for
completeness.

LEMMA 2.3. Suppose that p and a are permuting congruences on the c.r.
semigroup S, and let e e Es. Then (ep)(a V p)/p = e(p n a)(a/p n a). Thus if
a is over U, then so is (a V p)/p.

Hence if U, V e £P(CR), then U°V/j closed under quotients modulo congruences
which permute with pv .

PROOF. Suppose that a and p permute, that is, a V p = ap = pa. If (xp, ep) e
(a V p)/p, then (x, e) G a V p, and so xpaae for some a in S. The assignment
xp -* a(p n a) may be verified to be an isomorphism between the specified
classes.

If a is over U then, by the previous lemma, so is a/p n a, whence (a V p)/p
is also, via the isomorphism.

The final statement again follows from Lemma 2.1.
The lemma will be applied in the following situation.

LEMMA 2.4. Let S be a c.r. semigroup. Then any idempotent separating con-
gruence permutes with any congruence contained in 3).
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[71 Mal'cev products of varieties 233

PROOF. Suppose that p is idempotent separating, that is, p c JP, and suppose
that a c 3). Let xpaab in 5. Put e = x°(= a0) and / = b°. Since aab, it follows
that ea/, and since p, a c S), it follows that each element belongs to the
completely simple subsemigroup Dx. Hence

= x.b = bb° = b(fafy1(faf)pb(faf)~1(fxf)aa(eaey\exe) = a

Therefore p« c ap, and so p and a permute.

COROLLARY 2.5. Let U and V e ^f(CR), U c CS. 77H?W U»V« closed under
idempotent separating quotients.

PROOF. If S e U° V, then p v is over U, so p v c ^ .
Next we prove another general lemma.

LEMMA 2.6. Le/ S be a c.r. semigroup and let a, p e A(5), wifA a c
p f l S = i . /or a/iy finite set {x1? . . . , xn} o/ a V p-r elated elements of S, there is
a set {av ..., an} of a-related elements of S such that xtpa^, 1 < / < n. If any x{

is idempotent then a, is idempotent.

PROOF. The proof is by induction on n. The case n = 2 is equivalent to
a V p ~ pap, so it is sufficient to show that apa c pap. Suppose that xaapbay,
and set c = (xbx)°x(xbx)°, d = (yay)°y(yay)°. Then cp(xax)°x(xax)° = x
(since x@>a), and dpy, similarly. Note that c, d e Dxy. Now ca(aba)°a(aba)° =
(bab)°b(bab)°ad, the equality following from triviality of p on Dxy.

Suppose now that n > 2 and that the statement is true for all sets with fewer
than n elements. Let {xx,...,xn} c xx{a V p). Applying the hypothesis to the
subset {x2,...,xn} yields a set ( j ^ , . . •, yn) of a-related (and thus ^-related)
elements such that xtpyt, 2 < / < «; and from the set {xx,x2} is obtained
{zv z2}, with x1pzlaz2px2.

Now for each /, 2 < / < n, we have zlaz2py2ayj, so from the first paragraph of
the proof there exist c,, dt in D such that z^pc^d^y^ Since all the c,'s are p-
and ^-related, they are in fact equal. Putting ax = c2 and a, = J;, 2 < / < «,
yields an appropriate set of a-related elements.

Finally, if any x, = xf, then atpaf, whence a, = af.

COROLLARY 2.7. Let V and \ ^ i?(CR), U c CS. Then U°V w
quotients modulo congruences disjoint from 2). Hence U° V is a variety if and only if
it is closed under quotients modulo congruences contained in 3i.
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PROOF. Let S e U « V and put a = pyQQ>. If p e A(S), with pC\@= i,
then by the lemma any finitely generated c.r. subsemigroup of an (a V p)/p-class
of S/p is the image of a c.r. subsemigroup of some a-class of S, under the natural
homomorphism. Thus since a is over U, so is (a V p)/p, and Lemma 2.1
completes the proof of the first statement.

