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1. Introduction. Throughout k will denote a field. If a group I' acts on a set A we
say an element is I'-orbital if its orbit is finite and write Apr(A) for the subset of such
elements. Let / be an ideal of a group algebra kA; we denote by /™ the normal subgroup
(I +1)N A of A. A subgroup B of an abelian torsion-free group A is said to be dense in A
if A/B is a torsion-group. Let I be an ideal of a commutative ring K; then the spectrum
Sp() of I is the set of all prime ideals P of K such that /< P. If R is a ring, M is an
R-module and x € M we denote by #r(x) the annihilator of x in R. We recall that a
group I' is said to have finite torsion-free rank if it has a finite series in which each factor is
either infinite cyclic or locally finite; its torsion-free rank ry(T') is then defined to be the
number of infinite cyclic factors in such a series.

Let A be an abelian torsion-free group of finite rank acted upon by a group I' and let
I'be an ideal of kA. The subgroup Sr(A) of T of elements y such that /N kB = I” N kB for
some finitely generated dense subgroup B of A is said to be the standardiser of 1. We will
say that an ideal I of kA is locally prime if INkB is a prime ideal of kB for some dense
finitely generated subgroup B of A. It easily follows from Wilson’s version [18, Section
3.11] of an important theorem of Brookes [1, Theorem A] that if Ar(A) =1, I is a locally
prime ideal of kA and Sy(/) =T, then I # 1. But, of course, I* may contain no non-trivial
T-invariant subgroup.

Let G be a group with a torsion-free abelian normal subgroup A of finite rank. In [12,
Theorem E] Nabney proved that if M is any kG-module which is not kA-torsion-free then
there is an element @ € M\{0} such that akG = (akS)Q,skG, where § = S5(P) for some
P e Sp(Aia(a)). But, generally, if G has finite torsion-free rank then ry(S/C;(akS)) may
be the same as ry(G) for any a e M\{0}. However, it would be very useful to find such a
subgroup H of G that akG = (akH)®nkG and ry(H/CylakH)) <ro(G) for some
a e M\{0}, because it would be possible to use induction on ry(G) for the study of M then.
The search for such a subgroup H is the main aim of this paper. In the case of a polycyclic
group G this approach was applied by Roseblade in [14].

Let A be an abelian torsion-free group of finite rank acted upon by a group I' and let
I be an ideal of kA. We say that a subgroup A of Sp([) separates I if Sp(I) N\ Sp(I") =&
for any +y e Sp(J) which is not contained in A. It is not difficult to note, that the
intersection Sepr(/) of all subgroups separating I also separates /; Sepr(I) will be called
the separator of 1. Evidently, Sepr(/) < Sr(I). We prove that if k is a field of characteristic
zero, T is a soluble group of finite torsion-free rank and M is a kA-module such that
Ha(x) is a non-zero locally prime ideal of kA and ry(T) = ro(Sepr(ka(x)) for some
element x € M\{0} then there is an element y € M\{0} such that &/;4(y) has a non-trivial
Sepr(#ia(y))-invariant subgroup (Theorem 3.8). This theorem allows us to obtain our
main result—a control theorem for modules over group algebras of soluble gorups of
finite torsion-free rank (which will be our Theorem 4.2).
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THEOREM. Let G be a soluble group of finite torsion-free rank and let A be a
torsion-free abelian normal subgroup of G such that Ag(A)=1. Let k be a field of
characteristic zero and let M be a kG-module. If M is not kA-torsion-free then there is an
element a € M\{0} such that akG = (akH)®, kG and ry(H/Cn(akH)) <ry(G), where
H = Sepg(dia(a)).

We should note that some other approaches to control theorems for modules over
group rings of infinite groups were developed by Brookes and Brown (see [2] and [3]).

We recall that a group G has finite Priifer rank if there is an integer r such that each
finitely generated subgroup of G can be generated by r elements; its Priifer rank r(G) is
then the least integer r with this property. As an application of Theorem 4.2, we consider
faithful irreducible representations of a finitely generated metabelian group G of finite
Priifer rank over a field k of characteristic zero. We prove that if G is not
nilpotent-by-finite then each such representation is induced from an irreducible represen-
tation of a subgroup H=G such that ry(H)<ry(G) (Theorem 5.5). If G is an
abelian-by-cyclic group it implies that any faithful irreducible representation of G over k
is induced from an irreducible representation of an abelian subgroup of G (Corollary 5.6).
Irreducible representations of some abelian-by-cyclic groups were considered by Musson
in [10]. Irreducible representations of finitely generated nilpotent groups were considered
by Harper [7] and by Segal [15], and irreducible representations of polycyclic groups were
considered by Harper [8] and by Musson [11].

