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A two-dimensional depth-averaged model is derived for open-channel flows in the
smooth turbulent case. The derivation is consistently obtained with a method of matched
asymptotic expansions in the outer and inner layers using a mixing length model of
turbulence including the free-surface reduction of the eddy viscosity. The shear effects
are taken into account by an extra tensor variable of the model called the enstrophy tensor.
The friction coefficient is an explicit expression of the water depth. The three-dimensional
velocity field and the friction velocity can be reconstructed from the values of the
depth-averaged quantities. Numerical simulations show that the enstrophy can be used
to evaluate the development of the turbulent boundary layer. In the case of subcritical
unsteady flows, the reconstructed velocity can be described with a logarithmic law
modified by Coles’ wake function with apparent von Kármán constant, integration
constant and wake-strength parameter, which differ from their values in steady flows. In the
viscous sublayer the steady-state relation between the velocity and the vertical coordinate,
in the inner scaling, is not valid for unsteady flows. Large errors on the calculation of the
von Kármán constant can be made if the validity of the steady-state relation is assumed
for unsteady flows. The comparisons of the reconstructed velocity profiles in the case
of one-dimensional unsteady open-channel flows and two-dimensional wide trapezoidal
channels show a good agreement with experiments.
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1. Introduction

The usual equations of open-channel hydraulics in the unsteady case are the
one-dimensional (1-D) Saint-Venant equations, also called the nonlinear shallow-water
equations. They can be easily extended to the two-dimensional (2-D) case. These equations
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are derived with the shallow-water assumption, i.e. the water depth is small compared with
the characteristic length in the direction parallel to the bottom. As a consequence, at the
leading order, the pressure is hydrostatic. Another assumption is that all shear effects are
neglected, which means that the velocity is supposed to be uniform over the depth. With
these assumptions, the Saint-Venant equations can be derived from the Euler equations of
incompressible and inviscid fluids with a depth-averaging procedure.

Except in the case of discontinuities, which are created in finite time due to the
hyperbolic structure of the equations, there is no inherent dissipative effects in this
approach, which implies that they must be added empirically, most often as an empirical
friction force. The Kármán–Prandtl relation for smooth pipes can be extended with
slightly different numerical values to the case of smooth open channels but the friction
coefficient is found only implicitly. Approximate relations were proposed to obtain an
explicit expression of the friction coefficient. More details can be found in Chow (1959)
or Yen (2002) for example.

To find the expression of the friction force, or more generally of the dissipative terms,
as part of the derivation process of the depth-averaged equations implies taking into
account the mean flow and turbulence structure of the flow. Experimental investigation
for open-channel flows is more recent than for turbulent boundary layers in close channels
because turbulence measurements are more difficult in water than in air flows, and they
actually started with the advent of laser Doppler anemometers (Steffler, Rajaratnam &
Peterson 1985; Nezu & Rodi 1986). The structure of fully developed open-channel flows is
similar to boundary layers and pipe flows, with an inner region controlled by the kinematic
viscosity ν and by the friction velocity ub = √

τb/ρ, where τb is the shear stress at the
bottom and ρ the fluid density, and an outer region controlled by the water depth h and
the maximum velocity. These regions overlap in a layer where the logarithmic law holds.
Denoting by u the mean velocity and by z the vertical coordinate, this log law can be
written as

u+ = 1
κ

ln z+ + B, (1.1)

where u+ = u/ub, z+ = zub/ν, κ is the von Kármán constant and B the integration
constant. In the outer layer a deviation from the log law can be taken into account by
Coles’ wake function (Coles 1956)

u+ = 1
κ

ln z+ + B + 2Π

κ
f (z/h), (1.2)

where h is fluid depth and f a universal function often chosen as f (Z) = sin2(πZ/2).
However, the wake-strength parameter Π controlling this function is smaller than for
zero-pressure-gradient boundary layers and is nearly equal to zero at a relatively low
Reynolds number (Nezu & Rodi 1986). Cardoso, Graf & Gust (1989) found only a weak
wake and noted that an apparent log law can approximate the entire velocity profile. If the
Froude number, defined by F = u/

√
gh, is smaller than 1, the flow is said to be subcritical

(the surface waves are faster than the flow velocity). If F > 1, the flow is supercritical (no
surface perturbation can propagate upstream). For subcritical flows, the measured values
of κ and B are respectively 0.412 and 5.29 (Nezu & Rodi 1986). Very close values were
obtained by Cardoso et al. (1989). In the case of supercritical flows, the same value of
κ � 0.41 was measured but it was found that B decreases if the Froude number increases
above 1 (Tominaga & Nezu 1992; Prinos & Zeris 1995). Miguntanna et al. (2020) found
that the integration constant B is a function of the channel aspect ratio.
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Reconstruction of the 3-D fields with a depth-averaged model

In the framework of the eddy viscosity assumption, the mixing length approach (Prandtl
1925) has been extensively applied to open-channel flows and is widely recognized as
able to provide an accurate description of the flow over a smooth plane. In the inner layer
the mixing length satisfies the classical linear layer modified by the Van Driest damping
function (Van Driest 1956). An expression of the mixing length for open-channel flows,
including the wake-strength parameter, was obtained by Nezu & Rodi (1986) giving a
reduction of the eddy viscosity near the free surface where the mixing length is equal to
zero.

In the unsteady case the difficulty is the determination of the friction velocity. Various
methods were used and, in particular, the friction velocity can be extracted from velocity
measurements in the viscous sublayer assuming the validity for unsteady flows of the
law u+ = z+ that is found in the viscous sublayer in the steady case. The value of
the von Kármán constant remains close to κ � 0.41 for weakly unsteady flows (Nezu,
Kadota & Nakagawa 1997) but can deviate from the steady-case value for a strong
unsteadiness (Onitsuka & Nezu 2000; Nezu & Onitsuka 2002). Considerable variations
of the integration constant B and also of the wake-strength parameter Π were found.

The present study is a continuation of a previous work (Richard, Rambaud & Vila 2017)
where a new model for open-channel flows was derived using a mixing length model of
turbulence and a method of matched asymptotic expansions. In this paper the work is
improved and extended on the following points.

(i) The mixing length expression of Nezu & Rodi (1986) with the free-surface damping
effect is used.

(ii) This expression of the mixing length enables an accurate reconstruction of the
velocity field from the bottom to the free surface using the calculated depth-averaged
quantities.

(iii) The model is extended to the case of three-dimensional (3-D) flows, leading to a 2-D
depth-averaged model.

(iv) The effects of the corrective first-order terms obtained consistently by an asymptotic
method are evaluated in unsteady flows with comparisons to experimental results
from the literature on the development of the turbulent boundary layer and on
unsteady velocity profiles.

