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Abstract. We study a class of maps of the real line into itself which are degree one
liftings of maps of the circle and have discontinuities only of a special type. This
class contains liftings of continuous degree one maps of the circle, lifting of increasing
mod 1 maps and some maps arising from Newton's method of solving equations.
We generalize some results known for the continuous case.

0. Introduction
We study liftings of maps of a circle into itself which are not necessarily continuous.
If a map of a circle is discontinuous, then its lifting to the map of a real line into
itself is not determined uniquely up to shifts by integers, as in the case of continuous
maps. Therefore some notions used here, as rotation numbers, will actually depend
on the lifting, not only on the map of the circle itself.

If a map of a circle is discontinuous, then it is only a matter of introducing a few
more discontinuities to consider it as a map of an interval into itself; conversely, a
map of an interval into itself can be considered as a map of a circle into itself.

Although throughout most of this paper the maps of the real line are investigated,
this is only a means of understanding the dynamics of underlying maps of a circle
or of an interval.

1. Notation, definitions, statement of results
The points of the real line R will be denoted usually by capital letters X, Y, Z, T;
the points of the circle S' = {zeC: |z| = l} by small letters x, y, z; the integers
(elements of Z) by small letters i, j , k, I, m, n, p, q, r, s, t, u, v and Greek v. If we
write pi' q then we always mean that p, qeZ and q > 0; if we write n > 0 or n>0,
we mean that additionally n e Z. The largest common divisor of p and q will be
denoted by (p, q). If (p is a map and (X, Y) an interval then instead of <p({X, Y))
we shall write <p{X, Y).

We denote by e-.U^S1 the natural projection e(X) = exp {2-n-iX) (here excep-
tionally i = V-l).

A map F: U -* R is called a lifting of a map f:Sx^Sl if e ° F =f ° e and there is
k e Z such that F(X +1) = F(X) + k for all X e U. This k is called the degree of F.
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Note that since we do not say anything about continuity here, every / has liftings
of all degrees.

A map F: U -»IR will be called an old map (old stands for 'degree one lifting' with
the order of letters changed for mnemonic reasons) if F(X +1) = F(X) +1 for all
X € U. Clearly, F is an old map if and only if there exists / : S1 -» S1 such that F is
a lifting of / of degree one. It is easy to see that if F is an old map then
F(X + k) = F(X) + k for all XeU and keZ and that iterates of an old map are
old maps.

We shall say that a point X eIR is periodic mod 1 of period q and rotation number
p/q for an old map F if F"(X)-X=p and F'(X)-X&Z for i = 1, 2 , . . . , q-\.
Clearly, if F is a lifting of/ then X is periodic mod 1 for F if and only if e(X) is
periodic for / and their periods are equal.

A map F: R -» R will be called heavy if for every X e R the finite limits

F(X + )= lim F{Y) and F(X-)= lim F(Y)

exist, and F(X - ) > F(X) a F(X +) (a heavy map can fall down but cannot jump
up).

Notice that a heavy map is bounded on bounded sets. Notice also that an iterate
of a heavy map need not be heavy.

For an old map F we set

a(F)= inf l iminf - (F" (X)-X) ,

b(F) = sup lim sup - (Fn(X)-X).

For a heavy map F we define maps F,, Fr by

F,(X) = inf{F(r): Y>X),

Fr(X) = sup {F(Y):Y< X}

(cf. [1]).
We prove the following theorems.

THEOREM A. Let F: U -> IR fee an old heavy map. Then
(a) if F has a periodic mod 1 point of rotation number p/q then a(F)^p/q<b(F);
(b) ifa(F)<p/q < b(F) then F has a periodic mod 1 point of period q and rotation

number p/q.

THEOREM B. Let t*-*F, be a map from an interval into the space of old heavy maps
such that the maps t>-*(Ft)i and f i-»(F,)r are continuous, ((F,)/ and (F,)r are regarded
as elements of the space of maps ofU into itself with the topology of uniform convergence).
Then the maps ti-*a(F,) and t>-+b(F,) are also continuous.

THEOREM C. Let F:R-»R be an old heavy map. Ifa(F) (b(F)) is irrational then for
alld>0 we havea{F+d) > a(F) (respectively b(F+ 6) > b(F)), where themapF+ 6
is defined by (F+ 6){X) = F(X) + 0.
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THEOREM D. Let F: U -*• U be an old heavy map, and let a(F) < a < /8 s b(F). Then
there exists TeU such that

liminf-(F"(r)-D = o,
n->oo n

Hmsup-(Fn(T)-r) = j8.
n-»oo n

All the above theorems show that the situation for old heavy maps is similar to the
one for continuous maps of degree one of a circle. The interval [a(F), b(F)] may
be called the rotation interval of F. Then theorem A gives a result analogous (although
weaker) to the theorem of Sarkovskii type for continuous maps of degree one [6].
It must also be related to the results of Hofbauer [3] for monotone mod 1 maps.
Theorem B is a generalization of the result of Newhouse, Palis and Takens [8].
Theorem C is a generalization of the result of Ito [5]. Theorem D shows that in our
case the rotation set is closed (as in the continuous case, see [4]), even in a strong
sense (see [7, corollary 1.5]). It also generalizes the result of Bamon, Malta, Pacifico
and Takens [2].