By [6], any finitely generated metabelian group of finite Priifer rank is a minimax
abelian-by-polycyclic group. A minimax group is a group with a finite series each of whose
factors satisfies either the minimal condition or the maximal condition for subgroups.
Irreducible representations of minimax abelian-by-polycyclic groups under certain addi-
tional conditions where considered by Nabney [12].

2. Some properties of Cernikov modules. This section is auxiliary; its main result
(Proposition 2.6) will be used in the proof of Theorem 3.5.

Let R be a ring. An R-module A is said to be cyclic if it is generated by one element.
By the socle Soc(A) of an R-module A we mean the submodule of A which is generated
by the minimal submodules of A; if A has no minimal submodule then Soc(A) = 0.

LemmA 2.1. Let A be a F,[g]-module. Then the module A is cyclic if and only if
Soc(A) is cyclic.

Proof. This assertion holds because [F,[g] is a principal ideals domain. O

Let R be a ring. An R-module A is said to be Cernikov if its additive group is
Cernikov, that is, a direct sum of finitely many cyclic and quasi-cyclic groups (see [9]). If
the additive group of A is a p-group then Q,(A) is the submodule of A which consists of
all elements x € A such that xp” =0, where n e N.

Let R be a ring. An infinite R-module A is said to be minimal infinite (or
m.i.-module) if any proper submodule of A is finite. It is not difficult to show that if A is a
Cernikov m.i.-module then A is a divisible p-group.
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LemMA 2.2. Let A be a Cernikov Z[g]-module. Suppose that the additive group of A is
a p-group and the socle of A is cyclic. Then for any m.i.-submodule B of A the socle of the
quotient module A/B is cyclic.

Proof. Obviously, it is sufficient to show that the socle of Q,(A/B) is cyclic. Since B
is a divisible group, it is not too difficult to show that Q;(A/B)=(Q,(A) + B)/B =
Q,(A)/(Q;(A) N B). As Q,;(A) has cyclic socle, it easily follows from Lemma 2.1 that the
quotient module Q,(A/B) =Q,(A)/(Q,(A) N B) has cyclic socle. O

Lemma 2.3. Let A be a Cernikov Z[g]-module and let s{ be the group of
Z|g)-automorphisms of A. Suppose that A is a divisible p-group. Then:

(1) if Soc(A) is cyclic then A is abelian;

(i) for any finite submodule X of A @ A the socle of the quotient module (AD A)/X is
not cyclic.

Proof. (i) Since Soc(A) is cyclic and, evidently, Soc(A) = Soc(2,(A4)), by Lemma
2.1, ©,(A) is cyclic. It easily follows that €,(A) is cyclic for each n e N. Then
Q,(A)=K, =2Z[g)/1, for each n e N, where I, is an ideal of Z[g]. Let &, be the group of
Z[g]-automorphisms of ,(A); it is well known that &, = U(K,,), where U(K,) is the
group of units of K,, and hence &, is abelian. As ¥/Cy(Q,(A))=4, and N, .n
C4(Q.(A)) =1, it follows that s is abelian.

(i1) Suppose that for some finite submodule X of B=A® A the socle of B/X is
cyclic. Let &f be the group of Z[g]-automorphisms of B and % be the group of
Z|[g]-automorphisms of B/X. Then, by (i), 94 is abelian. Let A be the normalizer of X in
A then, as X =Q,(B) for some n € N, it is not difficult to show that |sf: V] <. As each
v € N induces a Z[g]-automorphism of B/X, there is a homomorphism ¢: ¥ — 3 such
that ker ¢ = C,{B/X). Let a € ker ¢; then B(1 — a) = X and hence, as X is finite, there is
n e N such that Bp"(1 — a)=0. Therefore, as the additive group of A is divisible,
B(1 — a)=0 and hence a =1. So, ¥/ = & because ker ¢ = 1. Thus & is an abelian group
and hence & is an almost abelian group.

On the other hand, evidently, & contains the linear group GL,(Z) and 1t is well
known that GL,(Z) is not almost abelian. This is a contradiction. [

Lemma 2.4. Let A be a Cernikov Z[g)-module and let M be the set of all
m.i.-submodules of A. If the socle of A is cyclic then M is finite.

Proof. As any submodule of A is the direct sum of its Sylow components, any
m.i.-submodule of A is contained in some Sylow component of A. Thus we may assume
that the additive group of A is a p-group.

The proof is by induction on Priifer rank of the additive group of A. Let B be an
m.i.-submodule of A. Then, by Lemma 2.2, Soc(A/B) is a cyclic Z[g]-module and hence,
by the induction hypothesis, the set of all m.i.-submodules of A/B is finite. Thus it is
sufficient to consider the case when A/B is an m.i.-module.