The governing equations, the assumptions and the scaling are given in § 2. The
asymptotic expansions in the outer and inner layers and the matching procedure are
presented in § 3. The depth-averaged model is consistently derived in § 4 using the
asymptotic expansions. The method to reconstruct the bottom friction and the 3-D velocity
fields is given in § 5. Numerical simulations are presented in § 6 to study the development
of the turbulent boundary layer and the velocity profiles in unsteady situations. Technical
details are given in the appendices.

2. Governing equations

2.1. Turbulence model
We study a turbulent flow on a sloping channel with a smooth bottom. The angle between
the channel and a horizontal plane is θ . The basis for the coordinates x, y and z is
(ex, ey, ez). The angle between the axis Ox and the fall line is β and the axis Oz is normal
to the bottom (see figure 1). In these axes the components of the gravity acceleration are
g = g(sin θ cos β, sin θ sin β, − cos θ)T.
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Figure 1. Definition sketch.

The turbulence is modelled with the mixing length model. The viscous stress tensor is
written as τ = 2ρ(ν + νT)D, where ρ is the fluid density, ν its kinematic viscosity, νT
the turbulent viscosity. The tensor D is the strain-rate tensor defined by D = [grad v +
(grad v)T]/2, where v is the mean velocity field. The turbulent viscosity is given by
νT = √

2L2
m
√

D : D, where the colon denotes the double dot product. For open-channel
flows, the mixing length Lm, in the model of Prandtl modified by the damping term of Van
Driest (1956), if the wake-strength parameter is zero or can be neglected, is given by the
expression (Nezu & Rodi 1986),

Lm = κz(1 − e−z+/A+
)

√
1 − z

h
, (2.1)

where κ is the von Kármán constant (κ � 0.41), A+ is a dimensionless constant with
the usual value A+ = 26 and h is the fluid depth. The dimensionless variable z+ is the
viscous or wall coordinate defined by z+ = zub/ν where the shear or friction velocity ub
is related to the bottom shear stress τb by ub = √

τb/ρ. The factor
√

1 − z/h was absent
in the expression of the mixing length used by Richard et al. (2017) and, consequently, the
velocity profile was accurate only in the inner layer. We define the effective viscosity as
νeff = ν + νT . The constitutive law can thus be written as τ = 2ρνeff D.

The wake-strength parameter Π of Coles’ law of the wake was found to be considerably
smaller in the case of open-channel flows than in the case of zero-pressure-gradient
boundary layers where the value Π = 0.55 is observed. Nezu & Rodi (1986) found that
Π is near zero for Re � 104 and increases to a maximum of 0.2 for Re � 2.5 × 104 (our
definition of the Reynolds number is Re = hU/ν, different from the definition of Nezu
& Rodi 1986). Cardoso et al. (1989) found a wake of limited strength (Π � 0.08) in
the core of the outer region but they found that the wake effect is partly compensated
in the near-surface zone by a retarding flow, such that an apparent logarithmic law can
approximate the entire velocity profile, explaining why the logarithmic law is often used
with success in an open-channel flow up to the water surface. They also highlighted that
the outer region of an open-channel flow may not have a universal structure, possibly
depending on secondary currents, flow history and inactive turbulence components. Given
the small importance of the wake function in open-channel flows and the large increase
of complexity needed to take it into account, the wake function is neglected. However, we
will show in the following that, although no wake function is included in the description
of uniform and steady flows, an apparent wake function appears in the unsteady case.

The mass conservation equation in the incompressible case is div v = 0. The
components of the velocity field are denoted by v = (u, v, w)T. The components of the
viscous stress tensor are denoted by τxx, τyy, τzz, τxy, τxz and τyz and p denotes the pressure.
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Reconstruction of the 3-D fields with a depth-averaged model

The momentum balance equation is

ρ

[
∂v

∂t
+ div (v ⊗ v)

]
= ρg − grad p + div τ . (2.2)

The no-penetration and no-slip conditions at the bottom imply that v(0) = 0. At the free
surface, the kinematic boundary condition is

w(h) = ∂h
∂t

+ u(h)
∂h
∂x

+ v(h)
∂h
∂y

, (2.3)

and the dynamic boundary condition gives the following equations:

[p(h) − τxx(h)]
∂h
∂x

− τxy(h)
∂h
∂y

+ τxz(h) = 0, (2.4)

[p(h) − τyy(h)]
∂h
∂y

− τxy(h)
∂h
∂x

+ τyz(h) = 0, (2.5)

−τxz(h)
∂h
∂x

− τyz(h)
∂h
∂y

− p(h) + τzz(h) = 0. (2.6)

2.2. Shallow-water scaling
The equations are written in dimensionless form using a characteristic depth hN , a
characteristic length L in the Ox direction and a characteristic velocity uN with the
shallow-water hypothesis

ε = hN

L
� 1. (2.7)

The dimensionless quantities are denoted with a prime and are defined as

x′ = x
L

; y′ = y
L

; z′ = z
hN

; u′ = u
uN

; v′ = v

uN
; w′ = w

εuN
; p′ = p

ρghN
;

t′ = tuN

L
; h′ = h

hN
; L′

m = Lm

κhN
; ν ′

T = νT

κ2hNuN
; τ ′

xz = τxz

ρκ2u2
N

; τ ′
yz = τyz

ρκ2u2
N

;

τ ′
xx = τxx

ερκ2u2
N

; τ ′
yy = τyy

ερκ2u2
N

; τ ′
zz = τzz

ερκ2u2
N

; τ ′
xy = τxy

ερκ2u2
N

.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.8)

A characteristic turbulent viscosity is νe = κ2hNuN . We define the Froude number F, the
Reynolds number Re and the mixing length Reynolds number ReML as

F = uN√
ghN

; Re = hNuN

ν
; ReML = hNuN

νe
= 1

κ2 . (2.9a–c)

There is no assumption on the Froude number, i.e. F = O(1). We then define the ratio

η = ReML

Re
= 1

κ2Re
= ν

νe
. (2.10)

This number is usually very small in open-channel hydraulics. We will assume that

η = ε2+m, m > 0. (2.11)

This implies that the Reynolds number must be large for the model to be valid. Specifically,
this condition is necessary for the validity of the matching procedure and of the viscous
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scaling (see below). The validity of the shallow-water scaling does not necessitate a so
large Reynolds number. The smooth turbulent regime is valid as long as the shear Reynolds
number defined by Reb = ksub/ν is smaller than 4 (Henderson 1966), where ks is the
equivalent sand roughness height. This gives a maximum value of ks compatible with
the assumption of a smooth turbulent regime. Taking F = O(1) implies also that sin θ =
O[(ln η)−2] (see below). The dimensionless mixing length is L′

m � z′√1 − s, where s =
z/h and the effective viscosity is ν′

eff = ν/νe + ν′
T = η + ν′

T . Using νT = √
2 L2

m
√

D : D
and given that νeff is scaled as νT (see (2.8)) leads to

ν′
eff = z′2(1 − s)