2. Heavy maps
We prove several lemmas on heavy maps.

LEMMA 2.1. Let F be a heavy map. Then for every X e R
(a) l i m ^ j
(b) linw

Proof. Fix an arbitrary S > 0. Then there exists e > 0 such that if Ye [X - e, X) then

F ( X - ) - S < F ( Y ) < F ( X - ) + S,

and if Ye(X, X + e] then

Since F(X-)> F(X)>F(X + ), |X-Y|<e implies F(X + ) -S<F( Y)<
F( - ) + 5. Therefore

lim (sup {F( Y): |X - Y| < e}) s F(X - )
e-*0

and

lim(inf{F(Y):|X-Y|<e})>F(X + )
£-•0

The reverse inequalities are obvious. •

LEMMA 2.2. Let F be a heavy map. Then the maps F, and Fr are continuous and
non-decreasing.

Proof. We prove the statement for Fr; the proof for F( is analogous.
If X, s X2 then {Y: Y^X^^iY: Y< X2} and therefore Fr(X.) < Fr(X2). Hence,

Fr is non-decreasing.
If X 6IR and e > 0 then

Fr(X + e) = max (Fr(X - e), sup {F( Y): |X - Y\ < e}).
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By lemma 2.1 we obtain

lim Fr(X + e) = max (lim Fr(X - e), F(X - ) ) .
e->0 e->0

For every K e i w e have F( Y) < FT( Y) and therefore F(X - ) < limE^0 f v ( * - e).
Hence,

lim Fr(X + e) = lim Fr(X - e).
£-.0 e-fO

Thus, Fr is continuous. •

For a map G:IR-»IR we denote by Const (G) the union of all open intervals on

which G is constant.

LEMMA 2.3. Let F be a heavy map. Then
(a) »/XeR\Const(F,) then F,(X) = F(X + );
(b) i/XeR\Const(Fr) then Fr(X) = F(X-).

Proof. We prove (b); the proof of (a) is analogous.
Suppose that Fr(X) * F(X-). Since for every YeUwe have F( Y)< Fr( Y), we

obtain F ( X - ) < F r ( X ) . Therefore, by lemma 2.1(a), if e is sufficiently small and
\X~Y\se, then F(Y)<Fr(X). Hence, if | X - Y | < E then Fr(Y) = Fr(X), and
consequently X e Const (Fr). D

LEMMA 2.4. Let F be a heavy map. Let Xt < Yt, F(Xt +) < Xi+U F{ Y,,-) > yf+I /or
/ = 0, 1, 2 , . . . . 77ien there exist increasing maps i/rj: (Xp Yj) -»(X,, V,) /or a//1, j
0< i£j, such that

( i ) < # o ^ = ^ f
(ii) F ^ ' ° ^ = i
(iii) ^(Z) = ^(Z +) I / 0 < / < J , Z 6 (

(iv) i/ 0 < i< / <_/ and F(X, +) < X,+1,

(v) if 0s is I <j and F(Y,-)>Yl+u then

Proo/ Fix i>0. We shall prove first that there exists an increasing map
<pt: (Xi+1, Yl+l) + (Xh Y,) such that

(ii') Fo^f=id(X.+liy.+l);
(Hi') <Pi{z) = <Pi{z+) i fze(x i + 1 , y+ 1) ;
(iv') if F(X, + )<X,+ 1 then inf 9i(Xi+l, Yt+l)>X,;
(v') if F( y - ) > y + 1 then sup <p,(Xj+1, y+ 1) < y.

It is easy to see that a map G, defined by

G{Z)=\F(Z) ifx,<z<y,
iF(y-) ifz>y,

is a heavy map. By lemma 2.2, Gr is non-decreasing and continuous, and hence
Gr(R)3[F(X + ), F ( y - ) ] . Since (XI+1, y,+ I )c (F(X + ), F ( y - ) ) , we can define
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^ by

<pt (Z) = sup {T:Gr(T) = Z}

and we have <Pj(Z)e (X,, Y,) for all Ze{Xi+l, Fi+1).
By definition, if Z e (Xi+,, Yi+1), then <p,(Z)e (X,-, Yj)\Const (Gr). By lemma

2.3, we have then

If G(<p,(Z)-)>G(<p,-(Z)) then also G(<p,(Z)-)> G(<p,(Z) + ), and consequently
if B is sufficiently small then Gr(<p,(Z) + e) = Gr((pt(Z)). This contradicts the defini-
tion of <Pi(Z). Hence, G(<p,(Z)-) = G(«p,(Z)). Thus, we obtain

Z = Gr(<pt(Z)) = G(<pt{Z) -) = G(<pt{Z)) = F(<p,(Z)).