Suppose that  is infinite and let A; e #, A;# B, where i =1, 2. Put X;=A,NB;
then | X;] < and

A/ X;=(A,+B)/B=A/B 1)

where i=1,2. Put X =X, + X,,A=A4/X and A4, = (A; + X)/X; then, as A, N X = X,, by

https://doi.org/10.1017/50017089500031736 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500031736

312 ANATOLII V. TUSHEV

(1), A, = A,. Evidently, A = A, + A; then it is not difficult to show that there is a finite
submodule Y <A, @ A, such that

On the other hand, there is n € N such that X < Q,(A) and hence, as A =A/Q.(A),
there is a finite submodule Z <A such that A/Z = A. Then, by (2), (4, ©A,)/D = A for
some finite submodule D = A, ® A, but this contradicts Lemma 2.3 (ii). O

Lemma 2.5. Let A be a Cernikov Z[g]-module and let k be a field of characteristic
zero. Let M be a kA-module, x € M and P € Sp(di4(x)). Then;

(i) for any finite subgroup B < A there is an element y € M such that s, 4(y) N kB =
PN kB =D is a maximal ideal of kB and P = &, 4(y);

(i) if A" is an m.i.-submodule of A and P* does not contain A' then there is an
element y € M such that for any L € Sp(,4(y)) L™ does not contain A'.

Proof. (i) Put D = PN kB then D e Sp(,s(x)). By Maschke’s theorem, T = xkB is
a semisimple kB-module. Then there is a simple submodule § < T which is annihilated by
D. Thus y may be chosen as a non-zero element of S. Evidently, Sp(&4(y)) consists of
all L e Sp(s,4(x)) such that LN kB =D and hence P = &, 4(y).

(i) Evidently, there is a finite subgroup B < A’ which is not contained in P*. By (i),
there is an element y € M such that &, ,(y)NkB =P NkB = D. As D is a maximal ideal
of kB, PNkB = D for any L e Sp(H4(y))- Therefore, for any L e Sp(a(y)), L™ does
not contain B and hence L* does not contain A’. O

ProposiTION 2.6. Let A= @, A; be a Cernikov Z[g]-module such that Soc(A;) is
cyclic for each i. Let k be a field of characteristic zero, and let M be a kA-module. Then
there is an element a € M\{0} such that for any x € akA and, for each 1=<i=<n,
kC; N Ays(x) = P; is a maximal ideal of kC;, where C;/H;= Soc(A;/H;) and H; is the
maximal g-invariant subgroup of ia(x) N A;.

Proof. The proof is by induction on #.

Consider first the case where n =1. The proof is by induction on Priifer rank of the
additive group of A. Suppose that there is an element x € M\{0} such that &/, 4(x) has an
m.i.-submodule A’'. Then xkA may be considered as a k(A/A')-module and, by Lemma
2.2, we may use the induction hypothesis. Thus we may assume that &;4(x) contains no
m.i.-submodule for any x e M\{0}.

Let M={A,,...,A,} be the set of all m.i.-submodules of A; by Lemma 2.4, 4 is
finite. We will show by induction on m that there is an element y € M such that for any
P € Sp(#i4(y)) P* contains no m.i.-submodule. Suppose that there is x € M such that for
any P e Sp(&a(x)) P* does not contain submodules A, ..., A,,_;. It easily follows from
Maschke’s theorem that the quotient ring KA/, 4(x) has no nilpotent element and hence
it is semiprime. So, &4 (x) is the intersection of all P € Sp(4(x)). Then, as s;,4(x) does
not contain A,,, there is P e Sp(sf,4(x)) such that P* does not contain A,,. Therefore, by
Lemma 2.5(i1), there is an element y € xkA such that for any P € Sp(&xa(y)) P* does not
contain A,. As y e xkA, Ha(x)=<A4(y). Therefore, Sp(Hia(y)) < Sp(Hra(x)) and
hence P* contains no m.i.-submodule for any P e Sp(&4(y)). Evidently, y #0.

Let P e Sp(#xa(y)) and let H be the maximal g-invariant subgroup of P*. As P*
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contains no m.i.-submodule, H is finite. Put C/H = Soc(A/H) then |C| <« and hence, by
Lemma 2.5(i), there is an element a € M\{0} such that &/, 4(a) NkC =P NkC and, as
P=g 4(a), H is the maximal g-invariant subgroup of ,.(a). Let x € akA; then
Ha(x)NKC = Ays(a) NkC =D and, as D is a maximal ideal of kC, s (x)NkC =D.
Let X be the maximal g-invariant subgroup of &, 4(x); then, as & 4(x) = Hala), X = H.
Suppose that X # H; then, as C/H is the socle of A/H, L=CNX > H. Evidently,
L= D" =< P* but this is a contradiction, because H is the maximal g-invariant subgroup of
P*.