√(
∂u′

∂z′

)2

+
(

∂v′

∂z′

)2

+ O(ε2). (2.12)

Note that the term exp(−z+/A+) is negligible in the shallow-water scaling since the full
expression is

L′
m = z′√1 − s

⎡⎣1 − exp

⎛⎝−
z′
√

τ ′
b

ηκA+

⎞⎠⎤⎦ � z′√1 − s. (2.13)

We define

λ = sin θ

κ2F2 . (2.14)

The molecular viscosity is negligible in this scaling. In this scaling the mass balance
equation reads

∂u′

∂x′ + ∂v′

∂y′ + ∂w′

∂z′ = 0. (2.15)

Defining the 2-D vectors u′ = (u′, v′)T, λ = λ(cos β, sin β)T and τsh = (τxz, τyz)
T, the

momentum balance equation in the Oxy plane becomes

ε

κ2

[
∂u′

∂t′
+ div(u′ ⊗ u′) + ∂w′u′

∂z′

]
= λ+ ∂τ ′

sh

∂z′ − ε

κ2F2 grad p′ + O(ε2). (2.16)

In the Oz direction the momentum balance can be written as

∂p′

∂z′ = − cos θ + O(ε). (2.17)

The dynamic boundary conditions at the free surface (2.4)–(2.6) reduce to

p′(h) = O(ε); τ ′
xz(h) = O(ε2); τ ′

yz(h) = O(ε2). (2.18a–c)

As in Richard et al. (2017), in this scaling the boundary condition at the bottom cannot be
satisfied. It is necessary to use another scaling in an inner layer near the bottom wall where
the molecular viscosity is included.

2.3. Viscous scaling
This scaling is a zoom of the shallow-water scaling using the small parameter η.
Dimensionless quantities in this scaling are denoted by a tilde. Some dimensionless
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Reconstruction of the 3-D fields with a depth-averaged model

quantities are not changed and some others are magnified. We define

x̃ = x′; ỹ = y′; t̃ = t′; ũ = u′; ṽ = v′; p̃ = p′;
z̃ = z′

η
; w̃ = w′

η
; h̃ = h′

η
; L̃m = L′

m

η
;

τ̃xy = τ ′
xy; τ̃xz = τ ′

xz; τ̃yz = τ ′
yz; τ̃xx = τ ′

xx;
τ̃yy = τ ′

yy; τ̃zz = τ ′
zz; ν̃ = ν′

η
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.19)

The expression of the dimensionless mixing length in the viscous scaling is

L̃m = z̃
√

1 − s

[
1 − exp

(
− z̃

√
τ̃b

κA+

)]
. (2.20)

In this scaling the exponential term is not negligible since the vertical coordinate is
magnified by a factor η (but not τb) and, consequently,

exp

⎛⎝−
z′
√

τ ′
b

ηκA+

⎞⎠ = exp
(

− z̃
√

τ̃b

κA+

)
, (2.21)

is not small. The dimensionless strain-rate tensor is D̃ = ηD′. The dimensionless effective
viscosity is ν̃eff = 1 + ν̃T . This implies that the molecular and turbulent viscosities are of
the same order of magnitude in this scaling. The mass conservation is not changed and
reads

∂ ũ
∂ x̃

+ ∂ṽ

∂ ỹ
+ ∂w̃

∂ z̃
= 0. (2.22)

The momentum balance equation gives

∂τ̃xz

∂ z̃
= O(η); ∂τ̃yz

∂ z̃
= O(η); ∂ p̃

∂ z̃
= O(η). (2.23a–c)

3. Asymptotic expansions

The methodology is formally the same as in Noble & Vila (2013) for power-law laminar
flows and in Richard, Ruyer-Quil & Vila (2016) for laminar Newtonian flows and was
detailed in Richard et al. (2017) in the case of 2-D flows. This method is extended to the
case of 3-D flows. Each variable is expanded with respect to the small parameter ε as

X = X0 + εX1 + O(ε2) (3.1)

for any variable X. A second small parameter μ is introduced below and the first-order
terms X1 can have additionally an order of magnitude with respect to μ. For example, the
first-order correction to the velocity is of O(ε/μ2). However, the main small parameter
governing the asymptotic expansions is still ε and the second parameter is used only to
rank the terms of the highest order (order 1 in the present case). The expansion of the
components of the viscous stress tensor will be denoted as τxz = τ

(0)
xz + ετ

(1)
xz + O(ε2).

The expressions of the variables are obtained at order 0 and then at order 1.
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3.1. Order 0
In the shallow-water scaling, the momentum balance equation (2.16) gives

∂τ
′(0)
xz

∂z′ = −λ cos β; ∂τ
′(0)
yz

∂z′ = −λ sin β, (3.2a,b)

and the boundary conditions (2.18a–c) lead to τ
′(0)
sh (h) = 0. The integration gives

τ
′(0)
sh = λh′(1 − s). (3.3)

The constitutive law τ ′ = 2ν′
eff D′ gives τ

′(0)
sh = ν′

eff ∂u′
0/∂z′, which leads to

z′2
√(

∂u′
0

∂z′

)2

+
(

∂v′
0

∂z′

)2
∂u′

0
∂z′ = λh′. (3.4)

This equation gives the norm ∥∥∥∥∂u′
0

∂z′

∥∥∥∥ =
√
λh′

z′ . (3.5)

The components of u′
0 can be integrated between the free surface and an arbitrary depth

to obtain
u′

0 = u′
0(h) +

√
λh′λ̂ ln s, (3.6)

where λ̂ = λ/λ. The expression (3.3) does not diverge when s → 0 but the expression (3.6)
diverges for s → 0. It is thus necessary to use the viscous scaling to find the expression of
the velocity in an inner layer near the bottom. Then a matching procedure will be used in an
overlap region to fit the expression of the velocity in the outer layer (with the shallow-water
scaling) and in the inner layer (with the viscous scaling).

