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A B S T R A C T . The mass discrepancy, which has led to the notion of dark matter 

may, in fact, be due to a breakdown of the Newtonian laws which are used to 

determine the masses of galactic systems. W e describe a nonrelativistic theory 

which departs from Newton's in the limit of small accelerations. When one uses 

the modified dynamics to deduce gravitational masses, the need to invoke large 

quantitites of dark matter disappears. W e outline the theory and give criteria for 

deciding which systems are expected to exhibit marked departures from Newtonian 

behaviour. The main body of the talk is a succinct description of the major 

predictions of the theory regarding dynamics within galaxies. 

1. I N T R O D U C T I O N 

We were asked to discuss an approach which is somewhat outside the main-

stream of dark matter studies in that it advocates that dark matter does not actu-

ally exist (at least not in quantities as large as are required to bridge the galactic 

mass discrepancy). Instead we take the view that masses of galaxies and systems 
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320 M. MILGROM AND J. BEKENSTEIN 

of galaxies are grossly overestimated when they are deduced from Newton's laws 

(second law and law of gravity). 

A modified set of dynamical laws ( M O N D ) is used to describe the motions 

in galactic systems and, in particular, to obtain the masses of such systems. We 

find that the mass discrepancy disappears and a number of the observed traits of 

galaxies are unavoidable consequences of M O N D . 

The nature of M O N D and its implications have been described in detail in 

a series of papers (Milgrom I983a,b,c, Bekenstein and Milgrom 1984 and Milgrom 

1984, 1985a,b, referred to hereafter as papers I-VII respectively). W e thought it fit 

to concentrate, in the present talk, on the main predictions which M O N D makes 

concerning dynamics within galaxies. We shall list these predictions and discuss 

each of them briefly. A more detailed discussion can be found in the references. 

W e would also like to bring to your attention the fact that there have been 

suggestions to explain away the mass discrepancy by adopting, unlike M O N D , 

modified forms of the distance dependence of the gravitational force (e.g., Finzi 

1963, Tohline 1983, Sanders 1984). 

2. T H E N O N R E L A T I V I S T I C F O R M U L A T I O N 

2.1 The Basic Postulates 

Most of the major predictions of M O N D follow from the following assumptions 

(Papers I, II). 

(i) Newtonian dynamics breakdown when the accelerations involved are small. 

(ii) The acceleration α of a test body at a distance r from a mass M is given 

by α 2 / α 0 « M G r " 2 in the limit MGr"2 < a0 (or a < a 0 ) . 

Here α υ is an acceleration constant which plays both the role of a transition 

acceleration from the Newtonian to the Non-Newtonian regime and the role of 

a proportionality constant in the modified equation of motion. The value of α υ 

was determined (Paper II) to be about 2 x 10"" 8 ( iZ P

0 / 50kms~ 1 Mpc"" 1 ) 2 c m s - 2 . 

Interestingly, this value is very close to that of C H Q . 

2.2 The Theory W e Now Use 

Of the various interpretations of the basic assumptions and theories which 

may incorporate them, we have found the following the most appealing thus far 

(Paper IV) . It is assumed that M O N D signifies a breakdown of the Newtonian 

law of gravity (leaving the 2nd law intact). The gravitational acceleration field 

tg is still taken to be derivable from a potential g = — V<p. However, φ is now 

related to the density distribution ρ which induces it by the following field equation 

(derivable from a Lagrangian): 

V · [ß{g/a0)g\ = -4π<?/>, (1) 
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instead of the Poisson equation. Here μ(χ) « 1 for χ » 1 so that Poisson's equation 

is restored in the limit g = \g\ > · ao, but μ(χ) « χ for χ <C 1 so that the desired low 

acceleration behaviour is obtained. Equation ( l ) is supplemented by the boundary 

condition at infinity: g 0 for an isolated system and g —> g^ for a system in a 

constant external acceleration field g^. Other than these requirements (and the 

monotonicity of μ which we always require) μ has remained undetermined. 

W e do not yet have a satisfactory relativistic extension of M O N D . 