Consider now the general case. By the induction hypothesis, there is an element
b € M\{0} such that for any element x € bKa kC; N & 4(x) = P, is a maximal ideal in kC;,
where C;/H,;=Soc(A;/H;), H; is the maximal g-invariant subgroup of &f;.(x) N A; and
2=i=n. By the same arguments, there is an element a e bkA\{0}, such that kC; N
Ha(x) =P, is a maximal ideal in kC, for any element x € akA, where C,/H,=
Soc(A,/H,) and H, is the maximal g-invariant subgroup of #;s(x)NA;. Let x € akA;
then, as a e bkA, x e bkA. Thus kC,NA.(x)=PF, is a maximal ideal in kC,
where C;/H; = Soc(A;/H,), H; is the maximal g-invariant subgroup of #;4(x)NA; and
l=i=n 0O

3. On spectra of conjugated ideals of group algebras of abelian groups of finite
rank.

Lemma 3.1. Let A be an abelian group acted upon by a group T, and B be a
TI'-invariant subgroup of A. Let k be a field and let I be an ideal of kA. Then:

() if Sp(I7) N Sp(1,) =D then Sp(I"YN Sp(I) =D, where y e I and I, =1 N kB,;

(ii) suppose that B=1I"* and let A<1I be the ideal of kA generated by 1— B. Put
1=1/A. Then Sp(I")NSp(I) =@ if SpI*) N Sp(I) = &, where y T,

Proof. (i) Suppose that there is P e Sp(I*) NSp(I). Then, as IY=1"NkB, P e
Sp(I7) N Sp(l,), where P, = P N kB. This is a contradiction.

(ii) Suppose that there is P e Sp(J”) N Sp(7); then P =P/A=(P,/A)", where P,
P, € Sp(I). As B is a I'-invariant subgroup of A, (P;/A)” = P{/A and hence P = P7. This is
a contradiction. O

Lemma 3.2. Let A be an abelian torsion-free group of finite rank acted upon by a
soluble group T such that Cr(A) = 1. Then:

(1) T has a torsion-free normal subgroup of finite index;

(i) if A®zQ is a simple QT-module then T has a free abelian normal subgroup of
finite index.

Proof. These assertions are well known properties of linear soluble groups (see
[16])). O

LemMa 3.3. Let F be a finitely generated abelian group and let R be a prime ideal of
ZF such that K = ZF R is a torsion-free group of finite rank. Let J be a dense subgroup of
K. Then there are a ZF-endomorphism g of K and a Z[g)-submodule H of J such that the
quotient module K/H is Cernikov and Soc(K/H) is cyclic.

Proof. Let R be the field of fractions of K. Since K is finite-dimensional over @, it is
well known that there is an algebraic integer £ € K such that K =Q(£). As £ is an
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algebraic integer, there is n € N, such that any element b e Z[£] may be written in the
formb=ag+a,é+... +a,f", where a; € Z. Since K is a dense subgroup of RandJisa
dense subgroup of K, J is a dense subgroup of K and hence for any ¢ there is m; e N,
such that ¢m; eJ. Then Z[¢)m <J, where m=II}_om; Put g=¢m; then mZ[g)=<
Z[¢lm =J. As g € K and K is a ring, g can be considered as a ZF-endomorphism of K and
K can be considered as a Z[g]-module. Put H = mZ[g]. Evidently, R = Q(g) and hence H
is a dense subgroup of X and, as, by [6, Lemma 5.1], the group K is minimax, the quotient
module K/H is Cernikov. We now show that Soc(K/H) is cyclic. Since K/H <R /H, it is
sufficient to show that Soc(K,/H) is cyclic for any Sylow p-component K,/H of the
quotient module K/H. Evidently, H/Hp =Q,(K,/H). As H is a cyclic Z[g]-module,
H/Hp is a cyclic Z,[g]-module and, as H/Hp =Q,(K,/H), by Lemma 2.1, Soc(Q,(K,/H))
is cyclic. O

LemMA 3.4. Let A be an abelian group acted upon by a group I let k be a field and let
I be an ideal of kA. Let L be a subgroup of A such that I* does not contain L and suppose
that P =kL N1 is a maximal ideal of kL. If v e T and L < (I*)" then Sp(I*) N Sp(I) =D.