In the viscous scaling, (2.23a–c) implies that τ̃
(0)
xz and τ̃

(0)
yz are constant in the inner layer

and, thus, equal to their values at z = 0. Since τ̃ = τ ′, and because the expressions of
τ

′(0)
xz and τ

′(0)
yz do not diverge for z → 0, we have simply τ̃

(0)
sh = τ

′(0)
sh (0) = λh′. We have

also τ̃b = λh′. The constitutive law is integrated in the viscous scaling in order to find the
velocity in the inner layer. With the expression (2.20), the effective viscosity writes in the
viscous scaling

ν̃eff = 1 + z̃2(1 − s)(1 − e−z̃
√

τ̃b/(κA+))2

√(
∂ ũ
∂ z̃

)2

+
(

∂ṽ

∂ z̃

)2

. (3.7)

We define ξ = 2
√
λh′z̃ and A = 2κA+ to write z̃

√
τ̃b/(κA+) = ξ/A with τ̃b = λh′. With

τ̃
(0)
xz = ν̃eff ∂ ũ0/∂ z̃ and τ̃

(0)
yz = ν̃eff ∂ṽ0/∂ z̃, the constitutive law gives[

1 + z̃2(1 − s)(1 − e−ξ/A)2
∥∥∥∥∂ũ0

∂ z̃

∥∥∥∥] ∂ũ0

∂ z̃
= λh′. (3.8)

From this relation, we can show that∥∥∥∥∂ũ0

∂ z̃

∥∥∥∥ = 2λh′

1 +
√

1 + ξ2(1 − s)(1 − e−ξ/A)2
. (3.9)
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Reconstruction of the 3-D fields with a depth-averaged model

This can be also written as∥∥∥∥∂ũ0

∂ z̃

∥∥∥∥ = −1 + √
Δ

2z̃2(1 − s)[1 − exp(−ξ/A)]2 , (3.10)

with Δ = 1 + ξ2(1 − s)[1 − exp(−ξ/A)]2. Inserting this expression in (3.8) leads to

∂ũ0

∂ z̃
= 2λh′

1 +
√

1 + ξ2(1 − s)(1 − e−ξ/A)2
. (3.11)

The integration of these equations between the bottom and an arbitrary depth gives

ũ0 =
√
λh′λ̂

[
− ξ

1 +
√

1 + ξ2
+ ln(ξ +

√
1 + ξ2) + R(ξ)

]
, (3.12)

where the function R is defined by

R(ξ) =
∫ ξ

0

dξ

1 +
√

1 + ξ2(1 − e−ξ/A)2
−
∫ ξ

0

dξ

1 +
√

1 + ξ2
+ O(

√
η). (3.13)

The limit of this function for ξ → ∞ is denoted by R, i.e.

R =
∫ ∞

0

dξ

1 +
√

1 + ξ2(1 − e−ξ/A)2
−
∫ ∞

0

dξ

1 +
√

1 + ξ2
. (3.14)

The vector u′
0 in the outer layer and the vector ũ0 in the viscous layer are fitted by the

matching procedure. We write that both velocities coincide in an overlap region that is
at a very small depth of order

√
η written as z = √

ηbh, where b = O(1). The matching
relation can be written as

u′
0(s = √

ηb) = ũ0

(
ξ = 2b

√
λh′3

√
η

)
+ O(

√
η). (3.15)

The term of O(
√

η) is of an order of magnitude smaller than ε because of (2.11) (m > 0).
This enables us to obtain consistency at order 1 since the corrective term is of an order
smaller than the order 1. This procedure gives the values of the velocity at the free surface
u′

0(h). The equation for u′
0(h) can be explicitly written as

u′
0(h) +

√
λh′λ̂ ln(b

√
η) =

√
λh′λ̂

[
−2b

√
λh′3

√
η

1

1 +
√

1 + 4b2λh′3/η

+ ln

⎛⎝2b
√
λh′3

√
η

+
√

1 + 4b2λh′3

η

⎞⎠ + R

⎤⎦ , (3.16)

since R(2b
√
λh′3/√η) � R (the proof is in Richard et al. (2017)). Neglecting terms of

O(η), the expression of u′
0(h) can be written as

u′
0(h) =

√
λh′λ̂(R − 1 + ln 2 + ln M − ln η), (3.17)

where
M = 2

√
λh′3. (3.18)
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G.L. Richard, F. Couderc and J.P. Vila

As in Richard et al. (2017), we introduce the small parameter

μ = − 2
ln η

, (3.19)

with ε < μ < 1. The main small parameter ε is smaller than μp for any positive integer
p if ε is small enough (Richard et al. 2017). Each term of the asymptotic expansions of
a given order with respect to ε is further expanded in a power series of this second small
parameter μ. The main relevance of this second small parameter is to neglect some small
terms and, especially, the depth average of the cube of the deviation of the velocity from
its average value, which is a quantity appearing, in particular, in the energy equation.
This is equivalent to Teshukov’s approximation of weakly sheared flows (Teshukov 2007).
A similar approximation was used by Luchini & Charru (2010) who introduced, after
Mellor (1972), the small parameter ub/U, where U is the depth-averaged velocity, which
is approximately proportional to ln−1(Reb), where Reb = hub/ν. The deviation of the
velocity from its average value was taken into account by terms that were found to be of
order (ub/U)2 while terms of the order of (ub/U)3 were neglected. The small parameter
ub/U plays the same role as our parameter μ that can be written as μ = 2 ln−1(κ2Re). In
Appendix B the term 〈u′∗ ⊗ u′∗ ⊗ u′∗〉, where u′∗ is the deviation of the velocity to its
average value, is of O(μ3) and can be neglected as in Teshukov (2007).

The expression (3.17) shows that u′
0(h) is of O(

√
λ/μ). We assume that λ = O(μ2). This

implies that u′
0(h) is of O(1). With F = O(1), we have sin θ = O(μ2). We write λ = μ2λ0

with λ0 = O(1). The expression of u′
0(h) can be written as

u′
0(h) =

√
λ0h′λ̂[2 + μ(R − 1 + ln 2 + ln M)]. (3.20)

This gives the complete expressions of u′
0 as

u′
0 =

√
λ0h′λ̂[2 + μ(R − 1 + ln 2 + ln M + ln s)]. (3.21)

At order 0, the velocity has the well-known logarithmic profile. In the 1-D case, reverting
to dimensional quantities and introducing the friction velocity, which is ub = √

gh sin θ ,
the fluid velocity can be written at order 0,

u0

ub
= 1

κ
ln

zub

ν
+ 1

κ
(R − 1 + 2 ln 2 + ln κ), (3.22)

which is the usual log law (1.1) with the inner variables u+ = u/ub and z+ = zub/ν. The
expression of the integration constant B is

B = 1
κ

(R − 1 + 2 ln 2 + ln κ). (3.23)

The values κ = 0.41 and A+ = 26 give B = 5.28. These values agree with the value B =
5.29 ± 0.47 (and κ = 0.412 ± 0.011) found by Nezu & Rodi (1986) and with the value B =
5.10 ± 0.96 (κ = 0.401 ± 0.017) found by Cardoso et al. (1989). The value of B depends
on the value of A+ through R. If A+ = 26 then R = 2.67. The above values are valid for
subcritical flows. For supercritical flows, the value of B can be smaller (Tominaga & Nezu
1992; Prinos & Zeris 1995). This implies smaller values of A+ and R. The graphs of R and
B as a function of A+ are shown in figures 2(a) and 2(b), respectively. The dashed lines
give the case A+ = 26 used for subcritical flows.
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Reconstruction of the 3-D fields with a depth-averaged model
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Figure 2. Graphs of R (a) and of the integration constant B (b) as a function of the parameter A+ of Van
Driest’s damping factor. The dashed lines show the case A+ = 26.