2.3 A Simplified (approximate) Formulation 

The theory given by eq.(l) is nonlinear and practically impossible to solve 

exactly for all but the simplest configurations. By eliminating ρ between eq.(l) and 

the Poisson equation for the Newtonian acceleration field g^, ( V · g^ = —4irGp) 

we get V · ^{g/ao)g — <JN\ = 0. Equating the field in parentheses to zero (when in 

fact it is in general a non-zero curl field) 

ß{g/a>o)g = 9N, (2) 

seems to give a very good approximation for the field g when test particle motion 

is considered (see e.g. Paper V I ) . For example we find (paper VI) that a galaxy's 

rotation curve derived from eq.(2) differs by at most five percent from that which 

is derived from the exact eq.(l) for the many galaxy models which we have tried. 

Equation (2) is the formulation originally used for M O N D in Papers I-III, and it 

is exact when the system has a plane cylindrical or spherical symmetry. The 

solution of eq.(2) is straightforward for an arbitrary mass distribution. 

2.4 Some General Properties of the Field Equation 

W e have derived in paper IV the following results for systems which are 

governed by eq.( l ) : 

(i) A system of gravitating masses with local accelerations given by the solu-

tion of eq.(l) conserves energy, momentum, and angular momentum. 

(ii) A small, low mass, object in the field of a large massive body is accelerated 

like a test particle (irrespective of whether the accelerations within the object are 

large or small). Thus, for example, stars, binary stars, globular clusters etc. may, 

to a very good approximation, be regarded as test bodies when their motion in 

the field of a galaxy is considered. 

(iii) The motions (relative to the c.o.m.) within a system s, which itself is in 

a field of a mother system S, are affected by the external field (Papers I, IV,VI) 

of S when the latter is not negligible compared with the internal acceleration. 

Thus let m and r be the mass and average radius of s and M and R those of S. 

Comparing the (Newtonian and thus not the actual) accelerations g^n = mG/r2 

and g?x = MG/R2 with each other and each of them with ao will help us decide 
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Fig. 1. A classification of various galactic systems according to their intrinsic and 

c.o.m. accelerations. 

whether to expect strong departures from Newtonian laws in the internal dynamics 

of s . We should, strictly speaking, use the actual accelerations g{n and gex but 

these cannot be written a priori in simple terms of the sizes and masses. However, 

all strong inequalities between gin j 9ex and an are the same as those between 

9in'9ex a n c ^ α ο · Figure 1 shows schematically where various systems of interest 

fall in the gin, 9 ex plane. 

The general rules which apply when the inequalities between gin, 9ex and ao 

are strong axe as follows: 

(i) When either gin CLQ or gex > · ao, the dynamics within s are Newtonian 

(region marked Ν in Figure 1). 

(ii) When 9ex ^ 9in ̂  α0ι the system is approximately isolated (in the 

M O N D sense) and the small acceleration limit of M O N D applies (region marked 

N N in Figure 1). 

(iii) When gin <C gex <C ao, the dynamics are quasi-Newtonian but with a 
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value of the effective gravitational constant being Geff = 0/μ(ρ€Χ/αο) >· G (see 

detailed discussion in Paper V I ) . This case corresponds to the region marked QN 

in Figure 1. 

3. P R E D I C T I O N S W H I C H A R E I N C O M P A T I B L E W I T H D A R K M A T T E R 

One may ask whether all the predictions of M O N D can be mimicked with hid-

den mass, maintaining Newtonian dynamics. This, as we shall now demonstrate, 

is not the case. 

3.1 Negative "Dark Matter" 

If a density p{r) gives rise to an acceleration field g{r) according to M O N D , 

the only way we could make the measured accelerations in this field consistent 

with Newtonian dynamics is by assuming that the actual density distribution is 

ρ* = — ( 4 π ο ) - 1 ν · g. However, it can be shown (Paper VII) that for various 

configurations ρ* < ρ or even p* < 0. Insisting on describing such systems with 

Newtonian dynamics will imply that the system contains negative mass densities 

which is unacceptable. For example in any binary galaxy system there is a region 

(shown in Figure 2 for galaxies of equal mass) where one will find negative density 

if he insists on using Newtonian dynamics to explain the measured acceleration 

field. 

m 

m 
Fig. 2. The region of negative Newtonian density in a binary galaxy system. 

3.2 Breakdown of the Strong Equivalence Principle (SEP) 

M O N D does not satisfy the strong equivalence principle (SEP) even in the 

nonrelativistic regime. Any observed manifestation of this fact will point to the 
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breakdown of Newton laws. Examples are discussed in Papers IV and V I . For in-

stance, a self-gravitating many-particle system (such as a gas cloud) with isotropic 

pressure (or velocity dispersion) in an external field gex and with gin < gex < QQ 

will not be spherical (as in the Newtonian case) even when gex is exactly constant. 

