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We present the first macroscopical model for charge transport in compound semiconductors

to make use of analytic ellipsoidal approximations for the energy dispersion relationships in

the neighbours of the lowest minima of the conduction bands. The model considers the main

scattering mechanisms charges undergo in polar semiconductors, that is the acoustic, polar

optical, intervalley non-polar optical phonon interactions and the ionized impurity scattering.

Simulations are shown for the cases of bulk 4H and 6H-SiC.
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1 Introduction

Lately, compound semiconductors have found wide use in the microelectronic industry.

In particular, wider band gap semiconductors, such as GaN and SiC, have attracted great

interest, since they have a high breakdown field, a low thermal generation rate and a good

thermal conductivity and stability. These properties are useful for high power and high

temperature devices. For the description of the behaviour of these semiconductors there

are Monte Carlo models [5, 15, 20, 25], but there is a certain lack of macroscopic models,

which are computationally less expensive [19]. Constructing a macroscopic model which

is able to describe the behaviour of this type of semiconductor materials was the main

aim of Alı̀ et al. [1], and it is also the aim of the present paper, which can be considered

as the natural continuation of the previous one. In particular, this required to address

two crucial problems, that is, to model the band structure, and the scattering processes

as much as possible. In Alı̀ et al. [1] a spherical analytical approximation was used for

energy dispersion relationships in the neighbours of the lowest minima of conduction

bands (c.b.). In this paper we make use of an ellipsoidal approximation which is very

important for describing carrier transport in semiconductors for which electron masses
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along the principal axes are consistently different, implying different carrier drift velocities

along different directions. The plan of the paper is as follows. In Sections 2 and 3 we will

briefly review the analytical approximation of the band structure of semiconductors and

the kinetic semiclassical description of carrier transport. In Section 4 we will show how

hydrodynamical models can be derived from the Boltzmann transport equations, and in

Sections 5 and 6 we will find closure relations for these models by means of the maximum

entropy principle (MEP). Eventually, in Section 7 numerical results for the cases of 4H-SiC

and 6H-SiC, which have anisotropic mass tensors, are shown and commented. The results

are in good agreement with those in the literature, which are based on kinetic models.

2 Analytic approximation of the band structure

The electric charges which cause conductivity in semiconductors are the electrons which

occupy the states around the minima of the lowest conduction bands, and analogously

the holes in the states around the maxima of the highest valence bands. The dependence

of the charge energy on the wave vector in the neighbours of these minima or maxima,

which are called valleys, can be analytically approximated by non-parabolic dispersion

relations of the following form [6]:

EA(kA) =
�2|kA|2
2me

γA(EA)ψ
−1
A (nA), (2.1)

where EA is the charge energy in the A-th valley measured from the bottom of the valley,

the index A running over the considered valleys, kA is the electron quasi-wave vector

referred for each valley to the minimum or maximum of the valley, nA := kA
|kA| , γA is the

non-parabolicity factor, � is the reduced Planck constant and me is the free electron mass.

If one uses ellipsoidal approximation for electrons, the dependence of ψA on nA is given

by

ψ−1
A =

((nA)1)
2

(m∗
A)1

+
((nA)2)

2

(m∗
A)2

+
((nA)3)

2

(m∗
A)3

,

where (m∗
A)

−1
i , i = 1, 2, 3, are the diagonal elements (eigenvalues) of the inverse effective

mass tensor of the A-th valley, multiplied by me, referred to an orthonormal basis of the

tensor.

Analogously for holes, one has

ψ−1
A = |AA| ∓

√
B2
A +

C2
A

4

(
sin4 ϑ sin2 2ϕ+ sin2 2ϑ

)
,

in the case of warped bands, with ϕ and θ respectively being azimuthal and polar angles,

and AA, BA and CA are the inverse valence band parameters.

Each valley in analytic approximations is extended to all �3, and the volume element

in the k-space can be written as1

d3k =
me

√
2me

�3

√
E

γ5(E)
(γ(E) − Eγ̇ (E))ψ

3
2
(ϕ, θ)dEdΩ,

1 Henceforth we omit the valley index unless there is a possibility of confusion.

https://doi.org/10.1017/S0956792514000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000011


Macroscopical model for charge transport in compound semiconductors 257

where the dot denotes derivative with respect to the argument of the function, and dΩ

is the solid angle element. The charge velocity, given by v = 1
�∇kE, has the following

expression in terms of energy and angular variables,

vi =
�

2me

γ
2

(E)

γ(E) − Eγ̇ (E)
li, li :=

∂

∂ki
(|k|2 ψ−1) = g(E)ηi(ϕ, θ)ni,

g : =
2
√

2me E
�

√
γ(E)

, ηi :=

√
ψ

m∗
i

.

In the following, for the sake of simplicity, we will consider only the case in which

conductivity is essentially due to electrons, which happens for unipolar devices of n-type.

Moreover, we will use the Kane approximation, according to which the non-parabolicity

factor is

γ =
1

1 + αE ,

where the constant α is the non-parabolicity parameter.