The second now follows from the isomorphism

S/p=(S/pn®)/(p/Pn$>),

since Si on S induces 3) on S/p n 3s.
Combining the results of this section yields the following technical, but specific,

criterion for closure, which will be applied in Sections 4-6. The restriction
U c CS is unimportant, as Theorem 3.1 shows.

PROPOSITION 2.8. Let U and V G ^ ? ( C R ) , U C CS. Then U°V is a variety if
and only if for each S £ U°V, for each 2-class D of S, and for each congruence
p c S whose restriction to D is idempotent pure, (pv V p)/p is over U on D/p.

PROOF. Necessity follows from Lemma 2.1. Conversely, let S e U ° V , put
a = pv(c @) and suppose that p e A(5). By Corollary 2.7 it may be assumed
that p c S>. TO show that (a V p)/p is over U on S/p, it is therefore sufficient to
show the same on D/p for any S-class D of S. For such a D, let F be the 'filter'
it generates, that is, F = [x e S: Dx^ D}. Since the restriction of a to F is
again the least V-congruence on F and since e(« V p) c F for any e e D, we
may assume in fact that S = For, equivalently, that D is the minimum ^-class of
S.

It is well known that Jf on D extends to the congruence Jj?= J U i o n S.
Since 3fP is idempotent separating, so is p n Jtf, whence, by Corollary 2.5, we
have S/p n Jpe U° V. But S/p = (S/p D J^)/(p/(p n Jf)), where p/p n M'
is idempotent pure on the ^-class D/p n Jif (since kerp D D = ker(p n Jf) n £>,
where ker.P?' contains D). If we apply the hypothesis to this .©-class of S/p C\ 3?,
we see that the induced congruence (pv V (p/p C\Jf))/(p/p njf?) is over U
on (S/P n J^)/(p/p n .#) , where p v = (a V (p n ^ ) ) / ( p n .#) , by
Lemma 2.1, so that p v V (p/p n # ) = (a V p)/p n Jf\ When we identify
( 5 / p n / ) / ( p / p f i / ) with S/p, the quotient congruence above becomes
(a V p)/p. .

Note that the restriction of p v to D will not, in general, be the least
V-congruence on D itself.

Finally we specialize a result from the proof of [5, Chapter 32, Theorem 8].
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RESULT 2.9. For any U, V and W in ^ ( C R ) , we have

Uo(VoW) c (U°V)°W.

Sufficient criteria for associativity are given in the theorem cited. In Proposi-
tion 6.6 we shall see that the Mal'cev product is not associative on JSP(CR), even
when all partial products are again varieties.

3. Some special cases

First we show that only products whose first factor is a variety of completely
simple semigroups are of interest.

THEOREM 3.1. LetV,\
(i) / / V c CS, then U°V = (CS n \J)o\ for any U.
(ii) If V Q CS and U c CS, then U°V cannot be a variety except in the

degenerate instances when U ° V = U.

PROOF, (i) If V c CS, then S c V, so on any c.r. semigroup S, py <z2d = ps.
Thus if S e Uo V, so that p v is over U, then p v is over CS n U.

(ii) If U c CS, then, again, S c U. In particular, U contains the two-element
semilattice Y = {0,1), 0 < 1. Suppose that I G U - V , T <£ U. Then Y X T e
U°V and consists of the two ^-classes {0} X T and {1} X T. Now the Rees
quotient A modulo the ideal {0} X T does not belong to U, since T does not, and
the only V-congruence on A is the universal congruence. Thus A € U°V, and so
U ° V is not a variety.

In the next two sections we shall consider separately the cases U , V c CS and
U c CS, V c CS.

Next we consider some products U°V, U c CS, for which U and V are
particularly special. First note that for any variety H of groups, H ° RB consists of
all completely simple semigroups whose subgroups belong to H. It is easily seen
to be a variety, which we shall denote CS(H).