This proves (ii').
Since Gr is non-decreasing, <p, is also non-decreasing. By the definition, it is

one-to-one. Hence, it is increasing.
Since <pt is increasing, <p,(Z + )s<p,(Z) for Ze (X , + 1 , Yi+1). By the continuity of

Gr and the definition of <pt, we obtain equality. This proves (iii').
Assume that F(Xj + )<X, + 1 . Then G(X,)<X1 + 1, and since Gr is continuous, we

obtain (iv')- The proof of (v') is analogous.
Now, if 0^i=j then we set i/̂  = id(xl,v,); if O s i < ; then we set i/r{ =

<pt ° <pi+x o . • . o <pj_1. The map i/rj is increasing because all <p,- are increasing (the
identity map is also increasing).

The property (i) is satisfied by the definition of the maps t/rj- The property (ii)
follows from (ii'); the property (iii) from (iii') and the fact that all <pk are increasing.

We prove (iv). Write for 0 ^ r < s,

as
r = infiljs

r(Xs,Ys).

I f 0 s m < r < s < ( and as
r<a'r(a

s
r^a'r) then, since t//r

m is increasing and by (i), we
have a*m<a'm (respectively as

m<a'm). In particular, since for 0 s r < j < i always
as

saa's (clearly, as
s = Xs), we obtain then as

r<a'r. Thus, if 0 ^ i s / <j and F(X, + ) <
Xl+i then by (iv'), a\< a',+1. Hence,

which proves (iv). The proof of (v) is analogous D

3. Old maps
We shall use the following three very simple lemmas (see e.g. [6], [7], [1]).

LEMMA 3.1. Let F, G:U->U be maps such that F < G. If either F or G is non-decreasing
then F" < G" for all n > 0.

LEMMA 3.2. Let G be an old continuous non-decreasing map. Then for every XeIR
the limit

1 ,
hm — (C

exists and is independent of X.
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The above limit is called the rotation number of G and is denoted by p{G).

LEMMA 3.3. Let G be an old continuous non-decreasing map, let p, qeZ, q>0. Then
p{G)>p/q implies G"(X)-X>p for every X eU, and p(G)<p/q implies
Gq{X)-X<p for every X<=M.

We shall call a non-empty closed set B <= R minimal for an old continuous map G
if

(i) G{B)<zB;
(ii) if XeB and kel then X + keB;
(iii) every non-empty closed set satisfying (i) and (ii) and contained in B is equal

to B.
If G is an old continuous non-decreasing map then it is a lifting of a continuous

map g: S1 -» S1 of degree one. It is easy to see that B is a minimal set for G if and
only if e(B) is a mat set for g (see [7]) and B = e '

LEMMA 3.4. Let G be an old continuous non-decreasing map. Then there exists a set
B, minimal for G and disjoint from Const (G). If Const (G) is non-empty then such
B is nowhere dense.

Proof. Let G be a lifting of g. By theorem A of [7] (note that if G is non-decreasing
then the proof of this theorem is very easy) there exists a mat set A c S1. We consider
two cases.

Case 1. p(G) is irrational. We take B= e~\A). Clearly, B is a minimal set for G.
Suppose that B n / # 0 for some open interval /<= Const (G). Take xeAne(I).
By the minimality of A, there exists n > 0 such that g"{x) e e(I). Since g is constant
on e(7), we have g"(g"(x)) = g"(x) i.e. g"(x) is a periodic point for g. This
contradicts the assumption that p(g) is irrational. Hence, B n Const (g) = 0 .

By proposition 2.6 (a) of [7], A is either equal to S1 or is nowhere dense.
Hence, if Const (G) is non-empty, then A is nowhere dense. Consequently, B is
also nowhere dense.

Case 2. p(G) is rational. By proposition 3.1 of [7], A is a periodic orbit of g. If
A n e(Const (G)) = 0 , we can take as B the set e~'(A) and it satisfies the required
conditions. Assume that An e(Const (G)) 5*0. Let p(G) = p/q, (p,q) = l. Since
Const (G) is non-empty, Gq-p is not the identity map. Therefore there exist Y,
ZeU such that Y<Z, Gq(Y)=Y + p, Gq(Z) = Z + p and for all Xe(Y,Z),
Gq(X)r*X+p. Clearly, both orbits of y = e(Y) and zee(Z) are mat sets. If at
least one of them is disjoint from e(Const (G)), we can take its inverse image under
e as B and it satisfies all required conditions. Suppose that they both intersect
e(Const(G)). Then there exists an open interval J c R such that gk(y^ee(I) for
some fcsO and g is constant on e(I). Since gq(y) = y, we may assume that 0< k<q.
The set g~k(e(I)) is an open neighbourhood of Y, and gq is constant on it. Therefore,
if e is sufficiently small, then

(
and

(Y+e) + p> Y + p = Gq(Y) = Gq(Y+e).
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Analogously, we obtain for e sufficiently small

{Z~e) + p<Gq(Z-e)

and

(Z + e)+p>G"{Z+e).