Close to the wall, ξ → 0 and ũ0 ∼ ξ
√
λh′/2. This yields the relation u+ = z+, which is

valid in the viscous sublayer.
Even if the expressions of u′

0 and v′
0 diverge for z → 0, they are integrable functions

on [0, h] and their depth-averaged values can be calculated. For any quantity X, its
depth-averaged value is defined as

〈X〉 = 1
h

∫ h

0
X dz. (3.24)

The depth-averaged velocity at order 0 can be calculated from (3.21). Using the notation
U = 〈u〉 = (U, V)T, we obtain

U ′
0 =

√
λ0h′λ̂[2 + μ(R − 2 + ln 2 + ln M)]. (3.25)

We define the quantity C(μ) as

C(μ) = U′
0√

λ0h′ cos β
= V ′

0√
λ0h′ sin β

. (3.26)

Its expression is
C(μ) = 2 + μ(R − 2 + ln 2 + ln M). (3.27)

The velocity in the Oz direction can be found from the mass conservation equation (2.15).
Taking into account the kinematic boundary condition, the integration of (2.15) leads to

w′ = ∂h′

∂t′
− ∂

∂x′

∫ z′

h′
u′ dz′ − ∂

∂y′

∫ z′

h′
v′ dz′. (3.28)

The depth-averaged mass conservation equation is

∂h
∂t

+ ∂hU
∂x

+ ∂hV
∂y

= 0. (3.29)

With this equation, the derivative of h′ with respect to time can be estimated as

∂h′

∂t′
= −∂h′U′

0
∂x′ − ∂h′V ′

0
∂y′ + O(ε). (3.30)
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G.L. Richard, F. Couderc and J.P. Vila

At order 0, we have

w′
0 = −∂h′U′

0
∂x′ − ∂h′V ′

0
∂y′ + ∂

∂x′

(
h′
∫ 1

s
u′

0 ds

)
+ ∂

∂y′

(
h′
∫ 1

s
v′

0 ds

)
, (3.31)

which leads to

w′
0 = −s

√
λ0h′

(
cos β

∂h′

∂x′ + sin β
∂h′

∂y′

)[
1 + μ

2
(R − 1 + ln 2 + ln M + ln s)

]
. (3.32)

The last quantity to calculate at order 0 is the pressure. It is found from (2.17). The
integration is straightforward and gives

p′
0 = (h′ − z′) cos θ. (3.33)

In the inner layer, (2.23a–c) implies that p̃0 is constant. The connection with the expression
(3.33) in the outer layer gives simply p̃0 = h′ cos θ .

3.2. Order 1
The asymptotic expansion at order 1 follows the same procedure as for order 0. The
first-order correction to the shear stress is obtained from the momentum balance equation
in the shallow-water scaling. Then the integration of the constitutive law gives the
first-order correction to the velocity in the outer layer. This expression diverges at the
bottom, which necessitates to match this expression with the expression of the first-order
correction of the velocity in the inner layer. It is found with the integration of the
constitutive law in the viscous scaling. The matching procedure gives the first-order
correction to the velocity at the free surface. The integration over the depth of the complete
expression of the first-order velocity in the outer layer gives the first-order correction to the
depth-averaged velocity. The technical details being much more complicated are gathered
in Appendix A.

4. Depth-averaged equations

4.1. Mass and momentum balance equations
The depth-averaged mass conservation equation is given above (3.29). It can be written in
vector form using the 2-D divergence operator

∂h
∂t

+ div (hU) = 0. (4.1)

Averaging over the depth the momentum balance equation in dimensionless form in the
shallow-water scaling leads to

∂h′U ′

∂t′
+ div(h′〈u′ ⊗ u′〉) + grad

(
h′2

2F2 cos θ

)
= κ2

ε
[h′λ− τ ′

sh(0)] + O(ε). (4.2)

The expressions (3.3) at order 0 gives τ
′(0)
sh (0) = h′λ. The depth-averaged momentum

balance equation becomes

∂h′U ′

∂t′
+ div(h′〈u′ ⊗ u′〉) + grad

(
h′2

2F2 cos θ

)
= −κ2τ

′(1)
sh (0) + O(ε). (4.3)
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Reconstruction of the 3-D fields with a depth-averaged model

To calculate the term 〈u′ ⊗ u′〉, we define the tensor

ϕ = 〈(u − U) ⊗ (u − U)〉
h2 , (4.4)

which is conveniently called the enstrophy tensor as in Richard, Duran & Fabrèges (2019)
because it has the same dimension as the square of a vorticity. By definition we have the
equality

〈u ⊗ u〉 = U ⊗ U + h2ϕ. (4.5)

The depth-averaged momentum balance equation can be written as

∂h′U ′

∂t′
+ div(h′U ′ ⊗ U ′ + h′3ϕ′) + grad

(
h′2

2F2 cos θ

)
= −κ2τ

′(1)
sh (0) + O(ε), (4.6)

with ϕ′ = ϕh2
0/u2

0. The enstrophy can be expanded as ϕ = ϕ(0) + εϕ(1) + O(ε2). The
calculation of

ϕ′(0) = 1
h′2

∫ 1

0
(u′

0 − U ′
0) ⊗ (u′

0 − U ′
0) ds (4.7)

yields

ϕ′(0) = 1
h′
λ⊗ λ
λ

. (4.8)

Writing λ = μ2λ0, where λ0 is of O(1), the expression of the enstrophy tensor at order 0
can be written as

ϕ′(0) = μ2λ0

h′
λ⊗ λ
λ2 = O(μ2). (4.9)

The expressions at order 1 are found from the integral

ϕ′(1) = 1
h′2

∫ 1

0
[(u′

0 − U ′
0) ⊗ (u′

1 − U ′
1) + (u′

1 − U ′
1) ⊗ (u′

0 − U ′
0)] ds. (4.10)

This gives

ϕ′(1) = λ0

κ2h′
λ⊗ λ
λ2 (λ̂ · grad h′)

[
1 + cos θ

λ0F2 + μ(R + 2 + ln 2 + ln M − ζ(3))

]
− λ0

κ2h′
cos θ

λ0F2 (λ̂⊗ grad h′ + grad h′ ⊗ λ̂) + O(μ2). (4.11)

With all expressions of the asymptotic expansions at order 0 and order 1, τ
′(1)
sh (0) can be

consistently written as

τ
′(1)
sh (0) =

(
1 − α1

μ

C(μ)

)
μ2

C2(μ)

(
‖U ′

0‖U ′
1 + U ′

0
U ′

0 · U ′
1

‖U ′
0‖

)
− α

κ2

(
κ − α1

κμ

C(μ)

)
κμ

C(μ)
h′2 λ
λ

tr ϕ′(1) + α1
μ

C(μ)
h′2ϕ′(1) · λ

λ
+ O(μ3).