For any variety U c CS, U ° S consists of all c.r. semigroups whose .©-classes
belong to U. Reilly [10, Theorem 4.4] showed that U ° S is a variety. In particular,
CR(H) = CS(H) o S is the variety of all c.r. semigroups whose subgroups belong
to H, and CS ° S is, of course, just CR. (Thus CS <> V = CR whenever S c V.)

Next we treat the cases U = G and U = RtG (and also U = LtG by duality). It
is obvious that a congruence p on a c.r. semigroup is over G or RtG if and only if
p is contained in Jif or ^ , respectively. Since JC and S% are equivalences they
contain greatest congruences Jfh(= p.) and & respectively. Thus the following
descriptions apply.
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LEMMA 3.2. L e ( V e jgf(CR). Then
(i)G<>V = (S: p v c j f } = (S: S/n <= V},

(ii)RtG°V = (5: p v c <#} = (S:

As defined in the introduction, G ° V = V +. That V + is a variety was shown by
Reilly [10, Lemma 3.2].

PROPOSITION 3.3. Let\ & JS?(CR). Then RtG° V, LtG°V and G°\ are always
varieties.

PROOF. It suffices to prove that RtG°V is a variety, since G = RtG n LtG. In
view of Lemma 2.1 and the above discussion, it is enough to show that for any
congruence a c St on a c.r. semigroup S, we have (a V p)/p c i% on S/p for
any congruence p on 5.

So let x, y e 5, with (xp, jp) e (a V p)/p, that is, x(a V p)_y. Then there is
a sequence x = x0, xl,...,xn= y oi elements of S with each (*,-_!, x,-) e a U p.
Now if x,_!ax,, then x,_x^x, and {xj_lp)^(xip) in 5/p. Otherwise x ^ p = xtp,
so (xp)^(yp) in S/p, as required.

Properties of congruences over groups, left groups, right groups and completely
simple semigroups are discussed for regular semigroups in general in [6].

Similar behaviour is provided by \ p = B° V (= RB° V when S c V, which by
Theorem 3.1 is the only case of interest). A congruence p c 2 is over RB if and
only if it is idempotent pure, and there is a largest such congruence T C\ 2. Thus
when S c V, we have Vp = {S: S/r n S e V ) . Properties of V+ and Vp will be
studied further in Sections 6 and 7.

In general there may be no greatest congruence over U on a c.r. semigroup. For
example, let S be a completely simple semigroup. Then S£ and £% are each over
RG on S, but their join, the universal congruence on 5, is not over RG if S is not
itself in RG. We will show, however, that RG ° V is a variety whenever S c V.

4. Products of completely simple varieties

Throughout this section 'completely simple' will be abbreviated to 'as.'.

THEOREM 4.1. Let U and Veif (CS) . Then U°V is again a variety (in
•SP(CS)).

PROOF. By Proposition 2.8 it is sufficient to consider closure under idempotent
pure quotients. So let S e U°V, put a = pv and let p be an idempotent pure
congruence on S. By Lemma 1.3, ker(a V p) = kera. Thus for each e in Es, we
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have e(a V p) n He = ker(a V p) n He = kera n //e = ea O //e. Hence if a is
over CS(H) for some variety H of groups, then so is a V p and therefore also
(a V p)/p. Hence CS(H)° V is a variety.

Next, if U is any subvariety of CS and H = U n G, then H c U c CS(H) and
G n CS(H) = H, so by modularity of JS?(CS) (see, for example, [2, Corollary
3.6]), we have U = (U V G) n CS(H), whence U° V = (U V G)° V nCS(H)«V.

Without loss of generality it may be assumed, therefore, that U contains G. The
cases U = G, U = LtG and U = RtG having been treated in Proposition 3.3, it
may be further assumed that U contains RG.

Now if V c G, then either L Z c V o r R Z c V, whence either u c « o r « c y
and U»V = (U n RtG)°V or (U n LtG)°V, respectively. Thus we may assume
that V c G. But then for any e in Es, we have ea = kera = ker(a Vp) =
e(a V p). Thus a V p, and therefore (a V p)/p, is over U, so S/p e U°V, from
Lemma 2.1.