Hence, if additionally e < \ { Z - Y), we obtain Y+ e<Z-e and

Gq(Y+e)-{Y+e)-p<0,

Gq(Z-e)-(Z + e)-p>0.

Therefore there exists xe(Y+ e, Z-e) such that Gq{X) - X -p = 0, which contra-
dicts the definition of Y and Z. •

4. Old heavy maps
Now we prove two lemmas on old heavy maps.

LEMMA 4.1. Let F be an old heavy map. Then F, and Fr are old maps.

Proof. We have

Fr(X + 1) = sup {F{Y): Y < X + l} = sup {F(Z + 1): Z < X }

= sup{F(Z) + l : Z < X } = Fr(X) + l,

and hence Fr is an old map. The proof for F, is analogous. •

Notice that although we have not used in the proof the assumption that F is heavy,
we need this assumption to define F, and Fr.

LEMMA 4.2. Let Fbe an old heavy map, letp, <j e Z, cj > 0. Let X, < YJor i = 0 , 1 , . . . , q,
Xq = X0 + p, Yq = Y0 + p, and F(Xf +) < Xi+U F( Y,, - ) > Yi+1 for i = 0 , 1 , . . . , q - 1 .
Then either F(Xt +) = X1+1 for all i e {0 ,1 , . . . , q -1} or F(Yi-)= Yi+l for all i e
{0,1 , . . . , 9 - I } , or there exists Te{X0, Yo) such that F'(T)e{Xh Y,-) for all ie
{0,1,...,q-l] and F"(T)=T+p.

Proof. We define inductively Xn+q = Xn+p, Yn+q = Yn +p for n = 1, 2, 3, Then
the hypotheses of lemma 2.4 are satisfied, and hence there exist increasing maps i/rj
satisfying the conditions (i)-(v) of lemma 2.4.

Assume that F(X, +) < X,+1 and F(Ym-)> Ym+l for some /, m e {0 ,1 , . . . , q -1}.
Set <p = r0- Then, by (iv), inf <p(Xq, Yq)>X0, and by (v), sup <p(Xq, Yq)<Y0.

Therefore the set {Ze(X0, Yo): <p(Z+p)>Z} is non-empty and the point T =
sup{Ze(X0, Yo): <p(Z + p)>Z} belongs to (Xo, Yo). We claim that q>(T+p)=T.
If cp(T + p)<T then for each Ze((p{T + p), T), we have <p(Z + p)<<p(T + p)<Z,
a contradiction. If <p(T+p)> T, then for each Z G (T, <p{T+p)) we have (p(Z+p)>
<p(T+p)>Z, also a contradiction. Hence, indeed, <p(T+p)= T.

From this and from (ii) it follows that

Since for i = 0 , 1 , . . . , q ~ 1 we have F' ° (j/'o = id(x. y.), we obtain

F'(T) = FI(<p(T + p)) = ( F 1 c ^ o ^ ) ( T + p) = ^ ( T

But T+pe (Xq, Yq) and hence F'(T)e ^?(X,, Y,)c (X,, Yt). D
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5. Periodic mod 1 points
In this section we prove theorem A and derive a corollary to it. The essential part
of theorem A can be stated as the following proposition.

PROPOSITION 5.1. Let F be an old heavy map and let p(F,)<p/q<p(Fr). Then F
has a periodic mod 1 point of period q and rotation number p/ q.

Proof. Take k = p/(p, q) and n = q/(p, q). Then k/n =p/q and (k, n) = 1.
Since F, and Fr are old continuous non-decreasing maps (lemmas 2.2 and 4.1),

we obtain by lemma 3.3,

F"(X)-X<k and F"(X)-X>k for all XeU.

Since p(Ft) <p{Fr), we have F, ̂  Fn and therefore F is not non-decreasing. Hence,
Const (F,) and Const (Fr) are non-empty. Thus, by lemma 3.4, there exist nowhere
dense sets B, and Bn minimal for F( and Fr respectively, such that B, n Const (F,) = 0
and Brn Const (Fr) = 0 .

We choose the points Zh Zr e IR in the following way. If B, n Br ̂  0 then we take
Z, = Zr e Bt n Bn If B, n Br = 0 then, since Bt and Br are nowhere dense, closed and
unbounded from both sides, we can take Zt e B\ and ZT e Br such that Zr < Z, and
(Z B Z, )n(B,uB f )=0 .