(4.12)

954 A24-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1012


G.L. Richard, F. Couderc and J.P. Vila

Quantities of order 1 appear on the right-hand side of this equation. We have

‖U ′
0‖U ′

1 + U ′
0

U ′
0 · U ′

1
‖U ′

0‖
= 1

ε
(‖U ′‖U ′ − ‖U ′

0‖U ′
0) + O(ε) (4.13)

and

ϕ′(1) = 1
ε
(ϕ′ − ϕ′(0)) + O(ε). (4.14)

Consequently, τ
′(1)
sh (0) can be written as a sum of relaxation terms as

τ
′(1)
sh (0) =

(
1 − α1

μ

C(μ)

)
μ2

εC2(μ)

(
U ′‖U ′‖ − C2(μ)

μ2 h′λ
)

− α

εκ2

(
κ − α1

κμ

C(μ)

)
κμ

C(μ)
h′λ̂(h′ tr ϕ′ − λ)

+ α1

ε

μ

C(μ)
h′(h′ϕ′ · λ̂− λ) + O(μ3), (4.15)

with α = R1 − R + 1 and

α1 = R1 − R + 1 − 1
2(ζ(3) − 1)

. (4.16)

With κ = 0.41 and A+ = 26, R = 2.67, R1 = 4.82, α = 3.15 and α1 = 0.680. The
quantity R1 is defined in Appendix A and ζ is the Riemann zeta function.

In the approximation of weakly sheared flows due to Teshukov (2007), all terms of
O(μ3) are neglected (see above and Richard et al. (2017) for a complete discussion).

The quantity μ2κ2/C2(μ) is important because it is equal to the friction coefficient
(Richard et al. 2017), defined by

Cf = μ2κ2

C2(μ)
. (4.17)

This definition of the friction coefficient is obvious when reverting to the dimensional
equations (see (4.32) below). The usual Darcy coefficient is f = 8Cf . From the expression
(3.27) of C(μ), we find that

1√
Cf

= 2
μκ

+ 1
κ

(R − 2 + ln 2 + ln M). (4.18)

The definition (3.19) of μ gives 2/μ = ln(κ2Re). For a uniform and stationary flow, we
can take as the characteristic depth and velocity the depth and velocity of the normal
(equilibrium) flow. By definition, we have in this case h′ = 1 and U′ = 1. Moreover, for
such an equilibrium flow, the first-order corrections are equal to zero. This implies that
U′

0 = 1. Since U′
0 = C(μ)

√
λh′/μ (see (3.25) and (3.27)), we have at equilibrium

√
λ =√

Cf /κ . Consequently, using the definition (3.18) of M, we obtain

1√
Cf

= 1
κ

ln(Re
√

Cf ) + 1
κ

(R − 2 + 2 ln 2 + ln κ). (4.19)

In open-channel hydraulics the Reynolds number is usually defined with the hydraulic
diameter, which is four times the hydraulic radius. The corresponding Reynolds number
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Reconstruction of the 3-D fields with a depth-averaged model

ReH can be defined as ReH = 4Re since, in our local approach, the hydraulic radius cannot
be defined and is replaced by the depth h. Consequently, at equilibrium, for a uniform and
stationary flow, the Darcy coefficient f satisfies the implicit relation

1√
f

= ln 10

2κ
√

2
lg(ReH

√
f ) + 1

2κ
√

2

(
R − 2 − 3

2
ln 2 + ln κ

)
. (4.20)

This relation is similar to the Kármán–Prandtl law for pipe flows with smooth surfaces.
The inconvenience of this relation is that the friction coefficient is found only implicitly.

However, in the general case (i.e. equilibrium or non-equilibrium flows), the relation
(4.17) leads to the explicit relation

κ√
Cf

= 2κ
√

2√
f

= R − 2 + 2 ln 2 + ln κ + ln

√
gh3 sin θ

ν
. (4.21)

With the expression (4.15), the depth-averaged momentum balance equation (4.6) is
obtained in a closed conservative form with source terms, which is

∂hU
∂t

+ div(hU ⊗ U + h3ϕ) + grad
(

gh2

2
cos θ

)
=
(

1 − α1

κ

√
Cf

)
(ĝh − Cf U‖U‖)

+ α(κ − α1
√

Cf )h
√

Cf
ĝ
ĝ

(
h tr ϕ − ĝ

κ2

)
− κα1h

√
Cf

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
, (4.22)

where ĝ denotes the projection of the vector g on the plane of the bottom, i.e. ĝ =
(g sin θ cos β, g sin θ sin β)T and ĝ = g sin θ . It remains to find an evolution equation for
the enstrophy tensor.

4.2. Enstrophy equation
The momentum balance equation in dimensionless form in the shallow-water scaling can
be written as

∂u′

∂t′
+ div(u′ ⊗ u′) + ∂w′u′

∂z′ + 1
F2 grad p′ = κ2

ε

(
λ+ ∂τ ′

sh

∂z′

)
+ O(ε). (4.23)

Forming u′⊗(4.23) + (4.23)⊗u′ and averaging the obtained equation over the depth, taking
into account the boundary conditions and neglecting all terms of O(μ3) because of the
approximation of weakly sheared flows, leads to the equation of the enstrophy tensor.
Details on this derivation are given in Appendix B. The result can be written as

∂h′ϕ′

∂t′
+ div(h′ϕ′ ⊗ U ′) − 2h′ϕ′div U ′ + grad U ′ · h′ϕ′ + h′ϕ′ · (grad U ′)T

= κ2

ε

1
h′2 [U ′ ⊗ τ ′

sh(0) + τ ′
sh(0) ⊗ U ′ − 2W ] + O(μ3) + O(ε), (4.24)

where W is the dissipation tensor defined by

W =
∫ h′

0
ν′

eff
∂u′

∂z′ ⊗ ∂u′

∂z′ dz′. (4.25)

The dissipation tensor is expanded as W = W 0 + εW 1 + O(ε2). These asymptotic
expansions are given in Appendix B and enable us to write the right-hand side of (4.24) as
a sum of relaxation terms.
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4.3. Final system of equations
The final system of equations is composed of the mass conservation equation

