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Summary

A pseudo maximum likelihood method is proposed to estimate effective population size (N
e
) using

temporal changes in allele frequencies at multi-allelic loci. The computation is simplified

dramatically by (1) approximating the multi-dimensional joint probabilities of all the data by the

product of marginal probabilities (hence the name pseudo-likelihood), (2) exploiting the special

properties of transition matrix and (3) using a hidden Markov chain algorithm. Simulations show

that the pseudo-likelihood method has a similar performance but needs much less computing time

and storage compared with the full likelihood method in the case of 3 alleles per locus. Due to

computational developments, I was able to assess the performance of the pseudo-likelihood

method against the F-statistic method over a wide range of parameters by extensive simulations. It

is shown that the pseudo-likelihood method gives more accurate and precise estimates of N
e
than

the F-statistic method, and the performance difference is mainly due to the presence of rare alleles

in the samples. The pseudo-likelihood method is also flexible and can use three or more temporal

samples simultaneously to estimate satisfactorily the N
e
s of each period, or the growth parameters

of the population. The accuracy and precision of both methods depend on the ratio of the product

of sample size and the number of generations involved to N
e
, and the number of independent

alleles used. In an application of the pseudo-likelihood method to a large data set of an olive fly

population, more precise estimates of N
e
are obtained than those from the F-statistic method.

1. Introduction

Effective population size (N
e
) determines the genetic

stochasticity of a population (Wright, 1931). Many

genetic processes and their consequences in a finite

population (e.g. inbreeding and inbreeding depression,

random drift and loss of variation, accumulation of

deleterious mutations and decline of fitness) are

associated closely with this important parameter

(Frankham, 1995). Until recently, however, we have

known very little about the effective sizes of natural

populations. Several approaches have been developed

and used to estimate the current or short-term N
e
of a

population (Roff, 1997; Schwartz et al., 1999). The

ecological approach is based on predictive equations

(reviewed by Caballero, 1994; Wang & Caballero,

1999) that require certain demographic parameters,

*Tel : ­44 (0)20 74496620. Fax: ­44 (0)20 75862870. e-mail :
jinliang.wang!ioz.ac.uk

such as variance of family size, which are difficult to

obtain from natural populations. The lethal allelism

approach, first described by Dobzhansky & Wright

(1941), is applicable only to species (e.g. Drosophila)

with a system of balanced lethal chromosomes

required for surveying lethal genes (Nei & Tajima,

1981). The third approach, within which several

methods are subsumed, uses information from genetic

markers.

The linkage disequilibrium method requires prior

knowledge of linkage relationships among loci (Hill,

1981) which are largely unknown in most species. The

heterozygosity excess method has a very low precision

and is quite sensitive to nonrandom mating (Pudovkin

et al., 1996; Luikart & Cornuet, 1999). The temporal

method is based on the empirical observations of

temporal changes in marker allele frequency. The

relationship between N
e
and the standardized variance

of change in gene frequency (F ) led to the development

of this temporal method (Krimbas & Tsakas, 1971 ;
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Nei & Tajima, 1981 ; Pollak, 1983; Waples, 1989),

which has been extended (e.g. Jorde & Ryman, 1995)

and applied to data from a variety of species and

populations (Funk et al., 1999; Labate et al., 1999;

Fiumera et al., 1999, 2000; Turner et al., 1999;

Kantanen et al., 1999; see also many earlier references

cited in Williamson & Slatkin, 1999).

The estimation of N
e

from F utilizes only the first

two moments of allele frequency distribution; higher-

order moments are ignored. The information on the

full distribution of allele frequency can be exploited by

using the maximum likelihood method, developed by

Williamson & Slatkin (1999, referred to as W&S99

hereafter). They showed that the likelihood estimator

has a smaller bias and higher precision than the F-

statistic estimator but is much more computationally

intensive. As a consequence, they considered only

very small populations with a quite limited subset of

parameters. More work is necessary to assess the

performance of the likelihood method against the F-

statistic method over a wide range of parameters.

Moreover, their method applies to bi-allelic loci only,

while most markers in practical use nowadays are

highly polymorphic. Anderson et al. (2000) recently

extended the likelihood approach to include multi-

allelic loci. The extension uses Monte Carlo technique

to compute the likelihood and is therefore highly

computation demanding. More efficient methods for

using highly polymorphic markers in estimating N
e

are obviously desirable.

In this study, I propose a pseudo-likelihood method

for estimating N
e
with data on multi-allelic loci. I also

use several algorithms to reduce the computing time

and memory requirements of the likelihood method.

Simulations were run to justify these developments,

and to compare the performances of the pseudo-

likelihood and F-statistic methods under a wide range

of parameters. The pseudo-likelihood method is also

applied to the data from an olive fly population which

have been analysed several times by the F-statistic

method.

2. Method

(i) The basic model

Following previous analyses, I assume a diploid

population with discrete generations. Selection, mi-

gration and mutation are assumed to be unimportant

in changing allele frequencies compared with genetic

drift. Samples of sizes 1}2n
!
and 1}2n

t
individuals for

genetic analyses are drawn at random from the

population at generations 0 and t, respectively,

yielding allelic counts n
!"

, n
!#

(n
!"

­n
!#

¯ n
!
) and n

t"
,

n
t#

(n
t"
­n

t#
¯ n

t
) for a bi-allelic locus. Each sampling

does not affect the gene frequency of the population

(sampling plan I in Nei & Tajima, 1981). This is

achieved by sampling after reproduction or sampling

with replacement before reproduction. If the actual

population size is much larger than the sample size,

then sampling without replacement before repro-

duction can also be treated similarly (Waples, 1989).

The loci for genotyping are assumed to be neutral and

unlinked.

The likelihood of the (harmonic) mean effective size

(N
e
) of the population during the sampling period

(generations 0–t ), given the data, is (W&S99)

P (n
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, n
!#

; n
t"
, n

t#
r t, N

e
)

¯ 3
q
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qt
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!"
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!#

r q
!
)P (q

!
rN

e
)
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t"
, n

t#
r q

t
)P (q

t
r q

!
, t, N

e
), (1)

where P denotes the probability of an event and q
i
is

the frequency of allele 1 in the population at time i

(i¯ 0, t ). The allelic counts n
i"

and n
i#
, with allelic

sample size n
i
¯ n

i"
­n

i#
, are binomially distributed:

P (n
i"
,n

i#
r q

i
)¯

n
i
!

n
i"
!n

i#
!
qni"
i

(1®q
i
)ni#. (2)

The probability of an initial allele frequency,

P (q
!
rN

e
), is generally unknown. Following W&S99, I

assume q
!

is uniformly distributed. Because only

segregating loci are used in the estimation, P (q
!
rN

e
)

¯1}(C®2) for any possible value of q
!
, where C¯

2N
e
­1 is the number of possible configurations of the

effective numbers of the two alleles in the population.