We have F"r(Zr)-k>ZrlfZr = Z,, then F"r(Zr)-k>Z,. If Zr <Z, then (Zn Z,)n
Br = 0 and since F"(Zr)-keBr (because ZreBr), we obtain F"(Zr)-fcsZ,. But
in this case BrnBt = 0 , and since Z,€ B(, we have F"(Zr)-k^ Z,. Hence, in both
cases F"(Zr)-fe>Z,. In an analogous way we obtain F"(Z,)-k<Zr Thus,

FUZ,)-k<Zr^Z,<F^Zr)-k, (5.1)

Let m be a non-negative integer. We shall show that

F7{F';(Zr)-k)>FT(Zr),\

and

FT(F?(Z,)-k)<F?(Zr),')

F?(F?(Zr)-k)>Fr(Z,).j

Since F"(Zt)-k<Zt and F, is non-decreasing, we have

Fn
If equality holds, then

FTiZ,) = FT{F1{Z,) -k) = FKFTiZ,)) - k,
and F™(Z,) is a periodic mod 1 point of F, with the rotation number k/n. This
contradicts the assumption p(F,)<k/n. Hence, F?{F"{Z,)-k)<FT{Z,). The
second inequality of (5.2) follows analogously.

Since F"(Zt)-k<Zn F,< Fr and F,, Fr are non-decreasing, we obtain by Lemma
3.1.,
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Suppose that the equality holds. Since its left-hand side belongs to Bt and its
right-hand side to Bn we have B, n Br # 0 , and consequently Z, = Zr By (5.2), we
obtain then

F?(Z,) = F?(Zr) = FT(F?(Z,) -k)< FT(Z,),
which contradicts lemma 3.1. Hence, F?(F?(Z,)-k)<FT{Zr). The second
inequality of (5.3) follows analogously.

We set:

lFr(Z,)-fc-p if i = qr,

fFj(Zr) ifO<«<n,

+ p if i = q.

We check that the assumptions of lemma 4.2 are satisfied.
Clearly, Xq = X0 + p and Yq = Y0+p. By (5.3), X, < Yt for all i. We have Xt € B,

and Yj6Br for all i. Since B, n Const (F/) = 0 and Br n Const (Fr) = 0 , and by
lemma 2.3, we have F,(Xt) = F(X, +) and Fr( Y,) = F( Y;, - ) for i = 0 , 1 , . . . , q -1.
Hence, if « does not divide i +1, then F(Xt +) = Xi+1 and F( Yf - ) = Yi+1. By (5.1)
and (5.2) we obtain:

if i = n -1 and (p, g) > 1 then

F(X, +) = FUFnZ,) -k)< F?(Z.) <Z, + k = Xl+l

and

F(Yi-) = Fn
r(Zr)=Yi+u

if i =jn -1 and 1 <j < {p, q) then

F(X, +) = F1(

and

if i = q -1 and (p, 9) > 1 then

and

if i = q —I and (/», 9) = 1 then

F(X, +) = F

and

F(Yt-) = Fn
r(Zr)>Zr+k=Y,

Therefore the assumptions of lemma 4.2 are satisfied and the two first possibilities
of its statement do not hold. Therefore the third one holds, namely there exists
7e (Xo, y0) such that F'(T) e (X,, yf) for i = 0 , 1 , . . . , q and Fq(T) = T+p. Hence,
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T is a per iodic mod 1 point of F with rotat ion number p/q and its period divides
q. Denote this period by m. We have j/m = k/n for some jeZ. Since (k, n) = l, n
divides m. Suppose that m<q. Then m = sn for some s with 1 < s < (p, g) . We have
then Xm = Z, + sfc and Ym = F"r{Zr)-k + sk. Since

/c ksn
j = — • m= = sk,

n n

we have Fm(T)=T+sk. Hence, from Fm(T)e {Xm, Ym) it follows that Te
(ZhF"{Zr)~k). But Te(X0, Y0) = (F';(Zl)-k,Zr). This contradicts (5.1). Hence,
m = q. •

THEOREM A. Lef F: U -» R k a n oW fteauy map. 77ie«
(a) if F has a periodic mod 1 point of rotation numberp/q then a(F)< p/q <b(F);
(b) if a(F) <p/q < b{F) then F has a periodic mod \ point of period q and rotation

number p/q.

Proof. If F has a periodic mod 1 point X of rotation number p/q then clearly
limn^o(l/n)(F"(X)-X)=/>/<7, and hence a{F)<p/q<b{F). This proves (a).