It will be an ellipsoid of revolution with its long (symmetry) axis along gex , in 

conflict with the SEP. 

3.3 Light Bending 

As we do not yet have a relativistic generalization of M O N D , we cannot 

predict the nature or strength of light bending in a gravitational field. There is 

however no reason we can think of why the same fictitious mass distribution will 

be required to explain the trajectories of light rays and those of massive particles 

in the field of an object such as a galaxy. In fact, in a toy relativistic model 

we studied, an attempt to explain light bending and say the rotation curve of a 

massive body (in the regime g <C a 0 ) , assuming the conventional dynamics, will 

fail. 

4 . O T H E R P R E D I C T I O N S C O N C E R N I N G G A L A X I E S 

Many of the consequences of M O N D which we list below involve galaxy prop-

erties that have already been observed. However, it has not been known how 

strong and general these observed characteristics are and, for that matter, what 

their exact nature is. These observations do not conflict with the dark matter 

hypothesis and, in fact, have been taken to reflect various properties of dark halos 

(for example, asymptotically flat rotation curves are interpreted as resulting from 

a r~"2 behaviour of the dark halo's density law).On the other hand, those regulari-

ties in galaxy appearance are also not predictions of the dark matter hypothesis.In 

M O N D they are exact general and unavoidable predictions. 

4.1 Disc Galaxies 

4.1.1. Rotation curves. The rotation curve of a galaxy deduced from the "ob-

served" mass distribution using M O N D should agree with the observed rotation 

curve. There are sub-predictions of this general one which do not require the full 

knowledge of the galaxy's rotation curve or mass distribution (see paper II). 

(i) The velocity of a test body in a circular orbit around an isolated galaxy 

should become independent of the radius of the orbit at large radii. 

(ii) The asymptotic circular velocity V Q O depends only on the total mass M 

of the galaxy via = aç>GM. 

(iii) In high rotational velocity galaxies (such that V^/h > ao , where h is 

the galaxy's scale length), the local M/L value (as deduced from Newton's laws) 

should be constant at small radii and then start to increase around the radius 
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where V2/r — CLQ. 

(iv) Very low surface density (LSD) galaxies are particularly good test cases 

because of the following reasons: 

a. When the average surface density is very small (Σ) < Σο Ξ a0G~~l, the 

accelerations are much smaller than ao and hence we predict large departures from 

Newtonian behaviour. 

b. LSD'S tend to be bulgeless so there are fewerparameters involved (Carignan 

and Freeman 1985). 

c. Since we are dealing with a system where g <C ao everywhere we do not 

require the exact form of μ{χ) and it is a good approximation to use μ(χ) = χ . 

d. All the uncertainties involved in comparing calculated and measured ro-

tation curves (galaxy's distance, inclination, extinction, M/L, ao etc.) lump 

into one multiplicative factor and the test of M O N D which such galaxies offer 

is much more clear-cut. [In Newtonian dynamics the dimensionless rotation curve 

t/(r) = V ( r ) / V o o , depends only on the mass distribution in the galaxy but not 

on the total amount of mass say. In M O N D v(r) also depends on an additional 

parameter, say the average surface density. For instance, two pure exponential disc 

galaxies may have very different - looking rotation curves (see e.g. the model 

curves in paper II). The point we are making here is that when (Σ) <C Σο there 

exist some similarity laws which eqs.(l)(2) obey and which make v(r) depend on 

the mass distribution only.All this is discussed in detail in papers II,VI]. 

On the other hand, LSDdiskstendtocontainrelatively large quantities of hy-

drogen which may contribute subtantially or even dominantly to the radial accel-

eration. Such cases may thus involve additional parameters and they provide less 

of a clear-cut test. 

As a mere demonstration we give in Figure 3 the measured and calculated 

rotation curves for three galaxies. The data for N G C 3198 are taken from van 

Albada et al.(1985). This galaxy has one of the cleanest and the furthest reaching 

rotation curves to date (in optical radii).It is a relatively low-acceleration galaxy 

(maximum acceleration is « .5ao).The data for N G C 247 and N G C 300 are taken 

from Carignan and Freeman(l985). These galaxies may be considered very low 

acceleration ones. In calculating the M O N D curves we used the approximate 

eq.(2), assumed pure exponential discs, and used the values of the scale length s 

given in the above references. The choice of μ(χ) does not affect the fit much. We 

have only one free parameter for each galaxy. This may be taken as the value of 

M/L assuming that all the others are as given by the observers (they all lump 

into one factor anyway when g <C ao). The value of M/L used is given beside each 

curve. 