The probability of q
t
given q

!
and N

e
, P (q

t
r q

!
, N

e
),

can be computed by using the transition matrix M

(Ewens, 1979). The transition of a population’s allelic

configurations from generations t®1 to t can be

described by M, with element m
ij

( i, j¯ 0,…, 2N
e
)

being the probability of the jth configuration of the

parental population being converted to the ith

configuration of the offspring population. m
ij

can be

calculated by (2), replacing the allelic counts by the ith

configuration (i.e. effective numbers of alleles 1 and 2

being i and 2N
e
®i, respectively) and allelic frequency

q by the jth configuration divided by 2N
e
. Given the

initial distribution of allele frequency P(q
!
) (a column

vector with C elements), the distribution after t

generations is determined completely by N
e

and t,

calculated by the recurrent equation

P (q
t
r q

t−"
, N

e
)¯MP(q

t−"
r q

t−#
, N

e
). (3)

(ii) Extensions to the basic model

(a) The pseudo-likelihood method

For marker loci with more than two alleles, (2) can

be replaced by a multinomial probability function.

The number of possible configurations, C¯
(2N

e
­k®1)!}(2N

e
!(k®1)!) for a diploid locus with k
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alleles (Feller, 1950; W&S99), increases rapidly with

k, however. It is obvious that the evaluation of the

exact likelihood for multi-allelic loci requires pro-

hibitively large amounts of computation and storage.

For a moderate value of N
e
, even k¯ 3 poses a serious

computational problem for the likelihood method.

Anderson et al. (2000) proposed a Monte Carlo

method to evaluate the likelihood function with data

on multi-allelic markers. Their method does not need

much storage but is highly computationally demand-

ing and applies only to very small problems. To

simplify the likelihood computation for multi-allelic

loci, a k-allele locus can be transformed into k bi-

allelic ‘ loci ’, each having one of the k alleles with all

the other alleles pooled. The overall log-likelihood is

approximated by the sum of the log-likelihoods across

‘ loci ’ multiplied by the factor of (k®1)}k. This

method is called pseudo-likelihood herein because it

actually approximates the joint probability of all the

data by the product of marginal probabilities.

Although such reconstructed ‘ loci ’ from a multi-

allelic locus are not completely independent and

therefore the total likelihood is not exactly the

multiplication across these ‘ loci ’ in theory, this is a

good approximation which works well as verified by

extensive simulations. This treatment is actually

similar to that of the F-statistic method (Nei &

Tajima, 1981).

(b) Genetic markers

For bi-allelic dominant markers such as restriction

fragment length polymorphisms (RFLPs), (2) can be

replaced by

P (n
iR

,n
iD

r q
i
)¯

n
i
!

n
iR

!n
iD

!
(q#

i
)niR (1®q#

i
)niD, (4)

if the markers are in Hardy–Weinberg equilibrium

(W&S99). In (4), n
iR

and n
iD

are the numbers of

individuals with recessive and dominant phenotypes,

respectively, in the ith sample. The individual sample

size is n
i
¯ n

iR
­n

iD
, and the recessive allele frequency

is q
i
.

For haploid markers such as mtDNA poly-

morphisms, C¯N
e
­1 and the transition matrix

reduces to dimensions (N
e
­1)¬(N

e
­1). The com-

putation is simplified compared with the diploid case.

Different types of marker loci (such as dominant

and co-dominant) can be combined to give an overall

estimation of N
e
. Given that the loci are independent,

the total likelihood is just the multiplication of the

likelihoods calculated separately for each locus. Care

should be taken when considering diploid and haploid

loci (such as microsatellite and mtDNA poly-

morphisms) jointly, because they refer to different

effective sizes. Unless the relationship between haploid

and diploid effective sizes is known, these two types of

markers cannot be combined in the likelihood

estimation.

(c) More than two samples

For three samples obtained sequentially at generations

0, t
"
and t

#
, joint estimates of N

e"
and N

e#
for periods

0–t
"

and t
"
–t

#
, respectively, can be obtained by

extending the likelihood function (1). The function is

now
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Notice that here we are interested in both estimates of

N
e"

and N
e#

(presumably different). If we assume that

N
e"

¯N
e#

or we are interested only in the average N
e
,

(5) is greatly simplified in computation. Equation (5)

can be extended to more than three samples. The

computation intensity increases prohibitively, how-

ever, with increasing sampling points if the N
e
s for

each sampling period are to be estimated jointly. A

continuous model of growth in population size can be

fitted instead.

For a population with effective size growing or

shrinking at each generation, it is more desirable to fit

a continuous growth model. A simple model is

exponential growth, with effective size at generation t

determined completely by growth rate (r) and initial

size (N
e!

) : N
et

¯ rtN
e!

. W&S99 have considered this

model but not evaluated the performance of the

likelihood estimation because of the computational

intensity of their method. Using m­1(m"1) samples

taken at generations t
i
(i¯ 0,…, m), the maximum

likelihood function can be extended to

P (n
t
!"
,n

t
!#

; … ;n
tm"

,n
tm#

r t
!
,…, t

m
,N

e!
,r)

¯ 3
q
!

… qt
m

[P (n
t
!"
,n

t
!#

r q
t
!

)P (q
t
!

rN
e!

,r, t
!
)] …

[P (n
tm"

,n
tm#

r q
tm

)P (q
tm

rN
e!

,r, t
m
)]. (6)

To obtain the likelihood estimates of N
e!

and r

simultaneously, (6) is calculated with the transition

matrix M changing in dimensions at each generation.

At generation t
i
, for example, the numbers of rows

and columns of M are C
i
¯ 2N

eti

­1 and C
i−"

¯
2N

eti−"

­1, respectively.

More sophisticated growth models with more

parameters, such as logistic growth, can also be fitted.

The computational intensity, however, increases rap-

idly with the number of parameters to be estimated

simultaneously.
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(iii) Computation

The computation of the likelihood function – equation

(1), (5) or (6) – could be problematic when N
e
is large.

A large transition matrix not only takes a lot of

memory but also incurs intensive computation. Here

I extend the computational algorithm of the likelihood

method of W&S99 in the following respects.

First, the number of elements in the transition

matrix (M) actually calculated and used in the

likelihood evaluation is reduced to a very small

fraction of the original total. For simplicity, consider

(1) as an example. In the likelihood method it is

necessary to calculate and use M repeatedly in matrix

multiplication with different values of N
e
, and the

value that gives the maximum likelihood is taken as

the N
e
estimate. With a ‘golden section’ search (Press

et al., 1992), it requires typically about 15 iterations to

obtain the maximum likelihood estimate. This means

that M is calculated 15 times and used in matrix

multiplication by 15¬total number of alleles over

loci¬t times. Reducing M, therefore, decreases both

the memory requirement and the computing time.

In the present work, only elements of M that are

large enough to contribute significantly to the tran-

sition of allele frequency distributions are evaluated,

stored and utilized. For row i, these elements are m
ii

and its neighbours. Because the diagonal element m
ii

is generally (not always) the largest for row i (denoted

as m
i
), m

ij
is calculated from j¯ i in both directions ( j

decreasing and increasing). Once m
ij

is smaller than a

threshold value compared with m
i
(e.g. m

ij
}m

i
!10−&),

the calculation is terminated for row i for the direction.

Essentially, the resulting M contains only diagonal

and adjacent elements, a small fraction of the total

original number of C #. The extent of reduction

increases with increasing values of N
e
. When the

threshold value is 10−&, for example, the numbers of

elements of M evaluated and utilized are reduced to

about 4% and 1% of the original 2001# and 20001#

for N
e
¯1000 and 10000, respectively.