Since F&Fr and Fr is non-decreasing, we have by Lemma 3.1, Fn-&F" for all
n>0 . Hence, b(F)<p(Fr). Analogously, p(F,)<a(F). Therefore if a(F)<p/q<
b(F) then p(Ft)<p/q< p(Fr) and by proposition 5.1, F has a periodic mod 1 point
of period q and rotation number p/q. •

COROLLARY 5.2. Let F be an old heavy map. Then a(F) = p{Ft) and b(F) = p(Fr).

Proof. If p(F,) = p(Fr) then from

it follows that

If p(F,)< p(Fr), then, by proposition 5.1, for every rational number ae(p(F,) ,
p(Fr)), F has a periodic mod 1 point of rotation number a. By theorem A(a),
a € [a(F), b(F)]. Hence, (p(F,), p{Fr)) c [ a (F) , fc(F)]. But p(F,) < fl(F) < b(F) <
p(Fr), and hence p(F,) = a(F) and ^(F,) = b(F). D

6. Dependence ofa(F) and b(F) on F
In this section, we prove theorems B and C.

THEOREM B. Let t>-*Ft be a map from an interval into the space of old heavy maps,
such that the maps t<-*(Ft)t and t<-^(F,)r are continuous ((F,)( and (F,)r are regarded
as elements of the space of maps of U into itself with the topology of uniform
convergence). Then the maps fi-»a(F,) and (•-»fe(F,) are also continuous.

Proof. By corollary 5.2, a(F,) = P((F,),) and 6(F,) = p((F,)r). Since (F,), and (F,)r

are continuous old maps and p({F,)i) = a((F,),), p((F,)r) = a((F,)r), we obtain (see
[8], [6]) that the maps <>-^p((F,),) and <>-»p((F,),.) are continuous. •

It is clear that if F is an old heavy map and 0 e U then F+d (defined by (F+ 0)(X) =
F(X) + 6) is also an old heavy map.
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THEOREM C. Let F:R->U be an old heavy map. Ifa(F) (b(F)) is irrational then for
all 6>0 we have a(F+6)>a(F) (respectively b(F+0)> b(F)).

Proof. Clearly, we have (F+ 0), = F, + 0 and (F+0)r = Fr+0. Hence, by corollary
5.2 and theorem 2 of [5], we obtain a(F+ 0)> a(F) for 0>O if a(F) is irrational
and b(F+ 0) > b(F) if b(F) is irrational. •

Remark. In the above proof, instead of using theorem 2 of [5], we can use the
following simple lemma.

LEMMA 6.1. Let G be a continuous non-decreasing old map with p(G) irrational, and
let6>0. Then p(G+0)>p(G).

Proof. By lemma 3.4, there exists a minimal set B for G. Since p(G) is irrational,
the set Bn[0,1] is infinite, and therefore there exist points X, Y,ZeB such that
X < Z < Y < X + 0. By the minimality of B, there exist n,k<=Z such that n > 0 and
X + k<G"(Y)< r+fc. Therefore, by lemma 3.3, p(G)<k/n. But

>G"(Y)+O>X + k+0

and therefore, again by lemma 3.3, p(G + 0)> k/n. Hence, p(G + 0)>p(G).

•
7. Behaviour of the sequences (( l /n)(F"(X)-X))^= 1

In this section, we prove theorem D and derive a corollary to it.

THEOREM D. Let F: U -» U be an old heavy map and let a(F) < a < B < b(F). Then
there exists TeU such that

liminf-(F"(T)-T) = a,
n-co ft

limsup-(F"(T)-T) = /3.
n-»ao M

Proof. Assume first that a(F) = b(F). Then, by corollary 5.2, a = B = p(F,) = p(Fr).
Since for all n>0 and all teU we have

FUT)-T<Fn(T)-T<Fn
r(T)-T,

we obtain

\im-(Fn(T)-T) = a = B forallTeR.
n-.oo n

Assume now for the rest of the proof that a(F) < b(F). We fix no> l/(b(F) - a(F)).
Then there exist two sequences of integers, (pn)™=no and (rn)™=no such that pjn,
rn/ne(a(F),b(F)) for all «>n0, \imn_oopn/n = a and \imn^xrn/n = B.

We define inductively positive integers in, jm mn, vn and integers km un (n = n0,

jn is such that

vn n
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where

in+i is such that

where

" n = K +jnrn, vn = mn +jnn;

K + X Pn->

mn

1

kn+1 -un mn+l = 1).