4.1.2. Surface densities. The constant ao defines a quantity with the dimen-

sion of mass surface density Σο = aoG""1 which we predict to play an important 

role in galaxy dynamics. When a galaxy has an average surface density (Σ) » Σο, 

its dynamics will be Newtonian out to large radii (compared say with the half-mass 
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Fig. 3 M O N D rotation curves compared with observations for three galaxies. 

radius). In this case there will be a range of radii with a Keplerian decline of the 

rotational velocity before it reaches the asymptotic value Vqq. We found (Paper 

II) that for the velocity curve to remain approximately flat down to small radii 

we must have (Σ) « Σο. When (Σ) » Σο , the rotation curve should exhibit an 

appreciable hump. When (Σ) <C Σο , the velocity rises slowly, peaks at a few scale 
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length s, and then decreases by a few percent to its asymptotic value. Thus if 

galaxies are not observed to have considerbly humped rotation curves they should 

all have (Σ) < Σ 0 . 

4.1.3. The Port discrepancy. Further predictions can be made which concern the 

dynamics of motions perpendicular to the plane of a thin planar galactic disc. 

Recent results of such analysis near the sun by Bahcall (1984) strengthen re-

sults from earlier reports starting with Oort(1960) showing that, near the sun, 

the dynamically determined mass is larger than that which is accounted for by 

known components. A detailed analysis of the expected fictitious "dark matter" 

distribution in very thin discs is given in Paper VII . Here we give only the pre-

dictions which are based on the further approximations that a. The accelerations 

perpendicular to the plane are small compared with the radial acceleration, b. 

The density in the disc is large compared with the density of the galaxy averaged 

within the galactic radius r (ρ » Μ / 4 π τ - 3 ) . Both approximations are good near 

the sun up to a height of a few hundred parsecs above the galactic plane. Under 

these conditions we find that the dynamics are Newtonian but with an effective 

gravitational constant Ge// = G/μ(ν^/τΘα0), where V 0 and r 0 are the galactic 

orbital velocity and radius at the sun's position. Thus we predict that when the 

above approximations are valid: 

(i) The distribution of disc "dark matter" will be found to be the same as 

that of the visible mass. 

(ii) The Oort discrepancy factor,which according to M O N D is 1//^^J/r©^), 
is the same as that for the total galactic mass discrepancy within the orbit of the 

sun. 

(iii) The same factor appears (albeit multiplied by an additional parameter 

of order unity) in the dynamics of open cluster or very wide binaries in the solar 

neighbourhood (see Paper IV on the asymptotic field of a mass in a constant 

external field and also Paper V I on an N-body system in an external field). 

4.2 Elliptical Galaxies 

W e work on the premise that galaxies contain no appreciable quantities of 

dark matter. W e should thus be able to understand elliptical galaxies' light dis-

tribution and velocity dispersions selfconsistently. Unfortunately our analysis is 

beset by the same uncertainties which stand in the way of conventional analyses, 

i.e., those involved in deducing space mass distributions from surface brightnesses 

and velocity distributions from line-of-sight velocity dispersions. We can follow 

one of the two avenues which others before us have taken. We can make some as-

sumptions about the stellar distribution function leaving certain parameters which 

specify it free. One then asks how such model systems look if they obey M O N D in-

stead of the Poisson equation, and to what extent they resemble the astronomical 

systems which they purport to represent. 
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It has been popular with model makers to describe ellipticals as some va-

riety of isothermal spheres. We have studied in paper V self-gravitating, many-

particle, spherical systems with radius independent radial and tangential velocity 

dispersions, assuming M O N D . The following are the major traits of such models 

which are independent of the values of the parameters which determine their exact 

structure (velocity dispersion,ratio of radial to tangential dispersion, etc.). 

(i) All such spheres have a finite mass (unlike their Newtonian cousins) and 

their density distribution tends to a power law asymptotically p(r) —> r ~ a , with 

a > 3. 

(ii) The surface density constant Σο introduced earlier is an upper limit on 

the average surface density which such isothermal spheres can have. 