For more than two samples and N
e
s different

among sampling periods (equation 5 or 6), M is even

more important in determining the efficiency of

likelihood calculation because it must be evaluated

more times for each iteration. When the population

size changes, say, from N
e"

to N
e#

, M has C
#
¯

2N
e#

­1 rows and C
"
¯ 2N

e"
­1 columns. It can be

calculated similarly to the square M matrix described

above. The largest element for row i is first estimated

as m
iJ
, where J is the nearest integer of iC

"
}C

#
.

Calculation of m
ij

for row i starts from column J in

both directions and the largest element is kept updated.

Second, the likelihood function – equation (1), (5)

or (6) – is calculated more efficiently by using the

hidden Markov chain algorithm (Baum, 1972;

Anderson et al., 2000). Let us denote the prior

distribution of initial allele frequency by the column

vector W, and the probabilities P (n
i"
, n

i#
r q

i
) of the

data observed at generation i (0% i% t ) given different

values of q
i
by the column vector U

i
. If the component-

wise vector multiplication of two column vectors A

and B of length r is denoted by the symbol ©A, Bª¯
(a

"
b
"
, a

#
b
#
,…, a

r
b
r
)T, then the probabilities of popu-

lation allele frequencies conditional on the sample

taken at time 0, denoted by the column vector V
!
, are

calculated by

V
!
¯

©W,U
!
ª

φ
!

, (7)

where the normalizing constant φ
!
¯WTU

!
. The

conditional probabilities of the population allele

frequency at generation i (i¯1,…, t ) given all the N
e
s

and samples taken from the population at generations

up to and including i, denoted by the column vector

V
i
, are calculated by

V
i
¯M

i−"
V

i−"
(8)

if no sample is taken at generation i, or by

V
i
¯

©M
i−"

V
i−"

,U
i
ª

φ
i

(9)

if a sample is taken at generation i, where φ
i
¯

[M
i−"

V
i−"

]TU
i
. When the recurrent calculations with

(8–9) reach generation t (when the last sample was

taken), the likelihood is calculated by

0
i `Ω

φ
i
, (10)

where Ω is the set of generations at which a sample

was drawn from the population.

To further simplify the algorithm, φ
i
(0% i! t) is

not calculated and is dropped from (7) and (9).

Corresponding to this treatment, the likelihood is

simply φ
t
.

Notice that the above algorithm applies to the

likelihood evaluation with N
e

either changing

(equation 5 or 6) or constant (equation 1). In the

former case, M also changes over generations as

indicated by the subscript. For calculating the dis-

tribution of allele frequencies at generation i, for

example, M
i−"

is used which has 2N
e, i−"

­1 columns

and 2N
e, i

­1 rows.

Third, in calculating V
i
and U

i
( i¯ 0,…, t ) in the

above hidden Markov chain algorithm, only elements

of large values are evaluated, stored and used, in a

way similar to determining M. For U
i
, these involve

the Jth element (J : the nearest integer to 2N
e
n
i"
}n

i
),

which is usually the largest, and its neighbours. The

larger the allele sample size (n
i
), the greater the

reduction of the number of elements in these vectors

actually evaluated and utilized in computation. In

evaluating V
i
in (8–9), I also start the calculation in
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opposite directions from the largest element (which is

also predictable) and terminate the calculation once

the element is smaller than a threshold value relative

to the largest one. The extent of reduction for V
i
with

i" 0 depends on both the sample sizes and N
e
s up to

and including generation i.

Because of these improvements in computing the

likelihood function, the memory requirement is greatly

decreased, and the computing speed is increased

dramatically. The program can cope with populations

with N
e
of the order of 10& and marker loci with any

number of alleles.

3. Simulation methods

Simulations were run to compare the performance of

the pseudo-likelihood method with that of the full

likelihood method in the case of tri-allelic loci, and

against the F-statistic method over a wide range of

parameters. The changes in allele frequencies in a

diploid population of effective size N
e
were simulated

by Monte Carlo method, and samples of alleles were

taken binomially (sampled with replacement) at

generations 0 and t. For each replicate, the likelihood

estimate was obtained by using the golden section

search (Press et al., 1992) for the maximum likelihood,

and the F-statistic estimate was calculated by

Nq
e
¯

t

2(Fq ®1}n
!
®1}n

t
)
, (11)

where F= was computed as

Fq ¯
(q

!
®q

t
)#

(q
!
­q

t
)}2®[(q

!
­q

t
)}2]#

. (12)

F= was calculated for each allele and the average over

alleles and loci was used in (11) (Nei & Tajima, 1981 ;

Waples, 1989). Other F-statistic estimators (e.g. Nei &

Tajima, 1981 ; Pollak, 1983) gave very similar results

to (11–12) (Waples, 1989; W&S99) and are not used

in the present study. When N=
e
! 0, all the observed

change in gene frequency and the increase in F can be

explained by sampling alone and the effective size is

regarded, therefore, as infinite in this case (Waples,

1989).

For each set of parameters, 10000 replicates were

run. To reduce running time, a replicate was

terminated once the likelihood estimate of N
e

was

determined to be larger than the threshold value of

10N
e

in comparing the pseudo-likelihood and F-

statistic methods, and of 4N
e
in comparing the pseudo-

and full likelihood methods. For a fair comparison, all

replicates with either estimator larger than the

threshold were discarded and only those remaining

were used to calculate the means and standard

deviations of the N
e
estimates (W&S99). The numbers

of replicates with N=
e
greater than the threshold value

from each estimator and either of the two estimators

in comparison were recorded. By discarding the 2±5%

smallest and the 2±5% largest estimates from the

10000 replicates, the range of the 95% remaining

estimates (denoted as 95%R) was also obtained for

each method.

4. Simulation results

(i) Comparison between the pseudo-likelihood and full

likelihood methods

The dependence of the frequencies of different alleles

at a locus increases with a decreasing number of alleles

at the locus. For a bi-allelic locus, the allele frequencies

are completely dependent. In this case, however, the

pseudo-likelihood method reduces to the full like-

lihood method. The worst situation for the pseudo-

likelihood method is therefore 3 alleles per locus,

which was considered in simulations to compare the

performance of the pseudo- and full likelihood

methods. Even though the same algorithm and

computing tricks are applied, the full likelihood

method is still highly computationally demanding for

tri-allelic loci. As a result, only very small populations

were considered (N
e
¯10) and a replicate was

terminated once the estimated effective size was

determined to be larger than 4N
e
. The simulation

results for various combinations of bi-allelic and tri-

allelic loci, resulting in the same total number of

independent alleles (12, total number of alleles over

loci – number of loci), are shown in Table 1.

As can be seen, the two methods yield similar

results for any combination of loci. For each method,

the results are also similar among combinations of

loci. This indicates that the approximation made in

the pseudo-likelihood method works well, and the

performance of both methods depends mainly on the

total number of independent alleles across loci (other

parameters such as allele frequency being kept

constant).

If the dependence among the frequencies of alleles

at a locus is important and such dependence is

neglected by the pseudo-likelihood method, then it

would be expected to overestimate the amount of

information in the data and underestimate the

confidence interval, as indicated by an increase in the

proportion of replicates in which the true value of N
e

falls outside of the confidence interval defined by a

drop of 2 units in log-likelihood. Table 1 shows that

there is little difference in confidence interval between

the two methods for any combination of loci.