Proof. Evidently, L<(I”)" and hence kLNI*=A=¢ ~1|h e L). Then, as Ais a
maximal ideal of kI, Sp(kL NI7)={A}. Suppose that Sp(/”) N Sp(/) # &, then Sp(/* N
kLYNSp(I NkL)# & and hence, as Sp(/NkL)={P}, A=P. Then, as P=I, A=<] and
hence L <[I*. This is a contradiction. O

THEOREM 3.5. Let A be an abelian torsion-free group of finite rank acted upon by a
soluble group T of finite torsion-free rank and let k be a field of characteristic zero. Let M
be a kA-module which contains a non-zero element x such that A 4(x) is a dense subgroup
of A. Then there is an element y € M\{0} such that s,(y) has a non-trivial subgroup W
such that Sp(y4(y)) N Sp(HLa(y)) =D if v e T and vy is not contained in N (W), where
Nr(W) is the normalizer of W in T.

Proof. By Lemma 3.1(i), in the proof A may be changed to any of its proper
I-invariant subgroups. So, we can assume that A is a ZI'-module generated by one
element z € A and A®,Q is a simple QI'-module. We can also assume that Cr(A) = 1.
Then, by Lemma 3.2(ii), I' has a finitely generated abelian normal subgroup F of finite
index and, as A is a cyclic ZI'-module, A = ZI'/I, where I is a right ideal of ZI'. By Schur’s
Lemma, A ®;Q has a simple QF-submodule and hence the element z may be chosen such

that INZF =R is a prime ideal of ZF. Put B =ZT/RZT = K®,+ZT = & Ki;, where
i=1

{t1,...,t,} is a right transversal to F in I' and K=ZF/R. Then A=B/X where
X =I/RZT. Putting X = Cp(M) we may consider M as a kB-module. It is easy to check
that ofs(x)/X = ia(x). Then #z(x) is a dense subgroup of B and hence &fz(x)N

Kt; =1J;is a dense subgroup in K, for each i. PutJ = N Jit;''; then J is a dense subgroup in
i=1

K. By Lemma 3.3, there is an endomorphism g of the ZF-module K such that J has a
Z[g]-submodule H such that K/H is a Cernikov Z[g]-module with cyclic socle. As

H=<J=<It7' and J; < o}p(x), Ht; < oA;p(x) for each i and hence V = é Ht; < slig(x).
i=1
Thus V = Cps(xkB) and hence xkB can be considered as a k(B/V)-module. Putting
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bé = 2 b$t, for any b= 2 bit; e B, we can consider g as a ZI- endomorphlsm of B.

i=1

Thus, B is a Z[g]-module and V is a submodule of B. Then B/V = 69 (K/H)t;, where
i=1

(K/H)y; is a Cernikov Z[g]-module with cyclic socle for each i. So, by Proposition 2.6,
there is an element y e xkB\{0} such that kC; N &, z(y) = P, is a maximal ideal of kC;,
where C;/D; = Soc(Kt;/D;) and D, is the maximal g-invariant subgroup of «;5(y) N Kt

PutD =& D,
i=1
Let y be an element of I which is not contained in Nr(D) It is not difficult to show

that, for any i, D} = K, for some j and hence, as D” = EB D} and D” # D, D} = Kt; and

i=1
DY # D, for some i and j. As g is a ZI'-endomorphism of B, D7 is a Z[g]-submodule of K;
and hence, as DY# D;, L=C;ND}# D,. Since L=C;, kLN o;p(y) =P is a maximal
ideal of kL.

Suppose that D} is not contained in D; Then, as D; is the maximal g-invariant
subgroup of Kt; N p(y), #ip(y) does not contain L. Since L = D7, L =(p(y))” and,
by Lemma 3.4, Sp(.sszB(y)) N Sp(Ais(y)) =@. If DY < D, then D} ' is not contained in D,
and the same arguments show that Sp(#s(y))N Sp(&ikg ( y)) . Therefore, as
Sp(es(y))” = Sp(H1s(y)), Sp(is(y)) N Sp(Lis(y)) =D

As X =Cg(xkB) and y € xkB, X < Cg(ykB) and hence X = ;5(y). Since X is a
I'-invariant subgroup of B, Np(D)=<Ny(XD)= Ny(W), where W =XD/X, and hence
Sp(His(y)) NSp(Ap(y)) =D if y is not contained in N(W). Let A be the ideal of kB
generated by 1~ X. Then it is not difficult to show that ,z(y)/A = Ha(y) and the
theorem follows from Lemma 3.1(ii). O

LEMMA 3.6. Ler A be an abelian torsion-free group of finite rank acted upon by a
soluble group T of finite torsion-free rank and let K be a subgroup of T such that
ro{K) = r(T). If Ar(A) =1 then Ax(A) = 1.