By lemma 3.4, there exist sets B, and Bn minimal for F, and Fr respectively and
such that B, n Const (F,) = 0 and Br n Const (Fr) = 0 . We choose Z, e B, and Zr e Br

in such a way that Z, < Zra and if B, n Br 5̂  0 then Z, 6 B, n Bo Zr = Z, +1 . We set:
X, = F|(Z,), Y, = F'r(Zr) forr = 0 , l , . . . , n o - l ;
xmn+,n+, = Fj(z,+fcn +7>B), y ^ + j ^ , = F : ( Z , +
7 = 0 , l , . . . , 7 « - l and r = 0 , 1 , . . . , n - 1 ;

for i = 0 , 1 , . . . , /„+, - 1 and t = 0 , 1 , . . . , n.
Clearly, all points Xq belong to B, and all points Yq belong to Bn From the

definition it follows that if q is not of the form mn +jn - 1 or vn + /'(« +1) - 1 then
F,(Xq) = Xq+l and Fr( y,) = Yq+l. By lemma 2.3, we then have F(Xq +) = F,(Xq) =
X,+1 and F(Yq-) = Fr(Yq) = Y,+1.

Let q = mn +jn -1, je{l, 2 , . . . , ; „} . Then

Fl(Xq) = F^Xm^+y^Dn).

Since p(F,) = a(F)<rn/n, we have (by lemma 3.3) F"(X)<X + rn for all XeR.
Hence

(7 -

< Z, + = Xmn+jn = Xq.

Therefore F,(X,)<X9 + I , and by lemma 2.3, F(X, + )<X, + I . Analogously,
F(Yq-)> Yq+i. In the same way one can prove that F(X, +) < Xq+1 and F(Yq-)>

If q is of the form mn+jn or vn + i(n + l), then clearly Xq< Yq. To prove that
this inequality holds also for other q, it is enough to show that if f>0 then
F'i(Zi) < F\{Zr). Since F/^s Fr and both are non-decreasing, we have by lemma 3.1,
F{ < F'r and therefore F',(Z,) < F'r{Zr). If equality holds, then B, n Br ?± 0 and by
the definition of Z, and Z^ we have Zr = Z, +1 . Then

F'r{Zr) = F'r(Z, +1) = FKZ,) +1 > F,'(Z,) +1 > F\(Z,),

so equality cannot hold. Hence, Ff(Z,) < F,(Zr).
Thus, the hypotheses of lemma 2.4 are satisfied and F(X,, +) < Xq+l, F(Yq-)>

Yq+l for infinitely many q. Therefore there exist increasing maps 1/̂ : (X ,̂ YJ)-»
(X,, Yi) for all i, j with 0 s / < j , such that the conditions (i)-(iii) of lemma 2.4 are
satisfied and there exists an increasing sequence (/„)"=! of non-negative integers
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such that for all n
(iv") «,„<«,„.,,
(v") /?,„>/?,„,„

where aq = inf Aq,
Clearly, Ao => A,

&q = sup Aq, Aq = t/'JK*,, F,) for g = 0,1,2,
=> 4 2 =>..., and therefore

By (iv") and (v"), a, < 0q for all q.
We set T= lim,,,^ /?,. We claim that Te C\ Ar B v (v"), for each n there exists

Tn e A,n such that /3,n+l < Tn < /3V Hence, T, > T2 > T3 > • • •, and l im,,^ Tn = T. For
a fixed q, there exists n, such that if n > 1 then /„ > q, and consequently Tn e A,.
Since <̂o is increasing, the sequence ((i^o) 1(7"«))"=n, is decreasing. Since
(ilfl)~\Tn)<z(Xq, Yq), it converges to some Ze[Xq, Yq) as M-*OO. If Z = Xq, then
aq = limn^oo Tn = T, which contradicts (iv"). Hence, Ze{Xq, Yq). By (iii), we have
^o(Z) = limn^co Tn= T, and therefore T^Aq. Hence, indeed Tepl7=o A?-

Thus, by (ii), we get F"( T) e (Xq, Yq) for q = 0,1,2,.... Write

P = {mn+jn: n = no,no+l, ;j = 0 , 1 , . . . ,jn - 1 }

): n = n0, no+ 1 , . . . ; i = 0 , 1 , . . . , /n+] — 1}.

U q = mn +jn then both T and F*( F) -(kn +jrn) are in (Xo, Yo) and consequently
their distance is at most Zr-Zh If q = vn+i{n + l) then both T and Fq{T)~
(un + ipn+1) are in (Xo, Fo) and also their distance is at most Zr-Zh Therefore for
q of one of the above forms, {\fq){Fq(T)- T) differs from (kn+jrn)/{mn+jn) or
(un + ipn+1)/(vn + i(n + 1)) respectively by at most (1/q){Zr-Z,). The number (kn +
jrn)/(mn+jn) lies between kjmn and rjn and the number {un + ipn+1)/{vn +
i(n + l)) lies between un/vn and pn+i/(n + l). Therefore, in view of the fact that
lim^oo (l/q)(Zr ~Z,) = 0, we obtain

(7.1)

Since

we have

(7.2)

,. . / ( K un pn rn\\ 1
liminf I min I —,—, —, — I I < lim inf— {Fq(T)- T),

lim sup (max ( — , — , ^ , - ) ) s l im s u p - (F«(T) -T) .