For a larger actual N
e
, it is difficult to compare the

two methods directly because of the intensive com-

putation and storage requirement for the full like-

lihood method with multi-allelic loci. Instead, the

appropriateness of the pseudo-likelihood method can
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Table 1. Comparison between the pseudo-likelihood and full likelihood methods

Pseudo-likelihood estimate Full likelihood estimate

No. of loci}no. of alleles µ
PL

σ
PL

d
PL

95%R
PL

P
PL

µ
FL

σ
FL

d
FL

95%R
FL

P
FL

12}2 9±9 4±1 50 4±9, 22±5 0±109 9±9 4±1 50 4±9, 22±5 0±109
1}3­10}2 9±9 4±1 51 4±9, 22±5 0±106 10±1 4±1 52 4±9, 23±4 0±102
2}3­8}2 9±9 4±0 63 4±9, 22±5 0±098 10±3 4±1 67 4±9, 23±4 0±097
4}3­4}2 10±1 4±0 59 4±9, 22±8 0±090 10±8 4±3 61 4±9, 24±3 0±086
6}3 10±1 4±1 67 4±9, 23±4 0±084 11±2 4±4 85 5±4, 25±9 0±088

The simulated populations have a true effective size of N
e
¯10. Various combinations of the numbers of bi-allelic and tri-

allelic loci, giving the same total number (12) of independent alleles, were used. The initial frequencies are 0±1 for k®1 alleles
and 1®0±1(k®1) for the remaining allele at a k-allele locus (k¯ 2 or 3). Samples of 50 individuals were taken with
replacement from the population at generations 0 and 2. For each population, 10000 replicates were run and a replicate was
terminated once the estimated N

e
was determined to be larger than 40. d

PL
(d

FL
) is the number of replicates in which the

pseudo (full) likelihood estimate was larger than 40. For each estimator, the mean, µ, and standard deviation, σ, of the
estimates from the 10000®d retained replicates are listed. 95%R

PL
(95%R

FL
) is the range of the remaining estimates after

discarding the 2±5% smallest and the 2±5% largest from the 10000 replicate estimates for the pseudo (full) likelihood method.
P

PL
(P

FL
) is the proportion of the 10000 replicates in which the maximum log-likelihood is larger by at least 2 than the log-

likelihood of N
e
¯10 for the pseudo (full) likelihood method.

Table 2. Comparison between the F-statistic and pseudo-likelihood estimators: initial allele frequencies

F-statistic estimate Maximum likelihood estimate

q
!

µ
F

σ
F

d
F

95%R
F

µ
PL

σ
PL

d
PL

95%R
PL

d

0±01 207 109 87 89, 571 116 47 4 62, 239 87
0±02 156 87 44 70, 422 116 58 12 55, 276 46
0±04 134 82 39 58, 373 123 71 25 55, 330 42
0±08 129 88 65 52, 414 126 83 62 52, 400 75
0±16 130 93 55 49, 429 128 90 53 49, 417 57
0±32 130 93 77 48, 442 128 91 72 48, 437 78
0±50 130 96 83 49, 464 129 94 82 49, 456 83

The simulated populations have a true effective size of N
e
¯100. Twenty bi-allelic loci, each with the initial frequency of the

uncommon allele being q
!
, were used. Samples of 100 individuals were taken with replacement from the population at

generations 0 and 4. For each population, 10000 replicates were run, and the number of replicates discarded due to either
estimator being larger than 10N

e
(1000) is d. For each estimator, the mean, µ, and the standard deviation, σ, of the estimates

from the 10000®d retained replicates are listed. d
F

(d
PL

) is the number of replicates in which the F-statistic (pseudo-
likelihood) estimate was larger than 10N

e
. 95%R

F
(95%R

PL
) is the range of the remaining estimates after discarding the

2±5% smallest and 2±5% largest from the 10000 replicate estimates for the F-statistic (pseudo-likelihood) method.

be checked indirectly by comparing the accuracy and

precision of the pseudo-likelihood estimates using

data on different combinations of bi-allelic and multi-

allelic loci, as shown in Table 3 (see below).

The likelihood computation is greatly simplified by

using the hidden Markov chain algorithm in which all

matrices and vectors are reduced by considering

elements of large values only. Elements of small values

are not calculated, stored or used at all. The selected

threshold value determines the range of elements that

are calculated and used, and therefore determines the

computing time and storage, and the precision. Fig.

1 shows the changes in the likelihood curve with

different threshold values for a simulated data set. As

can be seen, the log-likelihood curve does not change

essentially once the threshold value is greater than

0±001 in this case. An appropriate threshold value for

a particular data set depends partly on sample size

and the actual effective size. The larger these sizes are,

the larger the threshold value that could give

satisfactory results. To be conservative, a small

threshold value of 10−"! was used in all the simulations

shown below.

(ii) Comparison between the pseudo-likelihood and

F-statistic methods

Because of the computational ease of the pseudo-

likelihood method, it is possible to compare it with the

widely used F-statistic method in performance over

broad ranges of different parameters by extensive

simulations.
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Table 3. Comparison between the F-statistic and pseudo-likelihood estimators: numbers of marker loci and

alleles per locus

F-statistic estimate Pseudo-likelihood estimate

No. of loci}
no. of alleles (k) µ

F
σ

F
d
F

95%R
F

µ
PL

σ
PL

d
PL

95%R
PL

P
PL

d

30}2 120 60 7 59, 276 116 57 5 59, 257 0±046 7
15}3 121 64 15 56, 287 117 59 13 58, 268 0±049 17
10}4 121 62 12 56, 279 117 56 12 58, 264 0±049 12
2}16 120 57 10 59, 267 115 51 6 59, 248 0±040 10
15}2­1}16 123 67 7 58, 291 116 55 5 59, 256 0±044 8
5}4­1}16 121 63 15 57, 282 116 55 12 59, 259 0±044 16
15}2­5}4 122 65 12 57, 292 117 58 12 58, 269 0±051 15
3}2­4}4­1}16 122 64 16 57, 293 116 54 12 59, 263 0±046 18
9}2­2}4­1}16 123 68 21 57, 293 116 56 10 59, 261 0±046 22
12}2­1}4­1}16 123 65 8 58, 293 116 54 5 59, 256 0±045 8

The simulated populations have a true effective size of N
e
¯100. Various combinations of loci with different numbers of

alleles, giving the same total number (30) of independent alleles, were used. The initial frequencies are 0±0625 for k®1 alleles
and 1®0±0625(k®1) for the remaining allele at a locus. Samples of 100 individuals were taken with replacement from the
population at generations 0 and 4. See Table 2 for the explanations for d, µ, σ and 95%R, and Table 1 for the explanation
of P

PL
.
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Fig. 1. Log-likelihood curves for a simulated data set
using different threshold values in likelihood calculation.
The curves upward from the bottom are generated using
threshold values of 0±01, 0±005, 0±001 and 0±0001,
respectively. The data set was generated by simulation,
with samples of 100 individuals taken at generations 0
and 4 from a population with N

e
¯100. Four loci, each

with 10 co-dominant alleles (9 of the alleles have an
initial frequency of 0±0625), were used.

(a) Allele frequencies

It has been shown that the F-statistic estimator

typically performs poorly in the presence of rare

alleles (e.g. Waples, 1989; Luikart et al., 1999), but

little is known about the likelihood method. Table 2

compares the performance of the two estimators for a

wide range of initial allele frequencies. The main

difference in performance between the two estimators

occurs when rare alleles are involved. As the initial

frequency of the uncommon allele (q
!
) decreases

below 0±04, the F-statistic method leads to an

increasingly larger upward bias, while the likelihood

method gives increasingly more accurate estimates.