3 Semi-classical Boltzmann transport equations

The electrons involved in electric conduction are semi-classically described as different

populations according to the valley they belong to. Therefore, from a kinetic point of view,

the electron state can be represented by a collection of distribution functions fA(x, k, t),

whose time evolution is determined by a set of Boltzmann equations coupled among them

and with the Poisson equation for the self-consistent electric potential φ [6],

∂fA
∂t

+ vA · ∇xfA − q

�
E · ∇kfA= CA[fA] +

∑
B�A

CAB[fA, fB], (3.1)

−∇x · (εs∇xφ) = q [ND(x) − n(x)] , A, B = 1, 2, . . . , nV , (3.2)

where q is the absolute value of the electron charge, E = −∇xφ is the electric field, εs is the

dielectric constant of a semiconductor, ND(x) is the doping concentration, nV is the number

of valleys and n =
∑

A

∫
�3 fA(x, k, t) d

3k is the total electron density. The right-hand side

of equation (3.1) is due to the collisions that electrons undergo in a semiconductor. These

can substantially be divided into the following two classes, corresponding to the terms CA
and CAB respectively: those which leave electrons in the same valley as they were before

the collision (intra-valley transitions), and those which drive electrons into a different

valley (inter-valley transitions).

Neglecting degeneration, collision operators belonging to the first class can be written

in the form

CA[f] =

∫
�3

[
PA(k

′, k)f(k′) − PA(k, k
′)f(k)

]
dk′,

where PA(k
′, k) is the transition rate from the state with quasi-wave vector k′ to the state

with quasi-wave vector k, both belonging to the same A-th valley.
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The collision operators of the second class have the form

CAB[fA, fB] =

∫
�3

[
PBA(k

′
B, kA) f

′
B − PAB(kA, k

′
B) fA

]
d3k′

B,

where PAB(kA, k
′
B) is the transition rate from the state with quasi-wave vector kA belonging

to the A-th valley to the state with quasi-wave vector k′
B belonging to the B-th valley. The

only difference with the previous class is that now A and B refer to different valleys.

The form of the scattering rates PA(k, k
′) and PBA(kB, k

′
A) depends on the mechanism

of interaction. Here we will consider polar optical and acoustic phonon scattering, and

impurity scattering regarding the first class of operators, and non-polar optical phonon

scattering for the second class. The scattering rates for the above-mentioned scattering

mechanisms are summarized below, see Jacoboni & Lugli [6].

The acoustic phonon scattering transition rate in its elastic approximation reads

P (ac)(k, k′) = K(ac)δ(E(k′) − E(k)), (3.3)

with K(ac) =
kBTLΞ

2
d

4π2�ρv2s
. Here kB is the Boltzmann constant, TL is the lattice temperature,

taken to be constant, Ξd is the acoustic deformation potential, ρ is the material density

and vs is the sound velocity.

The polar optical phonon scattering transition rate is2

P (p)(k, k′) =
K(p)

|k − k′|2 G(k, k′)

[
N(p)

N(p) + 1

]
δ(E′ − E ∓ �ω(p)), (3.4)

with K(p) = q2ω(p)

8π2 ( 1
ε∞

− 1
εs

). Here ω(p) is the polar optical phonon frequency, N(p) is the

Bose–Einstein polar optical phonon occupation number, ε∞ is the high frequency dielectric

constant and G(k, k′) is the overlap factor.

The impurity scattering transition rate reads as

P (im)(k, k′) = K(im) G(k, k′)[
|k − k′|2 + λ2

D

]2
δ(E′ − E), (3.5)

with λD =
√

NDq2

εskBTL
, the inverse Debye length, and K(im) = Z2ND q

4

4π�ε2s
, where Z is the impurity

charge number.

Eventually, the non-polar optical inter-valley scattering rate is given by

P
(np)
AB (kA, k

′
B) = K(np) ZAB

[
N(np)

N(np) + 1

]
δ(E′

B − EA − ΔAB ∓ �ω(np)), (3.6)

with A�B, and K(np) = (DtK)2

8π2ρω(np) . Here DtK is the inter-valley deformation potential, ZAB

is the number of equivalent final valleys B as seen from the initial valley A [23], ω(np) is

2 The short notation [
N(p)

N(p) + 1
]δ(E′ −E∓�ω(p)) stands for N(p)δ(E′ −E−�ω(p))+(N(p) +1)δ(E′ −

E + �ω(p)).
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the inter-valley phonon frequency, ΔAB = E(0)
A − E(0)

B , with E(0)
A being the energy minimum

of the A-th valley and N(np) has an obvious meaning.

4 Hydrodynamical model

The semiclassical kinetic model correctly describes the charge transport in semiconductors

up to when quantum effects are negligible. However, this model is computationally very

expensive, therefore the introduction of macroscopic models can be very useful for

computer-aided design (CAD) purposes. These models can be obtained by introducing

the moments of the distribution functions, which for a weight function α(k) are defined as

Mα(x, t) :=

∫
�3

α(k)f(x, k, t)d3k.

As in the previous paper [1], we will consider the weight functions 1, v(k),E(k) and

E(k)v(k), to which the following macroscopic quantities correspond, all having direct

physical meaning,

n = M1, electron density,

V =
1

n
Mv, electron mean velocity, (4.1)

W =
1

n
ME, electron mean energy,

S =
1

n
MEv, electron mean energy flux.