5. Products U° V with U c CS and S c V

In view of Theorem 3.1 and the results of Section 4, this is the remaining
situation of interest. Whether every such product yields a variety we do not know.
The main result is the following, the most difficult case being U = RG itself.

THEOREM 5.1. The product U°V is a variety whenever U c RG and S c V, and
thus whenever U c O and S c V.

PROOF. We apply Proposition 2.8. Let S e U°V, put a = p v ( c 9), let D be
a .©-class of S and let p e A(S) be contained in Sd and idempotent pure on D. It
remains to show that (a V p)/p is over U on D/p. Arguments similar to those of
the previous section permit the assumption that G c U. (We omit the details.)
The cases U = LtG, U = RtG and U = G were treated in Proposition 3.3. Only
the case U = RG therefore remains. This case is an immediate consequence of
Proposition 5.3 below, which depends on the following lemma.

LEMMA 5.2. Let D be a completely simple semigroup and suppose that Ax,
A2,...,An are mutually disjoint orthodox subsemigroups of D with the properties:

(i) {R e D/9t: R n At± 0 } = {R e D/0t: R n A} ¥= 0} for alii, j ;
(ii) For each i, 1 < / < n, there exist at e At and bt e Ai+1 such that La U Lb_

is orthodox.
Then D is orthodox, that is, a rectangular group.
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PROOF. We will prove this for n = 2 only, since a simple induction then
establishes the general result.

Let e & AlC\ ED, let / e A2 n ED, and, using (i), choose idempotents g and h
in Rf n Lai and /?^ O L6j, respectively. Then e/ = eghf. Since ^ is orthodox, eg
is an idempotent (in La ) whence, by (ii), egh is an idempotent (in Lbi). By (i)
again, A2 meets the J^class #eg>,, and so contains egh. Hence eghf e £ c , as
required.

This lemma was proved jointly with T. E. Hall.

PROPOSITION 5.3. Let D be a completely simple semigroup and let a, p e A(Z)),
a ouer RG and p idempotent pure. Then a V p is over RG, whence

(a V p)/p w also.

PROOF. The proof is based on the observation that if apb, then La U Lb is
orthodox. For since a°pb°, we may assume that a, b e £D, so if e e La and
/ G Lfr are idempotents, then e/ = eafbpeabfb = eabpea = e, whence ef e ED

since p is idempotent pure.
Now let (e,f) e a V p, e, / e £D. If (e, f) € a, then there is a sequence

e = eQafopelafl • • • enafn = / of idempotents of D. For each j , 0 < j ^ n, put
/?v = U{(eye,)°a: 1 < / < « } . If R is an ^-class of D, then .R n (eye;)

0« = (R n
(e7.eA)°a)(eye1.)° for all _/, A: (since eye,^e, for all 7). From the above sequence is
obtained the new sequence (eye0)0a(eJ/0)0p(^e1)0«(e/1)0 • • • {ejenf<ejfnf•
Thus the distinct classes (e^)0** satisfy the hypotheses of the lemma, whence Rj
is orthodox for each j .

Note that ej, fj G RJ for each / By applying the dual of the lemma to the
distinct sets among the R/s, a similar argument shows that 1){R/. 0 <y < «} is
orthodox. Thus ef (= eQfn) is idempotent.

One case of particular interest is V = B. In that case we write BU for U = B,
the variety of bands of IJ-semigroups. Thus B( - ) is a well defined operator on
£?(O). (But note that BU = B(U n CS)). For example, BG (= B+) is the well
known variety of bands of groups. The following corollary was discovered jointly
with Hall and motivated the study of the general case.

COROLLARY 5.4. Bands of rectangular groups form a variety.