The precision of the likelihood estimator is also higher

than the F-statistic estimator across the range of allele

frequencies, the contrast being evident especially when

q
!

is small. The likelihood estimator performs only

slightly better than the F-statistic estimator if no rare

alleles are involved (q
!
" 0±04).

Simulations for populations with other parameters

were also run. The occurrence of a sample containing

rare alleles depends on t}N
e
and sample sizes (n). The

smaller is the value of nN
e
}t, the more likely are

samples with rare alleles for a given initial allele

frequency. For a population with parameters N
e
¯

20, t¯10, n¯10, and 20 bi-allelic loci, for example,

the F-statistic method gives much worse estimates

(N=
e
¯ 31³15, 95%R¯14–71) than the likelihood

method (N=
e
¯ 21³10, 95%R¯10–46) even if the

initial frequency of the uncommon allele is as high as

0±16.

The changes in performance of the two estimators

with allele frequencies are expected because the F-

statistic estimator uses only the first two moments of

the allele frequency distribution, while the likelihood

estimator uses all the information on the distribution.

With an intermediate value of the population allele

frequency, the distribution of sample allele frequency

is close to symmetric and can be reasonably described

by the first two moments. With population allele

frequency approaching 0 or 1, the sample allele

frequency distribution becomes more and more

skewed, and higher orders of moments are required

for a better description of the distribution.

Although a prior uniform distribution of q
!

is

assumed in the likelihood method, the likelihood
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Fig. 2. Changes in the mean estimates of 1}(2N
e
) from

likelihood and F-statistic methods with initial allele
frequencies (q

!
). The simulated populations have a true

value of 1}(2N
e
)¯ 0±005. Twenty bi-allelic loci, each with

the initial frequency of the uncommon allele being q
!
,

were used. Samples of 100 individuals were taken with
replacement from the population at generations 0 and 4.
The means were taken over 10000 replicates, with
N=

e
"10N

e
for the likelihood method and N=

e
! 0 for the

F-statistic method being regarded as N=
e
!¢ and

1}(2N=
e
)¯ 0. Circles, likelihood estimate ; squares, F-

statistic estimate ; dashed line, true value.

estimator performs well for any initial allele frequency

across the whole range (Table 2). This demonstrates

that the likelihood estimator is robust to violations of

this assumption (W&S99).

Both estimators tend to overestimate N
e
. This is

generally true for various values of the parameters

involved (Tables 2 and those as shown below). They

tend to give much smaller biases for the estimate of

1}(2N
e
), however, as shown in Fig. 2 The likelihood

estimates are essentially unbiased for any initial allele

frequency, while the F-statistic estimates are

downward-biased substantially for 1}(2N
e
) only when

rare alleles are included. The much smaller bias of

estimates for 1}(2N
e
) than for N

e
is generally true for

wide ranges of values of different parameters. This is

because both methods are actually estimating the

average 1}(2N
e
) rather than N

e
from the changes in

allele frequency at several loci. Fortunately, in most

formulae it is 1}(2N
e
) that occurs and matters, not N

e
.

Therefore, we need not worry about the small upward

bias of N
e
estimates.

(b) Numbers of marker loci and alleles per locus

Various combinations of marker loci with different

numbers of alleles (k ), resulting in the same total

number of independent alleles (30), are compared in

Table 3 for the accuracy and precision of the estimates

from the F-statistic and the pseudo-likelihood

methods. For all the 10 sets of parameters, the initial

frequency of each of the k®1 alleles is assumed to be

0±0625 while that of the remaining allele is

1®0±0625(k®1) at each locus. As can be seen, the

pseudo-likelihood method gives more accurate and

precise estimates than the F-statistic method for all

the combinations of loci. For a given total number of

independent alleles, the numbers of loci and alleles do

not affect the performance of either estimator. The

approximation in the pseudo-likelihood by converting

a multi-allelic locus to bi-allelic ‘ loci ’ is satisfactory,

because both the accuracy and precision (as indicated

by σ
PL

, d
PL

, 95%R
PL

and P
PL

) of the estimates are

essentially the same among combinations of loci with

different numbers of alleles.

The above assumption of initial allele frequencies is

aimed at minimizing their effects on the comparison

among different combinations of loci used in the

estimation. In reality, loci with more alleles are more

likely to have rare alleles. If the initial allele frequencies

were drawn from a uniform distribution, then the

performance of the F-statistic method decreases

rapidly and that of the pseudo-likelihood method

keeps almost constant with an increasing number of

alleles per locus on average among the 10 com-

binations of loci (results not shown). To reduce the

large upward bias of the F-statistic estimator, rare

alleles can be pooled. Pooling rare alleles, however,

could result in less precise estimateswithmore frequent

extreme values when few loci with many alleles are

used in the estimation, and the low precision is even

more problematic than bias in practice.

With an increasing number of independent alleles,

the precision and accuracy of both methods improve

and the difference in performance between the two

methods diminishes (data not shown), as expected.

The contrast of the two estimators is more obvious

with a smaller data set (smaller samples of fewer

independent alleles) and small t}N
e
.

(c) Sample size

With the systematic forces excluded, the observed

temporal changes in allele frequency come from the

genetic drift accumulating over generations in the

population and the sampling. The effect of the latter

could be reduced to get a better estimate of N
e

by

increasing sample size. Table 4 compares the per-

formance of the two methods for different diploid

sample sizes. With increasing sample sizes, both

methods improve their accuracy and precision, as

expected. At all sample sizes, the pseudo-likelihood

estimator always has a better performance than the F-

statistic estimator, but the difference decreases as the

sample size increases.

The small sample size can be compensated by using

more markers. With the same parameters as those in

the first row of Table 4 but using 20 marker loci, the

estimates are improved greatly to N=
e
¯149³97,
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Table 4. Comparison between the F-statistic and pseudo-likelihood estimators : sample sizes

F-statistic estimate Pseudo-likelihood estimate

n µ
F

σ
F

d
F

95%R
F

µ
PL

σ
PL

d
PL

95%R
PL

d

25 162 125 493 55, ¢ 125 90 211 50, 769 554
50 139 74 17 67, 325 111 42 5 62, 217 18
100 126 38 0 76, 220 108 25 0 72, 170 0
200 121 27 0 80, 184 109 19 0 80, 152 0
400 118 23 0 81, 171 111 16 0 84, 147 0

The simulated populations have a true effective size of N
e
¯100. Ten loci, each having 8 alleles with their initial frequencies

drawn from a uniform distribution, were used in the estimations. Samples of different numbers (n ) of diploid individuals were
taken with replacement from the population at generations 0 and 4. See Table 2 for the explanations for d, µ, σ and 95%R.

Table 5. Comparison between the F-statistic and pseudo-likelihood estimators: t}N
e

F-statistic estimate Pseudo-likelihood estimate

t µ
F

σ
F

d
F

95%R
F

µ
PL

σ
PL

d
PL

95%R
PL

d

1 151 135 969 42, ¢ 153 113 690 58, ¢ 1135
2 147 107 176 54, 702 130 73 92 60, 415 197
4 138 71 13 66, 319 114 44 2 63, 229 14
8 140 51 0 75, 263 107 30 0 65, 181 0

16 153 50 0 85, 274 104 26 0 65, 167 0

The simulated populations have a true effective size of N
e
¯100. Five loci, each having 8 alleles with their initial frequencies

drawn from a uniform distribution, were used in the estimations. Samples of 100 individuals were taken with replacement
from the population at generations 0 and t. See Table 2 for the explanations for d, µ, σ and 95%R.