(iii) The total mass M of a sphere is approximately proportional to the fourth 

power of the space velocity dispersion σ3: 

{aoG)-1 < Μ/σ\ < 2{a0G)~l. (3) 

Alternatively we may simply try to map the test-particle acceleration field 

of ellipticals and see if it agrees with that calculated from the observed light 

distribution, with reasonable M/L values, using M O N D . In this conection we can 

make the following predictions: 

(i) In ellipticals with test-particle gas discs the rotation curve of the disc will 

be that which M O N D dictates for the observed light distribution. 

(ii) Dwarf ellipticals or spheroidals with (Σ) <C Σο will be found to contain 

large quantities of dark matter when treated Newtonically (see more details in 

paper II). 

(iii) The observed temperature and density distributions in x-ray-emitting en-

velopes of ellipticals (such as described by Forman et al. 1985) will be those given 

by M O N D (straightforwardly deduced from eq. (2), which is exact for spherical 

systems, or numerically from eq.(l) in the more general case). 

The M/L values one obtains in this way,ίοτ individual galaxies from the ex-

isting data are rather uncertain. But it is interesting to see if there is a correlation 

of the Newtonian M/L values with the accelerations. We plot in Figure 4 Forman 

et al.'s values of M/L against the (Newtonian) accelerations at Rmax (value 

of radius where the M/L values are estimated, taken from Forman et al.) We 

use gjv rather than g because the first depends only on observed quantities and 

not e.g. on the form of μ(χ) or the value of ao. We take g Ν = L(M / L)tG / R^ax-

Here (M/L)t is an assumed stellar value of M/L. 

The values of M/L given by Forman et al. are based on a single temperature 

of Τ = 1 K e V for all the galaxies. For some, an actual uncertainty range of Τ is 

given (in some cases not including 1 K e V ) . W e also plot the range of M/L values 

which corresponds to the temperature uncertainties. 
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Fig. 4 Newtonian M / L values (as given by Forman et. al.1985) plotted against the 

Newtonian accelerations for early-type galaxies with x-ray envelopes ( · ) . Vertical 

bars indicate the range of M/L corresonding to the envelope's temperature un-

certainty range. The lines show the predictions of M O N D for point-mass galaxies 

with stellar M/L value (M/L)t for different forms of μ(χ) and values of a0. 
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DISCUSSION 

SCHECHTER: Would you tell us something about wide binaries? 

MILGROM: For wide binaries, the acceleration is < ag; in fact, the 
acceleration around a 1 M Q star becomes equal to ag at a fraction of a 
parsec, ~ 5000 AU radius. On the other hand, these binaries are in the 
solar neighborhood, so even if you make the separations very large, the 
size of the mass discrepancy is limited by the acceleration in the 
Galaxy. So you expect to find a mass discrepancy which is of the order 
of the Oort limit. 

J. BAHCALL: Perhaps Scott Tremaine could say what is required 
observationally to test the modified dynamics using wide binaries. 

TREMAINE: The Milgrom-Bekenstein theory predicts that there should 
appear to be "dark matter" in wide binary stars in the solar 
neighborhood. To measure the masses of wide binaries, you would need 
velocity measurements of ~ 10 2 binaries with a resolution of 0.1 km s""* 
or better. The mass measurement is subject to most of the problems 
which plague mass measurements in binary galaxies; in addition, you have 
to worry about velocity perturbations due to dark companion stars. 

OSTRIKER: What happens when we apply your formulation to the Local 
Group? It should apply, because the motions are non-relativistic and 
the Local Group is quite isolated. When I looked at this, I had trouble 
getting the orbits of Andromeda and the Galaxy to come out right in the 
time available. 

MILGROM: So I T11 answer you for the fifth time, Jerry, just for the 
record. What Jerry is saying is that, if we assume that M31 and the 
Galaxy are on radial orbits toward each other, and if we try to 
calculate, assuming modified dynamics, how long ago the Galaxy and 
Andromeda were close together, we find a few χ 10^ years, considerably 
less than the Hubble time. Jerry worried that this might be destructive 
to the two galaxies. My standard answer is that if the systems have a 
tangential velocity of only 50 - 60 km s~^, they would never have gotten 
closer together than ~ 150 kpc. 

OSTRIKER: I just wanted to give you the opportunity to say it to this 
large audience (laughter). 