Of course, there is a set of such quantities for each electron population. The evolution

equations of these state variables are obtained by taking the moments of the Boltzmann

equations. So doing, one has

∂nA
∂t

+
∑
j

∂
(
nA V

j
A

)
∂xj

= CnA , (4.2)

∂
(
nA V

i
A

)
∂t

+
∑
j

∂
(
nA F

(0)ij
A

)
∂xj

+ q nA
∑
j

Ej G
(0)ij
A = nA C

i
VA
, i = 1, 2, 3, (4.3)

∂(nAWA)

∂t
+

∑
j

∂
(
nA S

j
A

)
∂xj

+ q nA
∑
j

EjV
j
A = CWA

, (4.4)

∂
(
nA S

i
A

)
∂t

+
∑
j

∂(nA F
(1)ij
A )

∂xj
+ q nA

∑
j

Ej G
(1)ij
A = nA C

i
SA
, i = 1, 2, 3, (4.5)

https://doi.org/10.1017/S0956792514000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000011


260 G. Al̀ı et al.

where A runs over the considered valleys. In the above equations

CnA =

∫ (
C[fA] +

∑
B�A

CAB[fA, fB]
)
d3k is the density production,

F
(0)ij
A =

1

nA

∫
viAv

j
AfAd

3k is the velocity flux,

G
(0)ij
A =

1

nA

∫
1

�

∂viA
∂kj

fAd
3k,

Ci
VA

=
1

nA

∫
viA(C[fA] +

∑
B�A

CAB[fA, fB])d3k is the velocity production,

CWA
=

∫
EA(k)(C[fA] +

∑
B�A

CAB[fA, fB])d3k is the energy production,

F
(1)ij
A =

1

nA

∫
EA(k)viAv

j
AfAd

3k is the flux of the energy flux, (4.6)

G
(1)ij
A =

1

nA

∫
1

�

∂(EAv
i
A)

∂kj
fAd

3k,

Ci
SA

=
1

nA

∫
EAv

i
A(C[fA]+

∑
B�A

CAB[fA,fB])d3k is the energy flux production.

The system of equations (4.2)–(4.5) is not closed, since the fluxes F (0)ij
A , G(0)ij

A , F (1)ij
A and

G
(1)ij
A appear as do the production terms CnA , C

i
VA

, CWA
and Ci

SA
, which are extra variables

to be expressed in terms of the state variables nA, VA, WA and SA.

In the next two sections we will show how the system can be closed by using the maximum

entropy distribution functions, linearized with respect to the vector variables. So doing,

the fluxes will be expressed by diagonal matrices whose elements depend only on the

macroscopic energies (6.2)–(6.4). Also, the production terms for the densities and the

energies will depend only on the energies (6.8) and (6.12), while those for the velocities

and energy fluxes will be linear combinations of V and S, with coefficients depending on

energies, see (6.5), (6.6), (6.9), (6.10), (6.11) and (6.13) for the matrices of these coefficients.

We emphasise that, for each valley, the non-scalar Lagrange multipliers and the extra

variables will be expressed in terms of their components in the basis consisting of the unit

vectors parallel to the principal crystallographic directions of the valley.

5 Closure of the moment equations by the maximum entropy principle

In order to get the closure relations, we will make use of MEP, which has been successfully

applied in many fields of physics, and particularly in semiconductor modelling (see [2,

3, 7, 10–12, 17, 18 ], and references therein). According to this principle, if a certain

number of moments are known, then the distribution functions fMEP
A , which can be used

for evaluating the unknown moments, are those that minimise or maximise the entropy

functional under the constraint that those functions reproduce the known moments. In

our case this is justified by the fact that, since the phonon gas is considered as a thermal

bath at constant temperature TL, the Helmholtz free energy is a Lyapunov functional [9],

and it can be shown immediately that the consequent optimization problem is equivalent
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to finding stationary points of only the electron component of the entropy, with the

average energy being one of the constraints. Moreover, if the electron gas is sufficiently

dilute, one can take the expression of the entropy obtained as a limiting case of that

arising from the Fermi statistics,

S = −kB
∑
A

∫
�3

(
fA log

fA

y
− fA

)
d3k, y =

2

(2π)3
.

Therefore, according to MEP, we can estimate fA’s with the distributions fMEP
A ’s that

solve the problem,

optimise S under the constraints MA
α =

∫
�3

α(k)fMEP
A d3 k, α = 1, v,E,Ev.

The resulting maximum entropy distribution functions read (the factors kB and y have

been included into the multipliers) as

fMEP
A = exp

[
−

(
λA + λAV · vA +

(
λAW + λAS · vA

)
EA

)]
, A = 1, 2 . . . , nV .

These have to be inserted into the constraint relations and, in principle, after inversion,

the Lagrangian multipliers can be expressed as functions of the basic moments nA, VA,

WA and SA. However, an analytic inversion is impossible and a numerical one is not

practical for numerical simulations of electron devices, since it has to be performed at

each time step in the evolution of state variables (see [8] for Si semiconductors). Using the

same approach as in [13, 14, 22], we assume a small anisotropy of distribution functions

and linearize them with respect to the vector multipliers,

fMEP
A ≈ exp

[
−λA − λAW EA

] [
1 −

(
λAV · vA + λAS · vAEA

)]
, A = 1, 2 . . . , nV . (5.1)

Then the constraints reduce to

nA =

∫
�3

f
(0)
A d3k, nAVA = −

∫
�3

vA
(
λAV · vA + λAS · vAEA

)
f

(0)
A d3k,

nAWA =

∫
�3

EAf
(0)
A d3k, nASA = −

∫
�3

EAvA
(
λAV · vA + λAS · vAEA

)
f

(0)
A d3k,

with f
(0)
A = exp

[
−λA − λAW EA

]
. In this way, the scalar constraints can be solved for the

scalar Lagrange multipliers as functions of scalar moments. The vector constraints reduce

to linear relationships between the vector Lagrange multipliers and the vector moments.