95%R¯ 66–491 and d
F
¯ 83 for the F-statistic

method, and to N=
e
¯115³60, 95%R¯ 58–276 and

d
PL

¯15 for the pseudo-likelihood method.

For both estimators, simulations demonstrate that

the performance is determined mainly by the harmonic

mean of sample sizes (data not shown). For a given

total sampling input, therefore, it is better to equalize

sample sizes.

(d) Inter�al of sampling (t) and N
e

The extent of genetic drift (changes in allele frequency)

that occurred in the population between sampling is

determined directly by t}N
e
, rather than the absolute

values of N
e
and t. Better performance is expected for

both estimators with large nt}N
e

(n : sample size) so

that the changes in allele frequencies are caused

mainly by genetic drift rather than sampling. In Table

5, the two estimators are compared for a population

with N
e
¯100 and different intervals between sam-

pling. Prolonging the sampling interval increases both

the accuracy and the precision of the pseudo-

likelihood method, and the precision only of the F-

statistic method. The upward bias of the F-statistic

method first decreases, then increases with t. This is

because a large t results in more rare alleles in the

second sample, which leads to an overestimation of N
e

for the F-statistic method.

Varying N
e

for a given t has similar effects on the

performance of the two estimators (data not shown),

as the changes in population allele frequency due to

drift are determined by t}N
e
.

For a population with small t}N
e
, a large data set

(more independent alleles and large samples) would

be necessary to get a reasonably good estimate. The

worst estimate listed in row 1 of Table 5 can be

improved to N=
e
¯122³68, 95%R¯ 55–300 and d

F

¯ 21 for the F-statistic estimator and toN=
e
¯129³54,

95%R¯ 73–265 and d
PL

¯ 9 for the pseudo-like-

lihood estimator, when samples of 300 individuals

(instead of 100) are used.

(e) Three samples

With three samples taken sequentially at generations

0, t
"

and t
#
, a joint likelihood estimation of N=

e"
and

N=
e#

for the periods 0–t
"
and t

"
–t

#
, respectively, can be

obtained. The harmonicmean ofN=
e"

andN=
e#

, weighted

by t
"
and t

#
–t

"
respectively, gives the average effective

size (N=
e
) during the whole period (0–t

#
). For the F-

statistic method, N=
e"

and N=
e#

can be obtained by using

the corresponding samples. Two F-statistic estimates

of N
e
can be calculated. One is estimated directly from

samples taken at generations 0 and t
#
, and the other is

the harmonic mean of N=
e"

and N=
e#

if both are positive.

The final estimate of N=
e
is calculated as the average of

https://doi.org/10.1017/S0016672301005286 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301005286


J. Wang 252

Table 6. Comparison between the F-statistic and pseudo-likelihood estimators: three samples

F-statistic estimate Pseudo-likelihood estimate

Population µ
F

σ
F

d
F

95%R
F

µ
PL

σ
PL

d
PL

95%R
PL

d

Population 1
N

e"
¯100 144 116 271 50, ¢ 124 83 126 51, 548 291

N
e#

¯ 20 25 9 0 13, 49 21 6 0 12, 36 0
N

e
¯ 33 42 13 0 24, 73 35 8 0 22, 55 0

Population 2
N

e"
¯ 20 24 8 0 13, 43 21 5 0 13, 33 0

N
e#

¯100 144 120 385 45, ¢ 133 105 246 46, 998 428
N

e
¯ 33 39 11 0 24, 66 34 8 0 23, 53 0

Ten loci, each having 4 alleles with their initial frequencies drawn from a uniform distribution, were used in the estimations.
Samples of 50 individuals were taken with replacement from the population at generations 0, 4 and 8. N

e"
, N

e#
and N

e
are

true effective sizes for generations 0–4, 5–8 and 0–8, respectively. See Table 2 for the explanations for d, µ, σ and 95%R.

Table 7. Pseudo-likelihood estimates of the initial effecti�e size (N
e!
) and exponential growth rate (r)

N=
e!

r#

Population No. of samples µ
PL

σ
PL

95%R
PL

µ
PL

σ
PL

95%R
PL

d

Population 1 : N
e!

¯ 20, r¯1±2
3 22 12 9, 53 1±24 0±16 0±94, 1±60 22
4 21 10 10, 45 1±23 0±14 0±97, 1±54 8

Population 2: N
e!

¯100, r¯ 0±8
3 134 111 40, 435 0±80 0±11 0±59, 1±04 39
4 122 80 45, 320 0±80 0±09 0±62, 0±99 4

Ten loci, each having 4 alleles with their initial frequencies drawn from a uniform distribution, were used in the estimations.
Samples of 100 individuals were taken with replacement from the population at either generations 0, 3 and 6 (for the case
of three sample), or generations 0, 2, 4 and 6 (four samples). N

e!
and r are true initial effective size and exponential growth

rate. Replicates with either N=
e!

"10N
e!

, r# "1±5r or r# ! 0±5r were discarded, and the number of discarded replicates is
denoted as d. See Table 2 for the explanations for µ, σ and 95%R.

the two estimates if both are in the proper range

(positive and smaller than 10N
e
) ; otherwise the

estimate in the proper range is selected. The F-statistic

and pseudo-likelihood estimators are compared in

Table 6 for two populations with either increasing or

decreasing N
e
.

As can be seen, the pseudo-likelihood method gives

more accurate and precise estimates for all three

effective sizes of each of the two populations. For the

same data, pseudo-likelihood estimates using two

samples were also obtained. They are better than F-

statistic estimates but are slightly worse than the joint

likelihood estimates using three samples simul-

taneously. The difference is obvious, especially for N
e"

of population 1 and N
e#

of population 2, where more

marker information is required in the estimation. The

pseudo-likelihood estimates using two samples are

N=
e"

¯126³89, 95%R¯ 49–654 and d
PL

¯164 for

population 1, and N=
e#

¯134³105, 95%R¯ 44–¢
and d

PL
¯ 285 for population 2.

The pseudo-likelihood estimator using three

samples is better than that using two samples because

the former utilizes all the information available.

Temporal samples from the same population are

inter-related and each has implications for all the

others. If an allele is not observed in the first two

samples but appears in the third for example, then we

know that it exists in the population during the whole

observation period. The two-sample likelihood es-

timator cannot use this kind of information for

estimating N
e"

, in contrast to the three-sample

estimator. With more rare alleles involved in the

samples, therefore, we expect greater difference in

performance between the estimators.

(f ) Continuous growth model

Using three or more temporal samples, a continuous

growth model can be fitted to the data and pseudo-

likelihood estimates of growth parameters can be

obtained. The numerical examples for the simple

exponential growth are shown in Table 7. With a

reasonable amount of marker information, both initial

effective size (N
e!

) and growth rate (r ) are satisfactorily

estimated. For a growing population, r tends to be

overestimated, while for a shrinking population N
e!

is
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overestimated. The estimates for both parameters in

both populations improve with more temporal

samples. Similarly, increasing marker information for

each sample (number of independent marker alleles,

sample size) also results in better estimations (data not

shown).