∂h
∂t

+ div (hU) = 0, (4.26)

the momentum balance equation

∂hU
∂t

+ div(hU ⊗ U + h3ϕ) + grad
(

gh2

2
cos θ

)
=
(

1 − α1

κ

√
Cf

)
(ĝh − Cf U‖U‖)

+ α(κ − α1
√

Cf )h
√

Cf
ĝ
ĝ

(
h tr ϕ − ĝ

κ2

)
− κα1h

√
Cf

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
(4.27)

and the enstrophy equation (obtained from Appendix B)

∂hϕ

∂t
+ div(hϕ ⊗ U) − 2hϕdiv U + grad U · hϕ + hϕ · (grad U)T

= α2

κ

√
Cf

h2 [U ⊗ (Cf U‖U‖ − ĝh) + (Cf U‖U‖ − ĝh) ⊗ U]

− αα2
Cf

h

(
U ⊗ ĝ

ĝ
+ ĝ

ĝ
⊗ U

)(
h tr ϕ − ĝ

κ2

)
− κα2

√
Cf

h

[
U ⊗

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
+
(

hϕ · ĝ
ĝ

− ĝ
κ2

)
⊗ U

]
, (4.28)

where

α2 = 1
2(ζ(3) − 1)

. (4.29)

With κ = 0.41 and A+ = 26, α2 = 2.47. Note that α1 = α − α2. The system has the same
mathematical structure as the system derived by Teshukov (2007), with additional source
terms, who gave the proof of its hyperbolicity. Shearing effects, i.e. the variations of the
velocity in the depth, are taken into account by the anisotropic enstrophy tensor. All source
terms are relaxation terms for the average velocity or the enstrophy. Note that the full 2-D
system is hyperbolic but not in conservative form due to non-conservative terms in the
enstrophy equation.

4.4. Two-dimensional Saint-Venant equations
As implied by (4.9), the enstrophy is of O(μ2) + O(ε). Furthermore, since U ′

1 = O(1/μ2)
we can write

τ
′(1)
sh (0) = μ2

C2(μ)

(
‖U ′

0‖U ′
1 + U ′

0
U ′

0 · U ′
1

‖U ′
0‖

)
+ O(μ). (4.30)

Consequently, the expression (4.15) of τ
′(1)
sh (0) can be written as

τ
′(1)
sh (0) = μ2

εC2(μ)

(
U ′‖U ′‖ − C2(μ)

μ2 h′λ
)

+ O(μ). (4.31)

This equation shows why the quantity μ2κ2/C2(μ) is the friction coefficient Cf , which
appears clearly when reverting to dimensional form. Neglecting terms of O(μ), the
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Reconstruction of the 3-D fields with a depth-averaged model

dimensional depth-averaged momentum balance equation becomes, in dimensional form,

∂hU
∂t

+ div(hU ⊗ U) + grad
(

gh2

2
cos θ

)
= ĝh − Cf U‖U‖. (4.32)

At this level of approximation, there is no enstrophy balance equation and the system
reduces to the 2-D Saint-Venant equations. The friction term is consistently rather than
empirically introduced. Keeping terms up to O(μ2) and neglecting terms of O(μ3) gives
the complete system {(4.26), (4.27), (4.28)}.

4.5. Energy equation
The system admits an energy balance equation. Taking half the trace of (B4) in
dimensional form gives the energy balance equation

∂he
∂t

+ div(heU + U · Π) =
(

1 − α

κ

√
Cf

)
(ĝh − Cf ‖U‖U) · U

+ α(κ − α
√

Cf )h
√

Cf

(
h tr ϕ − ĝ

κ2

)
ĝ
ĝ

· U − καh
√

Cf

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
· U,

(4.33)

where the specific energy e is

e = U · U
2

+ gh
2

cos θ + h2

2
tr ϕ (4.34)

and where the tensor Π is

Π = gh2

2
cos θ I + h3ϕ. (4.35)

In this expression, I is the identity tensor. The terms on the right-hand side of the energy
equation are relaxation terms due to the dissipative effects in the flow. The expression of
the turbulent energy of the system is h2 tr ϕ/2.

In the particular case of the Saint-Venant equations where the terms of O(μ) are
neglected, the specific energy reduces to

e = U · U
2

+ gh
2

cos θ, (4.36)

the tensor Π reduces to Π = (gh2/2) cos θ I and the energy balance equation reduces to

∂he
∂t

+ div(heU + U · Π) = (ĝh − Cf ‖U‖U) · U . (4.37)

5. Reconstruction of the 3-D fields

The 3-D fields can be reconstructed from the values of the depth h, of the depth-averaged
fluid velocity U and of the enstrophy tensor as a function of the applicate z or of s = z/h.

The expression of the shear stress at the bottom can be found from the expressions (3.3)
at order 0 and (A6) at order 1. At order 0, the expression τ

′(0)
sh (0) = λh can be written as

τ
′(0)
sh (0) = μ2U0‖U0‖/C2(μ). The shear stress at order 1 has already been consistently
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written as a sum of relaxation terms in (4.15). Forming τ ′
sh(0) = τ

′(0)
sh (0) + ετ

′(1)
sh (0) and

reverting to dimensional quantities leads to the expression of the shear stress at the bottom,

τsh(0)

ρ
= Cf U‖U‖ − α1

κ

√
Cf (Cf U‖U‖ − ĝh)

− α(κ − α1
√

Cf )
√

Cf
ĝ
ĝ

h
(

h tr ϕ − ĝ
κ2

)
+ κα1

√
Cf h

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
, (5.1)

which is a function of the depth h, the average velocity U and the enstrophy tensor ϕ, with
relaxation terms on these quantities but without any derivative. This expression enables us
to calculate very easily the bottom shear stress with the correction of order 1.

From the expressions (3.21) and (3.25), we can write u′
0 = U ′

0[1 + (μ/C(μ))(1 +
ln s)]. At order 1, the expressions (A31) and (A33) lead to

u′
1 = U ′

1

[
1 + μ

C
(1 + ln s)

]
− (1 + ln s)α

μ2

C2 (U ′
1 · λ̂)λ̂+ α2

[
Li2(1 − s) + 1 − π2

6

]

×
⎡⎣μ

C
(U ′

1 · λ̂)λ̂− h′ tr ϕ′
1

2
√

tr ϕ′
0

λ̂− α
μ2

C2 (U ′
1 · λ̂)λ̂

⎤⎦ + O(μ). (5.2)

Forming u = u(0) + εu(1) and reverting to dimensional quantities gives the 3-D
reconstruction of the horizontal velocity field in the outer layer, accurate at order 1,

u = U

[
1 +

√
Cf

κ

(
1 + ln

z
h

)]
− α

√
Cf

κ2

(√
Cf U · ĝ

ĝ
−
√

ĝh
)

ĝ
ĝ

(
1 + ln

z
h

)

+ α2

[
1 − π2

6
+ Li2

(
1 − z

h

)][√Cf

κ
U · ĝ

ĝ
− h

√
tr ϕ

−α

√
Cf

κ2

(√
Cf U · ĝ

ĝ
−
√

ĝh
)]

ĝ
ĝ
. (5.3)

This expression enables us to reconstruct the 3-D profile of the horizontal velocity in the
outer layer from the quantities h, U and ϕ calculated with the resolution of the 2-D model.