In the next section functions (5.1) will be used to find the closure relations.

6 Closure relations for the fluxes and the production terms

We will start this section by inverting the constraint relations obtained with approximate

maximum entropy distribution functions. Since, in general, the angular integration cannot

be performed analytically when the ellipsoidal approximations are used for the energy

dispersion relations, computations are still more involved than those in [1]. From the
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scalar constraints, the densities and the energies are given by

n =
me

√
2meJ0

�3
e

−λ
d0(λW ),

nW =
me

√
2meJ0

�3
e

−λ
d1(λW ),

where dn(λW ) :=
∫ ∞

0 En exp(−λWE)
√

E
γ5(E)

(γ(E) − Eγ̇ (E)) dE, and J0 :=
∫
S2 ψ

3
2 dΩ. Thus,

one has

λ = −log

(
�3n

me
√

2me J0 d0

)
, λW = h−1(W ),

S2 being the unit sphere surface, and h−1 is the inverse function of h(λW ) := d1(λW )
d0(λW )

.

Hereafter λW will always be regarded as a function of W .

As regards the vector Lagrange multipliers, one finds

λVi = J−1
1, i

[
b11(W )Vi + b12(W ) Si

]
, λSi = J−1

1, i

[
b12(W )Vi + b22(W ) Si

]
. (6.1)

Here J1, i :=
∫
S2 ψ

3
2 η2

i n
2
i dΩ and bij are the elements of matrix B, which is the inverse

of the symmetric matrix A of elements

aij =− �2

4m2
e J0

pi+j−2

d0
, i, j = 1, 2, with pn=pn(W ) :=

∫
�3

En+ 1
2

γ(E) − Eγ̇ (E)
γ

3
2 (E)g2(E) e−λWEdE.

Matrix B is symmetric, which reminds us of the Onsager relations [16].

We note that, differently from the findings in the isotropic approximation [1], relations

(6.1) depend on the direction due to the presence of the terms J−1
1,i , which in the anisotropic

case are different for i = 1, 2, 3.

For the results in this and in the following sections, we have used the following.

Property 1 If σ(n) is an integrable even function of its argument then∫
S2

σ(n) ni dΩ = 0,

∫
S2

σ(n) ni nj dΩ = 0, i, j = 1, 2, 3, i� j.

∫
S2

σ(n) ni nj nk dΩ = 0, ∀i, j, k = 1, 2, 3.

6.1 Fluxes

The above-written relations for the Lagrange multipliers allow us to find constitutive

equations for fluxes. We obtain(
F

(0)
ij

F
(1)
ij

)
=

�2 J1,i

4m2
eJ0 d0

(
p0

p1

)
δij , (6.2)
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with δij being the Kronecker delta, and

G
(0)
ij =

�

(2me)
3
2 J0 d0

[
� J1,i√
2me

G1,0(W ) + (J3,i − J2,i)G2,0(W )

]
δij , (6.3)

G
(1)
ij =

�

(2me)
3
2 J0 d0

[
� J1,i√
2me

G1,1(W ) + (J3,i − J2,i)G2,1(W ) +
� J1,i√
2me

G3,0(W )

]
δij , (6.4)

where

G1,n(W ) : =

∫ ∞

0

En

√
E
γ(E)

g(E) β̇ (E) exp (−λWE) dE,

G2,n(W ) : =

∫ ∞

0

En g(E) exp (−λWE) dE,

G3,n(W ) : =

∫ ∞

0

En

√
E
γ(E)

g(E) β(E) exp (−λWE) dE,

J2 ,i : =

∫
S2

(
ηi − 2

∂ηi
∂ni

)
n2
i ψ dΩ, J3 ,i :=

∫
S2

⎛
⎝ηi − 2

∑
j

∂ηi

∂n2
j

n2
j n

2
i

⎞
⎠ψ dΩ

with β := γ2

γ−Eγ̇ g.

6.2 Production terms: acoustic phonon scattering

Being intra-valley and elastic, the only non-zero production terms for the acoustic scatter-

ing (3.3) are those relative to the velocities and the energy fluxes. After some calculations

we find (
C

(ac)
V

C
(ac)
S

)
= C(ac)

(
V

S

)
, (6.5)

where C(ac) := Q(ac)B and Q(ac) is the matrix of elements

q
(ac)
ij (W ) =

1

2
√

2me�d0

K(ac)

∫ ∞

0

Ei+j−1 g
2(E)

γ(E)
exp (−λWE) dE. (6.6)

We note that at the level of the approximation used in this paper, the contribution of

acoustic scattering is isotropic.