VAN DER KRUIT: As a specific case of what Vera Rubin illustrated 
earlier, I would like to mention the two edge-on disk galaxies NGC 7814 
and NGC 891. These have comparable distances and angular sizes. 
Between lf and 6f radius, both systems have flat rotation curves of 220 
km s" 1 amplitude. Despite this, the light distribution of NGC 7814 
consists almost entirely of a centrally concentrated r 1 / t +-law spheroid 
and NGC 891 almost entirely of a much more distended exponential disk. 
I do not understand how any gravitational law can give identical 
rotation curves if these light distributions trace mass distributions. 
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MILGROM: Vera mentioned two apparently odd phenomena: galaxies with 
similar light distributions but different rotation curves and galaxies 
like yours with different light distributions but similar rotation 
curves. The latter is actually not odd at all. You can have a 
spherical mass and a thin disk with arbitrary spheroid-to-disk mass 
ratio and with exactly the same rotation curve. This is true in 
Newtonian mechanics as well as in MOND. The first phenomenon, however, 
is truly puzzling. If you stick to Newtonian dynamics, you have to say 
that the two galaxies must have very different halos resulting in 
different rotation curves. MOND predicts exactly such different 
rotation curves for galaxies with similar light distributions, as I have 
explained in connection with the surface density constant Σ 0. You can 
see this effect clearly in Figure 2 of my paper on galaxies (Paper II of 
the references). 

FELTEN: I think it should be mentioned that a theory like this causes 
big problems for cosmology. 

MILGROM: It is not true at all that a theory like ours has problems 
with cosmology. What is true is that we cannot derive cosmology using 
Newtonian arguments, so we have to await a relativistic generalization 
of MOND. I do not forsee any potential problems. 

FABER: Without a theory of relativity, it is not fair to ask you to do 
cosmology, but to what distances do you think you can apply your 
formulation? In particular, can you apply it to the Local Supercluster? 

MILGROM: The formulation can be applied when the mass contained in the 
region of overdensity you1re considering is large compared with the 
expected average mass within the same volume. The Local Supercluster is 
such a case. 

FABER: Why is that a good criterion? 

MILGROM: Because I can then assume that the acceleration is primarily 
determined by the mass that is actually there in the region of 
overdensity. Of course, another criterion is that velocities should be 
non-relativistic, which is certainly the case in the Local Supercluster. 

FABER: So the Virgo Cluster meets your requirements. 

MILGROM: Yes. I havenTt kept up with the new developments, but when I 
wrote my first paper I analyzed the then-existing information on 
Virgocentric infall, and found M/L ~ 1 . 

DAVIS: I don't think that the Virgo Cluster has a big mass overdensity. 

MILGROM: Then the corresponding uncertainty in M/L is a factor of order 
2. There are other factor-of-two uncertainties also, such as any non-
Virgocentric acceleration components due to matter outside Virgo. 
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WHITE: The large hydrostatic atmospheres in galaxy clusters offer an 
interesting test of your theory. The x-ray data provide a good lower 
limit on the observed M(r), namely the observed mass in gas. The 
accelerations in clusters place them just inside your weak-acceleration 
regime, and your theory makes a prediction for the velocity dispersion 
of the galaxies and for the temperature of the gas. Have you made any 
models for the structure of these systems to check that you can get 
agreement with observations for the same value of a Q that you need in 
galaxies? 

MILGROM: No, we haven't looked at this question. 

ISHIZAWA: An action principle has been applied to the gravitational 
model by Bekenstein and Milgrom (1984, Ap. J., 286, 7). Starting from 
the action of classical general relativity with a negative cosmological 
constant Λ in the weak limit of gravitation, we have obtained a system 
of the Poisson equation and natural boundary conditions. They are 
completely equivalent to an incompressible, irrotational flow surrounded 
by a constant-pressure gas. As a natural consequence, our model leads 
to a two-phase Universe, the gravitational channels in which the 
gravitational lines of force are confined (filamentary matter fields) 
and the gravitational vacuum (voids). 

VISHNIAC: I wonder if you could comment on the constraints imposed on 
your theory by laboratory experiments designed to measure the 
gravitational constant. 

MILGROM: A system which is embedded in a strong external acceleration 
field such as that of the Earth (g ~ 1 0 1 1 ag) is very nearly Newtonian. 
The deviation can be expressed by a slightly larger effective 
gravitational constant, G ef£ « G/uilO

11)« We have no idea how fast μ(χ) 
approaches unity when its argument becomes large, but there are limits 
which we can put from the perihelion shift of Mercury and other solar-
system measurements (Paper I). These imply that detecting the effect in 
laboratory experiments is far beyond present capabilities. 
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