Proof. Evidently, we may assume that Cr(A) = 1. Then it easily follows from Lemma
3.2(i) that T" has an abelian normal torsion-free subgroup H. The proof is by induction on
ro(I’). Suppose that Ax(A)#1. As ry(K)=ry'), H/V is a torsion group, where
V=HNK. Let 1#d € Ax(A) and let D ={(d"|h € H); it is not difficult to show that
D=Ay(A). Let B be a dense finitely generated subgroup of D. As D =A,(A),
[V:Cy(B)| <> and hence H/Cy(D) is a torsion-group. Then, since D is an abelian
torsion-free group of finite rank, by Lemma 3.2(i), |H/Cy(D)| < . Hence there is n € N
such that H" = Cy(D). Since H" is a normal subgroup of I', C4(H") = C is a I'-invariant
subgroup of A. Then r(I'/Cr(C))<ry(T') and hence, by the induction hypothesis,
Ax(C) =1 but this is a contradiction because D <C. O

LeEmMA 3.7. Let A be an abelian torsion-free group of finite rank acted upon by a
group T such that Ar(A) =1. Let k be a field and let M be a kA-module. Suppose that there
is an element x e M such that f.4(x) is a non-zero locally prime ideal of kA and
Sr(Ha(x))=T. Then there is a non-trivial T-invariant subgroup B of A such that
B N sfi4(x) is a dense subgroup of B.
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Proof. By [18, Section 3.11], &;4(x)#1 and B may be chosen as the isolator of
Aia(x)in A. O

THEOREM 3.8. Let A be an abelian torsion-free group of finite rank acted upon by a
soluble group T of finite torsion-free rank such that Ar(A)=1. Let k be a field of
characteristic zero and let M be a kA-module. Suppose that there is an element x € M\{0}
such that s, 4(x) is a non-zero locally prime ideal of kA and ry(Sepr(Hia(x))) = ro(T).
Then there is an element y € M\{0} such that A;4(y) has a non-trivial Sepp(Hia(y))-
invariant subgroup.

Proof. Put Sepr(#ia(x))=S. Then, by Lemma 3.6, As(A) =1 and we may assume
that Sepr(#a(x)) =T. As Sp(ia(x)) = Sepr(ia(x)), Sr(Hia(x))=T. By Lemma 3.7,
there is a non-trivial T-invariant subgroup B of A such that & 4(x)N B is a dense
subgroup in B. Then the theorem easily follows from Theorem 3.5 and Lemma 3.1(i). O

4. A control theorem for modules over group algebras of soluble groups of finite
rank.

ProrosiTiON 4.1. Let G be a group with abelian normal torsion-free subgroup A of
finite rank, and let B be a dense finitely generated subgroup of A. Let k be a field and let M
be a kG-module which is not kA-torsion-free. Then:

(i) there is x € M\{0} with the prime annihilator P, in kB such that the transcendence
degree of the fraction field of the ring kB/P, is minimal and hence x has maximal
annihilator in kB;

(i1) if x satisfies (i) then xkG = xkH®, , kG, where H = Seps(Hia(x)).

Proof. (i) This assertion is proved in [12, Theorem E].

(ii) By [12, Theorem E] there is a prime ideal P of kA such that PNkB = P, and
xkG = xkS§®, kG, where S = S5(P). As PNkB = Py= s4,5(x), it is not difficult to show
that S =S5(Hia(x)). Thus, it is sufficient to show that xkS =xkH®,,kS, where
H = Sepg(Hia(x)). So, we may assume that S = G.

Put J = & c(x); then it is sufficient to show that J=(J NkH)kG. Suppose that
J # (J N kH)kG; then there is an element g € J which is not belonging to (/ N kH)kG. Put

n ki
q=2 (2 aijd,-,-)ti, where a; € kA, {d;} is a part of a right transversal to A in H and {t;} is
i=1 \j=1

/= n
a part of a right transversal to H in G. The element g can be chosen such that m = X k;
i=1

is minimal with respect g € J and ¢ is not contained in (J N kH)kG. We can also assume

that t; = e and dy; = e. Put g; = d;;t; then for any g; and any B € I the element g%/ can be
n k

written in the form: gp%i= 3% <§f &,,d,,)t,, where @, =a,B" ekA and h, =g,~,-g,‘,‘.
=1 \r=1

Therefore, as a;g;8% = Ba;g; € U NKH)KG, b =qp% — a;g,;8% e J for any Bel As

the number of summands in b less than m, it follows from minimality of m that

b e ( NkH)kG and hence, as a;g;B% e (J NkH)kG, qp% e (J N kH)kG. Therefore, as

k k, k
t=e, 3 Gy,dy, = (2 al,d1,>/33"' eJNkH Putc= 3 ay,d,; then cB¥ e J forany B e I
r=1 r=1 r=1

and hence c/% cJ. Thus, I% < . 4(y), for any g;, where y = xc. Then, as g,; =e¢, it is not
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difficult to show that Sp(J) N Sp(/%) = & for any g; #e. This is a contradiction, because
g; # e is not contained in H and H separates . []