6.3 Production terms: polar optical phonon scattering

For the polar optical scattering (3.4), the calculations are very involved, since it is not

possible to separate angular integration from energy integration because of the presence

of the overlap factor G. It is necessary to make some suitable assumptions on this factor,

which, through k and k′, depends on the carrier energies, E and E′, and the motion

directions, n and n′, before and after the scattering.
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Table 1. Parameter values used in the overlap model

Parameter Value

a01 0.873

a02 0.0268

b01 4.989 × 10−7 μm2

b02 −4.250 × 10−7 μm2

Assumption 1 We will assume that G can depend on n and n′ only through the scalar product

n · n′, even functions of ni and n′
i, i = 1, 2, 3, and also through nz − n′

z , as long as this latter

dependence is even too.

This assumption is satisfied by both the expression of G used by Fawcett et al. [4] and

the one proposed by Nilsson et al. [20], which we will use in this paper, that is

G(k, k′) = 1 − (a01 + a02 sin χ)
[
1 − exp [−(b01 + b02 sin χ)|q|2

]
, (6.7)

where q = ∓(k′ − k) is the phonon quasi-wave vector and χ := arccos qz
|q| , while the

constants a01, a02, b01 and b02 can be found in Table 1.

Under Assumption 1, the following properties hold:

Property 2 The function

Gs,p(E,E′, n) :=

∫
S2

G(k, k′)

E
γ(E)

ψ(n) + E′

γ(E′)ψ(n′) − 2
√

EE′

γ(E)γ(E′)ψ(n)ψ(n′) n · n′
ψ

3
2 (n′) dΩ′

is even with respect to ni, i = 1, 2, 3.

Property 3 The functions

G
v,p
i (E,E′, n)

:=

∫
S2

G(k, k′)

E
γ(E)

ψ(n) + E′

γ(E′)ψ(n′) − 2
√

EE′

γ(E)γ(E′)ψ(n)ψ(n′) n · n′
ψ

3
2 (n′) ηi(n

′) n′
i dΩ

′, i = 1, 2, 3

are odd with respect to ni and even with respect to nj , j� i, i, j = 1, 2, 3.

Function Gs,p(E,E′, n) takes into account the angular integration of the core term G(k,k′)
|k−k′ |2 ,

appearing in the expression of P (p)(k, k′), given by (3.4). Function Gv,p
i (E,E′, n) shows up in

the angular integration of the term G(k,k′)
|k−k′ |2 vi(k). Then the second angular integration which

is needed for the evaluation of production terms can be simplified by using Property 1.

We also use the detailed balance principle, which here we write in the general form valid

for inter-valley scattering too:

PBA(k
′
B, kA) = PAB(kA, k

′
B) exp

(
−EA − E′

B + ΔAB

kBTL

)
.
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As regards the density and energy production terms, we find

C (p)
n = 0,

C
(p)
W =

√
me ω

(p)

√
2 J0 d0

N(p)K(p) n

∫ ∞

0

(∫
S2

Gs,p(E,E+, n)ψ
3
2 (n) dΩ

)
H1(E)H1(E+)

×
[
1 − e

−�ω(p)
(
λW− 1

kBTL

)]
exp (−λWE) dE, (6.8)

where E+ := E + �ω(p), and function H1 is as given in Appendix A.

The structure of production terms for velocities and energy fluxes is slightly different

from that for acoustic scattering, that is, it is anisotropic(
C

(p)
Vi

C
(p)
Si

)
= C(p),i

(
Vi
Si

)
, (6.9)

where C(p),i := J−1
1,i Q

(p) B, i = 1, 2, 3, and Q(p) is the matrix of elements

q
(p)
ij =

�

4me
√

2meJ0 d0

N(p)K(p)

∫ ∞

0

[
H2, i(E,E+)Ei+j−1 +H3, i(E,E+)(E+)i+j−1

−H4, i(E,E+)(e
�ω(p)

(
1

kBTL
−λW

)
Ei−1(E+)j−1 + (E+)i−1Ej−1)

]
e−λWE dE, (6.10)

and functions H2, i, H3, i and H4, i, i = 1, 2, 3, are also given in Appendix A.

6.4 Production terms: impurity scattering

For the impurity scattering (3.5), the procedure is very similar to that followed for polar

optical scattering, in fact properties analogous to Properties 2 and 3, respectively, hold

for the following functions:

Gs,im(x, n) :=

∫
S2

G(k, k′)ψ
3
2 (n′)[

2me E
�2 γ(E)

(
ψ(n) + ψ(n′) − 2

√
ψ(n)ψ(n′) n · n′

)
+ λ2

D

]2
dΩ′,

G
v,im
i (x, n) :=

∫
S2

G(k, k′)ψ
3
2 (n′)[

2me E
�2 γ(E)

(
ψ(n) + ψ(n′) − 2

√
ψ(n)ψ(n′) n · n′

)
+ λ2

D

]2
ηi(n) n′

i dΩ
′, i = 1, 2, 3.