The B( —) operator will be discussed further at the end of the next section.
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6. The operators ( - ) + and ( - )

Recall that for any subvariety V of CR, we have V + = {S: S/\x <E V} = G°V
and Vp = (S: S/r e V ) = B<>V. When S c V, we have \ p = (5: S/T n 3) e
V}, and so it follows from Theorem 5.1 that Vp is a variety. The following direct
proof of this fact is included for its simplicity.

PROPOSITION 6.1. Let S c V. Then Vp is a variety.

PROOF. Let S e V p (so that p v c T n 3>) and let p e A(S). By Lemma 1.3,
ker(pv V p) = kerp, so (pv V p)/p is idempotent pure on S/p. An application
of Lemma 2.1 completes the proof.

Suppose that V is determined by the identities M, = vt, i e /, where ut =
«,•(*!,..., *„) and Vj = VjiXi,..., xn). Then we write V = [w, = t>,: / e / ] . In the
sequel any new variables x, y,... appearing in identities will be presumed
different from xlt..., xn.

RESULT 6.2. [10, Theorem 3.9]. / / V = [u,, = v,\ / G / ] , then V + = [M(° = i>°,
(XM,^)0 = (x^.j)0: i G / ] .

This result is based on the description of n as Jfb. Identities for RtG°V and
LtG°V may be provided by using similar descriptions of ^ b and SCb. (See
Section 3.) Identities for V+ will now be derived from the following alternative
description of ju. Whilst each identity is more complicated, the set has the virtue
of having the same cardinality as the defining set of V. Thus V+ is determined by
at most as many identities as is V.

PROPOSITION 6.3. Let S be a c.r. semigroup. Then jit = {{a, b): a~l{a°ea°)Qa =
b-\b°eb°fbforalleinEs).

PROOF. Denote the relation on the right by m. We use the description

fi = {(a, b): a0 = b° and a~lea = b~leb for all e e Es, e < a0}

from Section 1.

If anb and e e Es, then a ' ^ a ' W 0 ) 0 ^ " 1 ^ 0 ^ 0 ) 0 ^ , and so these elements are
^related. But each is an idempotent, so they are equal and (a, b) e IT.
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Conversely, let (a, b) G m. First, put e = a0. Then a0 = a~la°a =
b'\boa°b°)ob, so a0 = b°a°. Similarly, putting e = b° yields a'l(aob°ao)°a = b°,
so b° = b°a° = a0.

Next if / G Es and / < a0, then / = (a°fa0)0 = (b°fb°)°, so a^/a = Z>->.
Thus a/xfe, as required.

The following corollary is obtained in the same way as Result 6.2.

COROLLARY 6.4. / / V = [u, = u,-: i G / ] ,

Now identities for Vp will be given (for S c V) based on the description of
T C\ 3) va. Lemma 1.1. Again the details are omitted. (That 'u^v/ follows from
the fact that if S c V, then w, and vi involve the same variables.) In the sequel,
an identity of the form u = u° will be expressed as 'u e £".

COROLLARY 6.5. Let V = [w, = o,: i e / ] . Then \ p = [(xM,jO(xi>,.y)-1 G E:
i G / ] .

Thus \ p , too, is determined by at most as many identites as is V.
Many further properties, particularly of the ( - ) + operator, are discussed in

[10]. We complete this section by considering the relationship between the (-)p

operator and the B( - ) operator introduced in the previous section. Specializing
Result 2.9 yields RB°(V°B) c (RB°V)<>B, that is, (BV)P cB\p for any variety
V. We now present an example to show that equality need not hold, even if
S c V c O. We choose V = SG, the variety of semilattices of groups. Note that
B(SG) = BG and that (SG)P = O (see Section 8), so that B(SG)F = BO = BRG.

PROPOSITION 6.6. The varieties (BSG)P(= (BG)/>) and B(SG)P(= BRG) are
distinct. Hence the Mal'cev product is not associative on the lattice of varieties
containing S.