TueOREM 4.2. Let G be a soluble group of finite torsion-free rank and let A be a
torsion-free abelian normal subgroup of G such that Ag(A)=1. Let k be a field of
characteristic zero and let M be a kG-module. If M is not kA-torsion-free then there is an
element a € M\{0} such that akG = (akH)®,, kG and ro(H/Cy(akH))<ry(G), where
H = Sepg(Hrala)-

Proof. Let B be a finitely generated dense subgroup of A. By Proposition 4.1(i),
there is an element x e M\{0} such that &,z(x) is a prime ideal of kB and the
transcendence degree of the fraction field of the ring KB/, p(x) is minimal, and hence x
has maximal annihilator in kB.

Put K = Seps(ia(x)). Then by Proposition 4.1(ii), xkG = xkK®,x kG. If ry(K) <
ro(G) then we may put a =x and H =K.

Suppose that rp(K) = rp(G). Evidently, &, 4(x) is a locally prime ideal of kA. Then, by
Theorem 3.8, there is an element a € xXKA\{0} such that & 4(a) has a non-trivial
H-invariant subgroup D, where H = Seps(, 4(a)). Therefore, D = Cy(akH) and hence
ro(H/Cu(akH)) < r(G). As a e xKA, g(a) = o,p(x), and hence, as x has maximal
annihilator in kB, &g(a)= sp(x). Thus, the theorem follows from Proposition
4.13i1). O

5. An application.

LeEMMA 5.1. Let G be a metabelian finitely generated group of finite Priifer rank and let
B be the derived subgroup of G. If the group G is not nilpotent-by-finite then there is a
normal subgroup A of G such that A<B, Ag(A)=1 and the quotient group G/[A is
nilpotent-by-finite.

Proof. The proof is by induction on ry(B). Let T be the torsion subgroup of B. As G

has the maximal condition for normal subgroups (see [5]) and Prufer rank of T is finite, T
is finite. If T = B then the group G is abelian-by-finite. Thus we may assume that 7 # B.

Then there is n € N such that C = B" is a torsion-free subgroup. If A;(C) =1 then we can
put A=C. Thus we may assume that Ag(C)#1. Put D =(d®|g e G), where d is a
non-identity element of Ag(C). It is easy to check that if the quotient group G/D is
nilpotent-by-finite then so is G. Therefore, G/D is not nilpotent-by-finite and hence, by
the induction hypothesis, there is a normal subgroup E of G such that D =E <B and
Ag(E/D) =1. We will consider E as a ZI'-module, where I' = G/Cg(E). Since E<B, T'is
an abelian group. Evidently, the subgroup E may be chosen such that (E/D)®zQ is a
simple QI'-module. Since d € Ag(C), |G:Cr(D)| <« and hence, as Af(E/D) =1, there is
an element y € Cr(D) which is not contained in Cr(E). Then, as the group T is abelian,
the mapping ¢ given by ¢:x—x(1 — y) is a non-zero ZI'-endomorphism of E such that
D =XKer ¢. Hence, as (E/D)®;zQr is a simple QI'-module, Ker ¢ = D. Then L = ¢(E) =
E/D and hence Ar(L)=1. Thus, L is a normal subgroup of G such that L=<B and
Ag(L)=1. So, passing to the quotient group G/L we can use the induction
hypothesis. O

Lemma 5.2. Let S be a commutative ring acted upon by a group G, let M be an
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S-module and let F be a submodule of M. Suppose that there is a non-zero element a € S
such that each element of M/F is annihilated by some product a®' ... a® of conjugates of a
by elements of G. Then for any non-zero ideal L of S each element of (MLN F)/FL is
annihilated by some product a8 ... a® of conjugates of a by elements of G.

Proof. Each element a e MLNF can be written in the form: a = ¥ a;;, where
i=1

a; € M and J; € L. Then there is an element x = a®' ... a®* where g; € G such thatg;x e F

for each i and hence ax = i axl;e FL. O
i=1

i

LemMA 5.3. Let A be a torsion-free abelian minimax group acted upon by an abelian
group T such that AQ;Q is a simple QI'-module. Let k be a field of characteristic zero and
let o be a non-zero element of kA. Then there is a maximal ideal L of kA such that
|A:L*| < and L contains no conjugates of a by elements of T.