Obviously, these functions affect the angular integration of G(k,k′)

[|k−k′ |2+λ2
D]

2 and

G(k,k′)

[|k−k′ |2+λ2
D]

2 vi(k). Comparing with the polar optical scattering, here an additional sim-

plification is shown due to the elasticity of this scattering, so E′ = E. Therefore, the

production terms relative to velocities and energy fluxes have the same structure as that

for polar optical scattering, with the elements of the matrix Q(im) given by

q
(im)
ij =

K(im)

2
√

2me � J0 d0

∫ ∞

0

E(i+j−2) g2(x)

γ(x)
H5(E)e−λWE dE, (6.11)

with H5 given in Appendix A.
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6.5 Production terms: non-polar optical phonon scattering

In this section we consider inter-valley scattering due to non-polar phonons (3.6). After

long and involved calculations we find, for the density and the energy production terms,

(
C (np)
nA

C
(np)
WA

)
=

∑
B�A

√
2ZAB(me)

3
2 JA0 J

B
0

�3
N(np) K(np)

{
nB

JB0 d
B
0

[
e

−λBWΔ+
AB+ ε(np)

kBTL

×
∫ ∞

0

(
1

E + a−
AB

)
e−λBW (E+a−

AB)H6,AB(E, a−
AB, Δ

+
AB)dE

+ e−λBWΔ−
AB

∫ ∞

0

(
1

E + a+
AB

)
e−λBW (E+a+

AB)H6,AB(E, a+
AB, Δ

−
AB)dE

]

− nA

JA0 d
A
0

[∫ ∞

0

(
1

E + a−
AB

)
e−λAW (E+a−

AB)H6,AB(E, a−
AB, Δ

+
AB)dE

+ e
ε(np)

kBTL

∫ ∞

0

(
1

E + a+
AB

)
e−λAW (E+a+

AB)H6,AB(E, a+
AB, Δ

−
AB)dE

]}
, (6.12)

where dA0 = d0(λ
A
W ), ε(np) = �ω(np), Δ±

AB = ΔAB ± ε(np), a±
AB = max(0, −ΔAB ± ε(np)), and

the function H6,AB can be found in Appendix A. The two positive terms in the previous

expression depend through λBW on the macroscopic energy in valley B and are gain terms,

corresponding to the absorption and emission of a phonon respectively, while the negative

terms depending on the macroscopic energy in valley A are, of course, loss terms.

As regards the vector production terms, they have the same isotropic structure as those

of the acoustic scattering, with the elements of the matrices Q(np)
AB given by

q
(np)
ij, AB =

JB0 ZAB

2 �
√

2me J
A
0 d

A
0

N(np)K(np)

∫ ∞

0

[
(E + a−

AB)i+j−2e−λAW (E+a−
AB)

×H7, B(E, a−
AB, Δ

+
AB) +

(
E + a+

AB

)i+j−2
e

−λAW (E+a+
AB)+ ε(np)

kBTL

×H7,B(E, a+
AB, Δ

−
AB)

]
dE, (6.13)

where the function H7,B is given in Appendix A.

We conclude this section by noting a property useful to cut the numerical computation

time of the polar optical phonon and impurity production terms by a factor of eight.

Property 4 If ν(n, n′) is an integrable function on S2 × S2, such that

• ν(−n,−n′) = ν(n, n′),

• ν(−nx,−ny, nz, n′
x, n

′
y, n

′
z) = ν(nx, ny, nz, n

′
x, n

′
y, n

′
z),

• ν(−nx, ny, nz, n′
x, n

′
y, n

′
z) = ν(nx, ny, nz, n

′
x, n

′
y, n

′
z),

then ∫
S2×S2

ν(n, n′) dΩ dΩ′ = 8

∫
Q1×S2

ν(n, n′) dΩ dΩ′,

where Q1 is the portion of the unit sphere surface which lies in the first octant of �3.
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Table 2. Parameters of the band structure of 4H-SiC and 6H-SiC

Material 4H-SiC 6H-SiC

Conduction band valley M, 1st c.b. M, 2nd c.b. L, 1st c.b. L, 2nd c.b.

Effective mass (me) 0.29, 0.58, 0.33 0.90, 0.58, 0.33 0.22, 0.90, 1.43 0.22, 0.90, 1.43

Valley energy minimum (eV) 0 0.14 0 0

α (eV−1) 0.117 0.058 0.039 0.039

Number of equivalent 3 3 3 3

valleys

Figure 1. Brillouin zone of hexagonal lattice.

The integrands in the production terms of the polar optical phonon and impurity scat-

terings satisfy the hypotheses under which Property 4 holds.

7 Numerical simulations of bulk 4H-SiC and 6H-SiC

In [1] the model with isotropic dispersion relations (in the following indicated as IB

model) has been applied to the cases of bulk GaN and 4H-SiC. Here we show that the

model with anisotropic dispersion relations (in the following indicated as AB model) is

more appropriate to describe the behaviour of anisotropic semiconductors such as the

hexagonal polytypes of silicon carbide whose lattice is shown in Figure 1. This is proved

by the fact that the behaviour of the drift velocity and the average energy with respect

to the electric field strongly depends on the direction of the latter. Silicon carbide is an

important semiconductor material because of its high saturation velocity, large thermal

conductivity, high breakdown voltages and high Schottky barriers. These properties make

it very useful in high temperature, high frequency and high power devices. As far as we

are aware, there have been few attempts to construct hydrodynamical models, without

any free adjustable parameter or ad hoc closure, which describe the electric behaviour of

such a material. In particular, it appears that to date no attempt has been made to take

into account strong anisotropy.
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Table 3. Bulk material parameters

ρ εs ε∞ vs Ξd �ω(p) �ω(np) DtK

4H-SiC 3.2 9.7 6.5 13,730 15 120 85.4 7 × 108

6H-SiC 3.2 9.66 6.5 13,730 17.5 120 85.4 6 ×108

Units g

cm3 ε0 ε0 m/s eV meV meV meV

7.1 Bulk 4H-SiC

As regards the band structure of 4H-SiC, different results can be found in the literature.