<— and
mn

.En.
n n

lim inf (min (&,-)) =lim inf (min ( ^ , ^

n n mn
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For q = mn

and for q =

Therefore,

we have

Vn,

V
q

q

M.

(D-

<n-

Misiurewicz

»-*

1
(i

1

q

lim inf- (Fq(T)- T)<lim inf (min (—, —))
«̂ °° q n^°° \ \mn Dn//
qsP

lim sup — (Fq(T)- T)>l imsup I max I —-, —- I I.
«-» q n^oc \ \mn vnjI

(7.3)

Since \\mn^xpn/n = a, l im, ,^ rn/n = @ and a </3, we obtain from (7.1), (7.2) and
(7.3),

lim inf-(F9(T)-T) = a,

limsup-(F''(r)-r) = /3.
(7.4)

Now we have to see what happens if q & P. Then q = s +1 for some s e P and t < n
(where s = mn+jn or s = un + i'(n + l)). Since all *'„ and jV are positive for v = n0,
no+1,...,«-1 we have

q>s>2(no+(no+l) + - • • + (n-l)) = (n-no)(no+n-l).

There exists an integer y such that |p(F,)|< y and |p(Fr)|< y. Then for every ZeU
we have

Z-y<F, (Z)sF(Z)sF r (Z)<Z+y,

and consequently

Z-vy<F"(Z)<Z+i>y for i> = 1, 2,....

Hence |F?(T)-FS(T)|< fy< ny and \(l/s)(Fs(T)- T)\< y. Therefore

1 q 1

= - |F"(r)-Fs(T)| +
q

2ny

1
-(FS(T)-T) — (F'(T)-T)

-(FS(T)-T)

In view of (7.4), this ends the proof of the theorem. •
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COROLLARY 7.1. Let F be an old heavy map, and let a(F)i£a<b(F). Then there
exists TeU such that limn^oo(l/«)(F"(T)- T) = a.

The above corollary means that in a case of old heavy maps the rotation set is closed.

8. Examples of old heavy maps
Clearly, all continuous maps are heavy. Hence, if/: S1 -»S1 is a continuous map of
degree one, then its lifting (in a usual sense) is an old heavy map. Therefore all
results of this paper are generalizations of the corresponding results for maps of
degree one of the circle into itself.

Another important class of old heavy maps arises by taking liftings of some
monotone mod 1 maps. A map / : [0,1) -» [0,1) is called monotone mod 1 if there is
a monotone, continuous bounded map g:[0,1)-»R such that/(X) = g(X) (mod 1)
for all X G [0,1). Such maps were studied e.g. by Hofbauer [3]. If g is non-decreasing
and g(l - ) -g(0) > 1 then the map F defined by

F(X + k) = g(X) + k forXe[0,1), keZ,

is an old heavy map, and is a lifting of/ (regarded as a map of a circle into itself).
In particular, we may take as / a so called /3-transformation (defined for /? > 1 by
g(X) = pX or g(X) = /3X +a).

Other examples can be obtained when studying the Newton's method of determin-
ing zeros of certain functions If cp: U -» U is a differentiable function then we define
a map JV by

JV(x) = x -44-

Since the one point compactification of U is homeomorphic to a circle, we may
regard JV as a map of a circle into itself. To avoid complications caused by the fact
that JV is not defined at oo and at the zeros of cp', we assume that cp' has finitely
many zeros and the limits JV(-oo) = limx__oo N(x) and N(+oo) = lim^+co N(x)
(finite or infinite) exist. Notice that in our notation JV(oo-) = JV(+oo) and N(<x>+) =
JV(-oo). If <p'(x) = 0 then N(x-) = JV(x + ) = oo (on the circle, therefore +oo and
-oo are identified) and we set JV(x) = oo; we set also JV(oo) = JV(+oo). If both JV(-oo)
and JV(+oo) are infinite or JV(-oo) = JV(+oo) then TV as a map of the circle is
continuous. This case was studied in [9].

The case of finite JV(-oo) and 7V(+oo) takes place usually if tp has asymptotes.
Assume that a<b<c<d, <p'{x) < 0 for x < c, cp'(c) = 0, tp'(x) > 0 for x > c, <p(c) < 0,
N(d) = c, N{x) *cforx*d, TV(-oo) = b, 7V(+oo) = a and N(b) < N(a). Figure 1
shows the graph of such cp, figure 2 the graph of the corresponding N. The map JV
(as a map of the circle) has no old heavy lifting, but its second iterate, JV2, has. To
show the last statement notice that

1° JV2 is discontinuous only at oo and c and we have JV2(oo-) = JV2(+oo) = N(a) >
N(b) = JV2(-oo) = JV2(co+), N2(c-) = b>a = N2(c+);

2° at d we have N2(d-) = +oo, N2(d+) = -oo, which gives degree one.
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