PROOF. Let D = J((G; I, I; P), where / = (0,1}, G = {e, a} and P = (e
e
 e

a).
Then D £ RG. Let S be the ideal extension of D by the group {1, x), where 1 is
the identity for S, and where

ifH l . g . A J II
x(l,g,X) = (

\(i,flg,X) if

for g G G, i, X G /.
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Then 31 is a B-congruence on S over RtG, so S e RG°B = BRG = B(SG)'',
but Se is not a congruence since (1, x) e ^? and ((1, e, 1) • 1, (1, e, 1) • x) £ =S".
Thus S £ BG. But since D is nonorthodox, we have J C\3) = i on 5, so no
idempotent pure quotient of S is a band of groups. Hence S <£ (BG)P = (BSG)P.

Thus the variety BRG (see Corollary 5.4) does not consist merely of idempotent
pure 'co-extensions' of bands of groups.

7. The Pastijn-Trotter network

Let F denote the free c.r. semigroup on a countably infinite set. It is well
known that there is an anti-isomorphism p -* Vp between the lattice of fully
invariant congruences on F and the lattice -S?(CR). In [7] Pastijn and Trotter
derived from any given fully invariant congruence p two networks of such
congruences, one ascending, the other descending, from p. The more interesting
seems to be the latter (since it generates larger varieties from smaller). In this
section the associated network of varieties will be correlated with the operators
( —) + and ( — ) p , yielding identities for the varieties and enabling certain joins to
be described in more detail.

Let p be a fully invariant congruence on F and denote by pmin [p1™] the least
congruence on F whose trace [kernel] is that of p. In [7, Theorem 3.6] pmin and
pmin a r e s h o w n to be fully invariant. The network in question consists of the
descending sequences Pmin, ( p ^ ) ™ , . . . and p™", ( p ™ ) ^ , . . . , together with
their intersections. That a sublattice with p as maximum element is obtained is a
consequence of the following.

RESULT 7.1 ([7, Theorem 3.4]). Let S be a regular semigroup and let p e A(5).
Then PminnP

mi° = ( p 1 ^ ) ^ V (p^)™. If p is fully invariant on F, then, as
intervals in the lattice of fully invariant congruences on F, we have the relation

[PmiDnp™,p] = [pmin,p]x[p™\p].
(See Figure 2.)

For any variety V there is, therefore, a corresponding network of varieties
ascending from V. The reader is referred to [7] for further details. The connection
with the operators ( - ) + and ( - ) p is now made clear.

PROPOSITION 7.2. Let p be a fully invariant congruence on F and Vp the
associated variety. Then

(i) V = V + , and, if p Q Si (that is, S c V), then
" m i n "
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pmin

Pmin)min < >(Pmin)n

FIGURE 2

PROOF. Let F' = F/pmia. Now F' G Vp
+, since p/p^n is idempotent separating

(Lemma 1.2), and F'/(p/Pmin) & F/p e Vp. Thus VPmio c Vp
+.

Conversely, since Vp
+ is a variety, Vp

+ = Vff for some fully invariant congruence
IT on F. Let T = F/m. Then the induced congruence p/m on T is the least
Vp-congruence on T and is therefore idempotent separating, that is trp = trw.
Hence pmin c TT and l e V , , whence V+ c V .

A similar argument, using the fact that \ p is a variety when S c V, proves (ii).
We shall consider only varieties containing S. The operators yield the network

shown in Figure 3. By Result 7.1,

\P v V + = (V + )Pn(V/ >) + , and [V, V V V+] = [V,\p] X [V, V + ].

Clearly the identities obtained for \ p and V+ in the previous section enable
identities to be found for every variety in this network. In fact the varieties in the
generating sequences may be defined by at most as many identities as define V,
and those found as joins by at most twice as many.