More generally, the pseudo-likelihood method can

be used to test different hypotheses about the

population dynamics using three or more samples.

For a growing population, for example, different

growth models (e.g. exponential, logistic) can be fitted

to the same data and the one with the largest maximum

likelihood would be the likely pattern of growth for

the population.

5. Analysis of an empirical data set

A real data set that has been analysed several times by

the F-statistic method (Krimbas & Tsakas, 1971 ; Nei

& Tajima, 1981 ; Pollak, 1983; Waples, 1989) was re-

analysed by the pseudo-likelihood method. Three

samples were taken in September or October of 1966,

1967 and 1968, respectively, from an isolated popu-

lation of the olive fly, Dacus oleae, infesting an

orchard of about 2000 olive trees near Athens, Greece

(Krimbas & Tsakas, 1971). The samples were analysed

for the gene frequencies at two esterase loci, A and B,

which were highly polymorphic and included 18 and

13 electrophoretic alleles, respectively. The sample

sizes for years 1966, 1967 and 1968, respectively, were

474, 312 and 400 for locus A, and 469, 281 and 409 for

locus B. For this population, there were about four

generations in one year (Krimbas & Tsakas, 1971).

When the samples were taken (autumn), the actual

size of this population was apparently very large

compared with the effective size. Therefore, the

samples could be regarded as taken with replacement

(Krimbas & Tsakas, 1971 ; Nei & Tajima, 1981).

The effective sizes of the population during periods

1966–1967 and 1967–1968, N
e'

–
(

and N
e(

–
)
, and the

average, N
e'

–
)
, can be estimated using either two

samples each time or three samples simultaneously by

the pseudo-likelihood method. The 95% confidence

interval for the two-sample likelihood method can be

calculated as the range of support associated with a

drop of 2 in the log-likelihood. For the three-sample

likelihood method, the confidence intervals are

obtained with likelihood ratio tests. Consider the

confidence interval of N
e'

–
(

as an example. The

likelihood tests begin by defining two hypotheses – H
"
:

N
e'

–
(
" 0, N

e(
–
)
" 0 and H

#
: N

e'
–
(
¯N

Alt
, N

e(
–
)
" 0.

Let us define L
"

and L
#

as the highest likelihood

possible under H
"
and H

#
, respectively. L

"
is obtained

with the maximum likelihood estimates of N
e'

–
(

and

N
e(

–
)
, and L

#
is obtained by selecting the value of N

e(
–
)

that maximizes the likelihood given N
Alt

. A 95%

confidence interval for N
e'

–
(

can be obtained (Rice,

1995) by finding the highest and lowest values of N
Alt

that conform to the inequality (2ln(L
"
}L

#
)%χ#

!
±
!&, "

.

The confidence intervals for N
e(

–
)

can be obtained

similarly. The confidence intervals for N
e'

–
)

are

calculated from those for N
e'

–
(
and N

e(
–
)
. The results

of the pseudo-likelihood estimates are shown in Table

8, together with the F-statistic estimates from Nei &

Tajima (1981) and Pollak (1983) using different F

estimators. Several interesting things emerge from

Table 8.

First, the estimated effective sizes for 1967–1968 are

much smaller than those for 1966–1967. This is true

irrespective of the marker loci and the methods used

in the estimation. The explanation is that extensive

spray of insecticide was applied to the population in

1968 and, as a result, the census size was reduced

substantially in that year (Krimbas & Tsakas, 1971).

Second, the two F-statistic estimators from Nei &

Tajima (1981) and Pollak (1983), as well as that of

Krimbas & Tsakas (1971) (not listed in Table 8), give

essentially the same results. Extensive simulations also

showed that different F-statistic estimators result in

similar estimates (e.g. Waples, 1989). Compared with

F-statistic estimators, the pseudo-likelihood method

using either two or three samples gives much more

consistent estimates of each of three effective sizes

(N
e'

–
(
, N

e(
–
)

and N
e'

–
)
) among locus A, locus B and

both loci. Also, the pseudo-likelihood method results

in much narrower 95% confidence intervals. All these

findings indicate that the pseudo-likelihood method

gives more precise estimates for this data set. This is

not surprising given the simulation results shown

above and the fact that several rare alleles are involved

in the samples. There are four alleles on locus A and

two alleles on locus B that are observed in only one of

the three samples.

Third, the average effective size for the period

1966–1968 (N=
e'

–
)
), calculated as the harmonic mean of

N=
e'

–
(
and N=

e(
–
)
, tends to be smaller than that estimated

directly using samples of years 1966 and 1968 for both

the pseudo-likelihood and F-statistic methods. This

trend is especially evident for locus B. The pseudo-

likelihood method using three samples simultaneously

results in, therefore, much larger estimates of N=
e'

–
(

compared with that using two samples each time. The

reason that N=
e'

–
(

rather than N=
e(

–
)

is increased by

using three samples is that the former has a much

larger confidence interval than the latter.

There are indications that N=
e'

–
(
was underestimated

by the F-statistic method. Krimbas & Tsakas (1971)

noticed that, before the spray of insecticide in 1968,

the census population size of olive flies became

minimum in winter and, at that time, there were still

on average two flies per tree. If this estimate is correct,

the minimum census size of this population is roughly

4000, much larger than the F-statistic estimate of

N
e'

–
(
. Assuming that the population was in equi-
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Table 8. Pseudo-likelihood and F-statistic estimates of the effecti�e size and 95% confidence inter�als (in

parentheses) of an oli�e fly population

F-statistic method Pseudo-likelihood method

Locus used Nei & Tajima Pollak Two samples Three samples

1966–1967
A 583 (240, ¢) 576 1013 (376, 17466) 2553 (712, ¢)
B 1056 (314, ¢) 923 1022 (259, ¢) 2316 (433, ¢)
A­B 722 (332, 7408) 687 1016 (433, 5976) 2455 (817, ¢)

1967–1968
A 168 (86, 538) 186 238(146, 421) 223 (130, 401)
B 234 (100, 1984) 227 263 (124, 659) 292 (126, 767)
A­B 189 (108, 446) 200 246 (162, 392) 242 (153, 396)

1966–1968
A 291 (145, 965) 289 401 (223, 758) 410 (220, 802)
B 762 (313, 12069) 400 592 (231, 1796) 519 (195, 1534)
A­B 400 (225, 961) 326 450 (271, 769) 442 (257, 791)

The data were from Krimbas & Tsakas (1971). The F-statistic estimates were computed by Nei & Tajima (1981) and Pollak
(1983). The pseudo-likelihood estimates were obtained using two samples each time or three samples simultaneously.
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Fig. 3. Changes of log-likelihood with estimated effective sizes for years 1966–1967 (N
e'

–
(
) and 1967–1968 (N

e(
–
)
). The

data are from Krimbas & Tsakas (1971).

librium before 1968, they also estimated the mutation

rate, u, by the formula

n
e
¯ 4N

e
u­1

using their estimates of N
e'

–
(

(about 500) and the

effective number of alleles, n
e
, which was estimated to

be 4±2 and 2±4 for loci A and B, respectively. The

estimated mutation rates for loci A (1±6¬10−$) and B

(7±0¬10−%) are both quite high because of the low

estimate of N
e'

–
(

(Krimbas & Tsakas, 1971).