Proof. Put a = f‘, a;t;, where a; e k and ¢; € A, and let F be a subfield of k generated
i=1

by a;; then a € FA. Let & be the set of I'-invariant maximal ideals M of FA with
|A:M*| < ; then, by [17, Theorem A], the intersection of ideals from % is zero. It easily
implies that there is M e & which contains no conjugates of a by elements of I'. Then L
may be chosen as a maximal ideal of kA which contains M. [

LemMma 5.4. Let G be a finitely generated metabelian group of finite Priifer rank, let k
be a field and let M be a simple kG-module. Let A be an abelian torsion-free normal
subgroup of G such that A is contained in the derived subgroup of G and the quotient
group G/A is polycyclic. Then the module M is not kA-torsion-free.

Proof. By [4, Corollary 2.1], there are a free kA-submodule F of M and a non-zero
element a e kA such that each element of M/F is annihilated by some product 8! . .. o
of conjugates of a by elements of G. Let C be a normal subgroup of G such that C=< A,
the quotient group A/C is torsion-free and C®;Q is a simple QG-module. Then the

n
element o may be written in the form a = ¥ a;t;, where a; € kC and {t,,...,1,} is a part
i=1

of a transversal to Cin A. Put 8 = I"I a;; as kC has no zero divisors, 8 #0. By [6, Lemma
i=1

5.1], the subgroup C is minimax and hence, as the quotient group I' = G/Cg(A) is abelian
there is, by Lemma 5.3, a maximal ideal L of kC such that |[C:L*| < and L contains no
conjugates of B8 by elements of G. It implies that kAL contains no conjugates of a by
elements of G.

Since |C:L*| <, it is not difficult to show that L contains a non-zero G-invariant
ideal I. As the ideal I is G-invariant, it is not difficult to show that M/ is a submodule of M
and hence, as the module M is simple, either MI =0 or MI =M. If MI =0 then the
lemma holds. Thus we may assume that M/ =M and hence ML = M. Then, by Lemma
5.2, each element of F/FL is annihilated by some product a®'... a8 of conjugates of a
by elements of G. As Fis a free kA-module, @ ;(kA/kAL); = F/FL and hence some such
product a® ... a® is contained in KAL. It is not difficult to note that the quotient ring
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kA/kaL may be considered as a crossed product (see [13]) of a field kC/L and the
torsion-free quotient group A/C. It is well known that such a crossed product has no zero
divisors and hence, as kAL contains no conjugates of a by elements of G, o' ... a® may
not be contained in kAL. This is a contradiction. O

THEOREM 5.5. Let G be a finitely generated metabelian group of finite Priifer rank, let
k be a field of characteristic zero and let M be an irreducible kG-module such that
Cg(M) = 1. If the group G is not nilpotent-by-finite then there are a subgroup H =< G and
an irreducible kH-submodule U < M such that M = U®, 4, kG and ry(H) < ro(G).

Proof. The proof is by induction on r,(G). By Lemma 5.1, there is an abelian normal
torsion-free subgroup A <G such that Ag(A)=1 and the quotient group G/A is
nilpotent-by-finite. As the group G is finitely generated, the quotient group G/A is
polycyclic. Then, by Lemma 5.4, M is not kA-torsion-free. By Theorem 4.2, there is an
element a € M such that M = U®, 4, kG and ro(H/Cy(U)) < ro(G), where U =akA and
H = Sepg(Hiala)). Evidently, H contains the derived subgroup of G and hence, as the
quotient group G/A is polycyclic, if |G : H| =  then ry(H) < ro(G). Thus we may assume
that |G: H| <. Since H contains the derived subgroup of G, H is a normal subgroup of
G. Then H is a finitely generated subgroup. Suppose that the quotient group H/Cy(U) is
nilpotent-by-finite. Let {t,,...,t,} be a right transversal to H in G. As M = &L, U,

Co(M) = F\ (Cu(U))i=C and therefore, as Co(M)=1, C=1. Then, by Remak’s
i=1

theorem, ﬁ (H/Cu(U)")= H. 1t easily follows that the subgroup H is nilpotent-by-finite
i=1

and hence, as |G:H|<®, so is G, and a contradiction ensues. Thus, the quotient group
H{Cy(U) is not nilpotent-by-finite and we may use the induction hypothesis. O

COROLLARY 5.6. Let G be a finitely generated group of finite Priifer rank, and let k be
a field of characteristic zero. Suppose that G is an extension of an abelian group A by a
cyclic group (g). If the group G is not nilpotent-by-finite then every faithful irreducible
representation of G over k is induced from an irreducible representation of the group A
over k. ~

Proof. Tt is not difficult to note that the subgroup H in the proof of Theorem 5.4
contains A. As ry(H) < ro(G), it implies that A=H. O
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