In the next result we use the simpler identities of Result 6.2 together with those
of Corollary 6.4.
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VP

PROPOSITION 7.3. Let's = [w, = vt: i e / ] contain S. Then
(l)(Vp)+= [{a{xuiy){xviyy

lbf = {a{{xUly){xviyy
l)%f: i e / ] , and

(2)(\+)p = [(xuOyXxDfy)-1 e £, ( ^ H ^ V X * ^ ) 0 ^ " 1 e £: i e / ] .

PROOF. The other identities for (Vf)+ obtained from Result 6.2 are trivially
valid.

The joins V + V Vp are of particular interest, since many joins of well known
varieties may be represented in this fashion (see [7] and [8]). Recall that for
varieties A and B in general, A V B consists of all homomorphic images of
subdirect products of members of A and B. Only in very special situations does
A V B consist of subdirect products alone.

THEOREM 7.4. Let V = [u, = i>,: / e / ] . The following are equivalent for a c.r.
semigroup S:

( i ) S e V + V Vp;
(ii) S is a subdirect product of a member of V+ with a member of \p;

(iii) S satisfies the identites (1) and (2) above.

PROOF. The equivalence of (i) and (iii) follows from the equality of V+V \ p

with(V+)/ >n(VF)+.
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Now let S G V + V \p. Then S /T G V+ and S//i G VP. But ja O T = t, SO S is
a subdirect product of S/n and S/T. That (ii) implies (i) is trivial.

8. The join O V BG

Theorem 7.4 is now specialized to answer, in two different ways, the question
posed by Petrich [8]: What is the join O V BG? That this join belongs to the
network ascending from S (or from OBG), was observed by Pastijn and Trotter
[7]: as noted there and in [10], we have S + = SG, Sp = B, B+= BG and
(SG)P = O; moreover, OBG is the variety of orthodox bands of groups.

(BG)P

SG
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The variety O + was introduced in different terms by Hall and the author [2,
Lemma 5.2] as ' I ' ; alternative descriptions were found in [10, Proposition 3.5,
Corollary 3.10] and [7, Theorem 5.15]:

RESULT 8.1. The variety O + = [(xa°b°y)° = (x(aob°)°y)0] and consists of those
c.r. semigroups whose idempotent-generatedsubsemigroups are bands of groups.

The identity above follows from Result 6.2. Similarly, applying Corollary 6.7 to
BG(= B+) = [(xay)° = (xa°y)0] yields (BG)'' = [(c(xay)od)(c(xa°y)°dy1 e
E\. It would be useful to have a description of (BG)P akin to that of O + . From
Proposition 6.6 and the remarks prior to it, we have (BG)P c BRG, but the
containment is strict.

Applying Theorem 7.4, with V = OBG (V + = BG, V = O), yields the follow-
ing descriptions of O V BG.

THEOREM 8.2. The following are equivalent for a c.r. semigroup S:
(i)SeOV BG;

(ii) S is a subdirect product of an orthogroup and a band of groups;
(iii) S satisfies the identities

{xa%°y)° = (x(a%°)Oy)° and (c{xayfd)(c{xa°yfd)~l e E.

We remark that since B = [x2 = x] and SG = [x°y° = y°x°], each 'generat-
ing' variety of the above network is defined by a single identity, and each join by
at most two.

Various other similar situations are described in [7]. In particular, setting
V = NB (normal bands) yields V + = NBG (normal bands of groups) and Vp = B.
Thus NBG V B = (NBG)7" n BG. As shown in [2] and [10], (NBG)P = PO, the
variety of pseudo-orthodox (now more commonly called 'locally orthodox') c.r.
semigroups. Thus (CS V B =)NBG V B = PO n BG, and identities are easily
derived. This join was found by Hall and the author [2], and by Rasin [9].

Replacing NB by ONBG ( = O n NBG) yields the join (CS V O = ) NBG V
O = PO n O + , where O + was described above. Again identities follow. This join
was determined in [2, Theorem 5.3]; identities were found by Reilly [10, Corollary
5.3], who also described the lattice JS?(CS V O).

In each of these cases the join consists precisely of the subdirect products of
semigroups from the specified varieties.
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