Nei & Tajima (1981) also suspected that N
e'

–
(

was

underestimated by the F-statistic method, and one

possible cause was ascribed to local sampling. With

the three-sample pseudo-likelihood method, however,

N=
e'

–
(

is now increased to 2455. It could be larger,

because the likelihood changes slowly with increasing

N=
e'

–
(
above 2455, as shown in Fig. 3. As can be seen,

the 95% confidence interval for N=
e(

–
)

is narrow, but

that for N=
e'

–
(

is quite broad. Actually, there is no

upper limit of the 95% confidence interval for N=
e'

–
(
.

With N=
e(

–
)
¯ 242, even N=

e'
–
(
¯ 50000 gives a log

likelihood of ®416±59, smaller than the maximum

value of ®415±55 at N=
e'

–
(
¯ 2455 by only about 1.

It may seem to be strange that the pseudo-likelihood

estimates of N
e
for this data set are larger than the F-

statistic estimates regardless of the time period and

number of samples used, given the extensive simu-

lation results which show the opposite trend. However,

we should notice that the simulation results are

averages over a large number of replicates. For any

parameter combination there are always some repli-

cates in which the likelihood estimates are smaller

than the F-statistic estimates. In an extreme case of

row 2 in Table 2 where the uncommon allele frequency
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is 0±02, for example, the average likelihood estimate is

much smaller than the F-statistic estimate due to the

large proportion of rare alleles involved in the samples.

However, there is still a proportion of 16% replicates

where the likelihood estimates are larger than the F-

statistic estimates. Compared with the example, the

proportion of rare alleles in the olive fly data set is

much smaller and the chances of likelihood estimates

being larger than the F-statistic estimates should be

greater. Another possible explanation is that there is

one null allele at each of the loci used and this is not

accounted for in the pseudo-likelihood calculation.

The data for the likelihood method (allelic counts)

were actually converted from the allele frequency data

listed in Table 1 of Krimbas & Tsakas (1970).

Using the present pseudo-likelihood method

(program), the analysis of the data set is completed

without computational difficulty. It takes about

60–120 min for a PIII PC to obtain the likelihood

estimates of effective size and their confidence

intervals, with 2N
e
taking values as high as 100000 in

the iterations.

6. Discussion

In the present study the previous maximum likelihood

approach to estimating effective population size using

temporal data on gene frequencies (W&S99) is

extended by simplifying the computation with several

efficient algorithms, and employing a reasonable

approximation to the likelihood function for multi-

allelic loci. These developments reduce the compu-

tational and storage demands of the likelihood method

considerably, and thus make it possible to assess the

performance of the likelihood method against the F-

statistic method over a wide range of parameters by

extensive simulations. They also enable the use of the

likelihood method to estimate the effective size of

large populations using highly polymorphic loci (e.g.

microsatellites) in practice without much computing

difficulty.

This study confirms the conclusion that the like-

lihood estimator gives more accurate and precise

estimates of N
e
than the F-statistic estimator (W&S99)

under a much wider range of parameters. I have

shown that inclusion of rare alleles is the main cause

for the performance difference. This is understood

since the sample frequency of rare alleles has a more

skewed distribution that cannot be described sat-

isfactorily by the first two moments only. Considering

the widespread use of highly polymorphic markers

(e.g. microsatellites), which inevitably result in a

substantial proportion of rare alleles in samples of

reasonable sizes, the likelihood estimator is obviously

more desirable in practical applications.

The present study has also demonstrated that more

than two alleles per locus can be manipulated in the

likelihood estimator by considering each allele and

pooling all the others, similar to the F-statistic

estimator. Although this treatment does not utilize

fully the marker information available and the

calculated likelihood is only an approximation because

the converted ‘ loci ’ are not completely independent, it

makes the computational problem manageable and

yet provides satisfactory estimates (Tables 1, 3).

Simulations show that the pseudo-likelihood method

gives essentially the same results (in terms of precision

and accuracy) as the full likelihood method for the

case of tri-allelic loci (Table 1). Simulations involving

the same total number of independent alleles but

different combinations of loci with different numbers

of alleles (Table 3) also indicate that the pseudo-

likelihood method works well. It should be noted that

the dependence of allele frequencies at a locus is

partially accounted for by the pseudo-likelihood

method in which the log-likelihood for a k-allelic

locus is calculated as the sum of the log-likelihoods

over the k converted bi-allelic ‘ loci ’ multiplied by a

correction factor (k®1)}k. In practice, Anderson et

al.’s (2000) multi-allele likelihood method can be

applied to small problems because of the high

computational demand, while the pseudo-likelihood

method is appropriate for large problems involving

highly polymorphic loci (many alleles per locus), large

population size or many samples.

The performance of any estimator based on the

temporal changes in gene frequency depends on the

proportion of such changes due to genetic drift

against sampling, and the amount of marker in-

formation. The former is determined approximated

by nt}N
e
, while the latter depends mainly on the

number of independent alleles in the samples. For the

F-statistic estimators, gene frequency is also a decisive

factor when it is close to one or zero. To increase the

precision and accuracy of the temporal estimators, the

sampling intervals, sample size and number of

independent alleles need to be large. These factors

compensate each other to a certain extent. With small

nt}N
e
, for example, a good estimation of N

e
could still

be possible if many independent alleles are used. It

should be pointed out that the temporal approach

applies equally well to populations of all sizes, large or

small. The important determinants are nt}N
e
, the

number of independent alleles used, and gene fre-

quency for the F-statistic estimator.

Both the F-statistic and likelihood methods apply

to non-ideal populations (data not shown). One non-

ideal aspect, non-random mating or population

structure, needs to be considered more carefully,

however, for both likelihood and F-statistic methods.

When matings occur more frequently than at random

between closely related individuals, the genotypic

frequencies depart from Hardy–Weinberg pro-

portions. To estimate the gene frequency, therefore,
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samples need to be taken representatively from the

whole population. Local sampling could result in

biased estimation of N
e

for both estimators. When

samples from a local population are used in the

estimation, the estimate would be close to the effective

size of the local population sampled if the migration

rate and sampling interval are small so that no

migrant genes are sampled. On the contrary, the

estimate would be close to the effective size of the

entire population if the migration rate and}or sam-

pling interval are}is large even though samples are

drawn from a local population. Without knowing the

genetic structure of the population under study, it is

better to draw samples from the entire population

(Nei & Tajima, 1981).

Except for sampling and genetic drift, systematic

forces can also cause a shift in gene frequency over

time. The assumptions of the absence of these

systematic forces, mutation, selection and migration

(as discussed above), seem to be not very restrictive to

the application of the temporal approach in most

situations. Due to the low mutation rate and usually

short sampling interval,mutation can be safely ignored

(Nei & Tajima, 1981 ; W&S99). Beneficial or del-

eterious genes or neutral genes closely linked to

strongly selected genes can change in frequency as a

result of selection. As long as the change is small

relative to that due to genetic drift because of the

small N
e
, however, selection can also be neglected

without causing much error.

I thank Bill Hill, Bill Jordan, Mark Jordan, Simon Goodman
and an anonymous reviewer for helpful comments on an
earlier version of this paper. I am especially grateful to Eric
Anderson, whose detailed and insightful comments have
helped to improve the previous version of the paper
considerably. The computer program (written in Fortran) is
available upon request.
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