Here we have used those given in Pennington & Goldsman [21], that is, we have considered

the valleys around the minima at the symmetry point M of the two lowest conduction

bands. Because of crystal symmetries there are three equivalent M points, therefore the

total number of valleys taken into account is six, and their parameters are listed in

Table 2. In particular, in this table, the masses along the principal directions M–K, M–Γ

and M–L (in the following respectively indicated by x, y and z) are given, me is the

free electron mass, and ε0 is electrical permittivity in a vacuum. If in the bulk case

homogeneous initial conditions are taken with zero initial velocities and energy fluxes, the

moment system reduces to a system of ordinary differential equations (ODEs) with time

as the only independent variable. In this case, the Poisson equation is solved taking the

total electron population equal to the doping concentration, and the electrostatic potential

with a linear profile between the two boundary values, while the moment system reduces

to

dnA

dt
= CnA(W1,W2, . . . ) +

∑
B�A

nBCnA (WB), (7.1)

d

dt
(nAV

i
A) + q nA

∑
j

EjG
(0)ij
A = nAc

A,i
11 (WA)V

i
A + nAc

A,i
12 (WA)S

i
A, (7.2)

d

dt
(nAWA) + q nA

∑
j

EjV
j
A = CWA

(W1,W2, . . . ) +
∑
B�A

nBCWA
(WB), (7.3)

d

dt
(nASA)

i + q nA
∑
j

EjG
(1)ij
A = nAc

A,i
21 (WA)V

i
A + nAc

A,i
22 (WA)S

i
A, (7.4)

where the index A runs over the valleys; moreover, for each valley the vector equations

are written using the respective basis. All the scattering mechanisms reported in Section

3 are taken into account and the material parameters can be found in Table 3, following

the data in [15].

All the terms relative to the density and the energy production have been summed

into the first addenda in equations (7.1) and (7.3), except the gain terms of inter-valley

scattering, which depend on the energy of other valleys, different from A, involved in

the scattering and are represented by the sums on the right-hand side of the equations.

The production terms are numerically computed for a discrete number of values in a

suitable range of macroscopic energies and the values of interest during the numerical
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Figure 2. 4H-SiC. (a) Valley occupancies ( nA∑
A nA

) versus the applied electric field directed along

M–K. (b) Total velocity versus the applied electric field in the principal directions. The doping

density is ND = 1019/cm3.

computation of the solution to the system (7.1)–(7.4) are evaluated by a stepwise linear

interpolation. As said, the computation of the production terms relative to the scattering

both with the polar optical phonons and impurities is very expensive, in fact it takes

around 20 hours on a Workstation with a 8-GB RAM and a 2.67-GHz Intel(R) Xeon(R)

X3450 CPU. However, these computations are done once for all and can be used for all

kinds of devices. In particular, for the angular integration a suitable numerical method

has been exploited, which has been tested verifying that if the masses are equal, then the

results of the isotropic model are recovered. The ODE system is numerically solved by a

4th order Runge–Kutta method for 60 values of applied electric field going in modulus

from 10−3 to 100V/μm. Three directions of the field are considered, that is the principal

directions of one of the three equivalent M-valleys. The steady state is reached in less

than 5 ps and the program requires a total run-time of less than 30 s on a laptop with an

i7-2630QM processor.

The results are shown in Figures 2–3. All the main characteristics of 4H-SiC are qualit-

atively and quantitatively well described. At low fields, up to 4–5 V/μm, the behaviour of

the total average velocity, which is defined as

V =
1

n

∑
A

nAVA,

is linear with high slope, and the velocity reaches its maxima, which are about 2.04 × 107,

1.94 × 107 and 2.42 × 107 cm/s respectively in the x, y and z directions, at about the fields

40, 40 and 32 V/μm. This latter fact together with Figure 2(b) is enough to show that

the differences according to the direction of the electric field are relevant, which makes

it clear that taking into account the anisotropy of the energy dispersion relations is very

important. Also, the behaviour of the valley occupancies, as shown in Figure 2(a), is

different from that foreseen by the IB model, in fact the population inversion occurs at a

lower electric field than in the isotropic case. There is a remarkable discrepancy, Figure 3(a),

https://doi.org/10.1017/S0956792514000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000011


270 G. Al̀ı et al.

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4

(a) (b)

Electric field (V/μm)

T
ot

al
 e

ne
rg

y 
(e

V
)

M−K (AB model)
M−Γ (AB model)
M−L (AB model)
IB model

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

Electric field (V/μm)

T
ot

al
 v

el
oc

ity
 (

10
7  c

m
/s

)

N
D

= 1017/cm3

N
D

= 1019/cm3

N
D

= 1021/cm3
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M–K and M–Γ directions are practically indistinguishable. (b) Total velocity versus the applied
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Figure 4. 4H-SiC. In the two figures on the left: polar optical energy productions (for the two

M-valleys). In the four figures on the right: gain (upper figures) and loss (lower figures) terms of

the non-polar optical energy productions (for the two M-valleys) (6.12). The figures compare the

results for the two models, circles referring to the IB model and crosses to the AB model.

between the predictions of the two models in the behaviour of the total mean energy,

which is given by

W =
1

n

∑
A

nA
(
WA + E(0)

A − E(0)
1

)
.

This might also be due to the different overlap factor used in this paper as can be deduced

from the fact that relevant differences in the energy production terms are present only for

the polar optical scattering, see Figure 4. Figure 5 shows the non-polar optical density

productions. As regards the production terms for the velocities and energy fluxes, also

for them the main differences are in the polar optical and impurity scattering, which are
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IB model, and crosses to the AB model.
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Figure 6. 4H-SiC, elements of the matrices C(p),i
A , i = 1, 2, 3, for the polar optical scattering. In the

four figures on the left: lower valley. In the four figures on the right: higher valley. Symbols have

the same meaning as in Figure 2(b), referring to the main directions and to the type of model.

anisotropic and for which the overlap factor (6.7) is used, while for the acoustic and

non-polar optical scattering the differences are irrelevant, see Figures 6–9.

At last in Figure 3(b), we show how the behaviour of the drift velocity varies at

different doping concentrations, and the model manages to capture non-monotonicity

with increasing impurity concentration typical of SiC.
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Figure 7. 4H-SiC, acoustic scattering. In the four figures on the left: velocity and energy flux

production terms (lower valley). In the four figures on the right: velocity and energy flux production

terms (higher valley). For this scattering, differences in different directions and between the two

models are practically indiscernible.
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Figure 8. 4H-SiC, non-polar optical scattering. In the four figures on the left: velocity and energy

flux production terms (lower valley). In the four figures on the right: velocity and energy flux

production terms (higher valley). Also, in this case differences in different directions and between

the two models are practically indiscernible.

7.2 6H-Bulk SiC

Also in this case for the band structure we have used the results of [21]. In particular,

we have considered the minima of the two lowest conduction bands to occur at the L

symmetry point and used a number of equivalent valleys equal to three. Therefore, also

in this case, the total number of valleys is six, and furthermore the two lowest conduction

bands degenerate around L. The parameters are given in Table 2, where in particular

the masses along the principal directions L–H, L–A and L–M can be found. The results

are shown in Figures 10–11 and are qualitatively analogous to those for 4H-SiC, therefore

the same comments remain valid also in this case. For a better comparison with the

experimental values found by von Muench and Pettenpaul [24], in Figure 10(a) we have

highlighted by squares the velocities corresponding to the values of the electric field
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Figure 9. 4H-SiC, impurity scattering. In the four figures on the left: velocity and energy flux

production terms (lower valley). In the four figures on the right: velocity and energy flux production

terms (higher valley). Symbols have the same meaning as in Figure 2(b). ND = 1019/cm3.
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Figure 10. 6H-SiC. (a) Total velocity versus the applied electric field in the principal directions,

ND = 1019/cm3. (b) Total velocity versus the applied electric field directed along L–M for three

values of ND .

reported in [15]. Eventually, Figure 12 shows that, as known, the anisotropy of 4H-SiC is

lower than that of 6H-SiC.

8 Conclusions

In this paper we present a hydrodynamical model for charge transport in semiconductors

which, to the best of our knowledge, is the first to take into account the dependence of

charge effective mass on space direction. This is very important for highly anisotropic

semiconductors such as 4H- and 6H-SiC. The numerical results for these latter semicon-

ductors, shown in the paper, are in good qualitative and quantitative agreement with the

Monte Carlo results in the literature. In our opinion the results could be further improved,
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Figure 11. 6H-SiC. Total average energy (measured from the bottom of the first c.b.) versus the

applied electric field along the three principal axes. The results relative to the L–H and L–A

directions are practically indistinguishable.
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Figure 12. (a) 4H-SiC, total velocity versus the applied electric field directed along the principal

directions. (b) 6H-SiC, total velocity versus the applied electric field directed along the principal

directions. ND = 1019/cm3.

since they strongly depend on the parameters of the band structure and the scattering

rates for which several different values can be found in the literature.
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Appendix A

In this section we list the functions that appear in various production terms

H1(x) :=
√
x
γ(x) − x γ̇(x)

γ(x)
5
2

,

H2, i(x, y) :=
g2(x)H1(y)

γ(x)H1(x)

∫
S2

Gs,p(x, y, n)η2
i (n) n2

i ψ
3
2 (n) dΩ,

H3, i(x, y) := e
�ω(p)

(
1

kBTL
−λW

)
g2(y)H1(x)

γ(y)H1(y)

∫
S2

Gs,p(y, x, n)η2
i (n) n2

i ψ
3
2 (n) dΩ,

H4, i(x, y) :=
g(x) g(y)√
γ(x) γ(y)

√
x y

∫
S2

G
v,p
i (x, y, n)ηi(n) ni ψ

3
2 (n) dΩ,

H5(x) :=

∫
S2

[
Gs,im(x, n) η2

i (n) n2
i ψ

3
2 (n) − G

v,im
i (x, n) ηi(n) ni ψ

3
2 (n)

]
dΩ,

H6,AB(x, y, z) := H1,A(x+ y)H1,B(x+ y + z),

H7,B(x, y, z) :=
8me (x+ y)2

�2
H1,B(x+ y + z)
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