A similar method is conducted in the inner layer. The expressions of the velocity at
order 0 and 1 are given in Appendix C. Note that the expression of ũ1 in the inner layer
has to be accurate to within O(μ2) in order to obtain a matching with the expression of
u′

1 in the outer layer accurate to within O(μ) when ξ → ∞. In dimensional form the 3-D
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Reconstruction of the 3-D fields with a depth-averaged model

reconstruction of the horizontal velocity in the inner layer is

u = 1
κ

{√
Cf U +

[(
1 − 2

α

κ

√
Cf + 2

αα1

κ2 Cf

)(√
Cf U · ĝ

ĝ
−
√

ĝh
)

+ 2α2
√

Cf

(√
Cf

κ
U · ĝ

ĝ
− h

√
tr ϕ

)]
ĝ
ĝ

}[
R(ξ) − ξ

1 +
√

1 + ξ 2
+ ln(ξ +

√
1 + ξ 2)

]

+ 1
κ

[(
1 − α

κ

√
Cf + αα1

κ2 Cf

)(√
Cf U · ĝ

ĝ
−
√

ĝh
)

+α2
√

Cf

(√
Cf

κ
U · ĝ

ĝ
− h

√
tr ϕ

)]
ĝ
ĝ

×
[
R1(ξ) − 2R(ξ) + 2ξ

1 +
√

1 + ξ 2
− ln(ξ +

√
1 + ξ 2)

]
, (5.4)

with

ξ = 2κ

ν
z
√

gh sin θ. (5.5)

This expression is less convenient than the expression in the outer layer because the
functions R and R1 are not explicit and need to be numerically calculated, but the full
3-D velocity profile, from the bottom to the free surface, can be calculated with the
depth-averaged quantities h, U and ϕ using the expression (5.4) in the inner layer and
the expression (5.3) in the outer layer. These expressions connect asymptotically in the
overlap layer with an accuracy of O(μ). At the equilibrium, the relaxation terms are equal
to zero, and these expressions reduce to

u = U

[
1 +

√
Cf

κ

(
1 + ln

z
h

)]
(5.6)

in the outer layer and to

u =
√

Cf

κ
U

[
R(ξ) − ξ

1 +
√

1 + ξ2
+ ln(ξ +

√
1 + ξ2)

]
(5.7)

in the inner layer. In the viscous sublayer ξ → 0 and the velocity in the inner layer is
equivalent to a linear function of z. Defining the friction velocity ub = √

τb/ρ, u+ = u/ub
and z+ = zub/ν and taking τb = ‖τsh‖(0), where τsh(0) is given by (5.1), we obtain

u+ = z+
√

gh sin θ

‖τsh‖(0)/ρ

{√
Cf U +

[(
1 − 2

α

κ

√
Cf + 2

αα1

κ2 Cf

)(√
Cf U · ĝ

ĝ
−
√

ĝh
)

+ 2α2
√

Cf

(√
Cf

κ
U · ĝ

ĝ
− h

√
tr ϕ

)]
ĝ
ĝ

}
. (5.8)

In an equilibrium situation the relaxation terms are equal to zero, in particular,
√

Cf ‖U‖ =√
ĝh, and the previous expression gives ‖u+‖ = z+ that corresponds to the usual law in

the viscous sublayer u+ = z+. In a non-equilibrium situation, in particular, for an unsteady
flow, the relation between u+ and z+ is still a linear relation but it is more complex and
u+/z+ /= 1.
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6. Numerical simulations

6.1. Numerical scheme
The system of (4.26)–(4.28) is a hyperbolic system with relaxation source terms. In the
1-D case it can be written as

∂U
∂t

+ ∂F
∂x

= S, (6.1)

where U = [h, hU, he]T, F = [hU, hU2 + Π, hUe + ΠU]T and

S =

⎡⎢⎢⎢⎢⎣
0,(

1 − α1

κ

√
Cf

)
(ĝh − Cf U|U|) + [κ(α − α1) − α1

√
Cf ]h

√
Cf

(
hϕ − ĝ

κ2

)
,(

1 − α

κ

√
Cf

)
(ĝh − Cf U|U|)U − α2hCf

(
hϕ − ĝ

κ2

)
U.

(6.2)

The energy of the system is e = (U2 + gh cos θ + h2ϕ)/2 and Π = (gh2 cos θ)/2 + h3ϕ.
The characteristics of the system are λ1,2 = U ±

√
gh + 3h2ϕ and λ3 = U. The friction

coefficient Cf is calculated locally with the explicit relation (4.21).
This system is solved with a classical explicit Godunov-type finite-volume method and

a Rusanov Riemann solver. The time step is calculated with a Courant–Friedrichs–Lewy
(CFL) condition. At each time step, the enstrophy is calculated from the energy.

The system is solved for the simulation of a subcritical flow in an open channel. At
the entrance the discharge is prescribed and the flow is supposed to be non-developed.
This means that the enstrophy can be taken equal to zero since the velocity is uniform
in the depth. If ϕ = 0 at the entrance, the system reduces to the system of Saint-Venant.
The depth in a ghost cell at the entrance is then calculated from the conservation of the
Riemann invariant of the Saint-Venant system U − 2

√
gh.

The end of the channel is treated as a sharp-crested weir as in Richard & Gavrilyuk
(2013): if the depth hN in the last cell is smaller than some height d, which corresponds
to the height of the weir, then the discharge qN+1 in a ghost cell after the last cell
is zero, otherwise qN+1 = (2/3)Cd[2g(hN − d)3]1/2 with Cd = π/(π + 2) + 0.08(hN −
d)/d (Henderson 1966). Neumann boundary conditions are taken for the depth and the
enstrophy.

The numerical cost of the resolution of this system is slightly larger but of the same order
of magnitude as the classical Saint-Venant equations. The additional enstrophy equation
is numerically cheap because it is, in one dimension, a simple advection equation with
source terms. A more precise evaluation of the numerical cost was done for the resolution
of the 2-D system (see § 6.5).

6.2. Development of the boundary layer
Simulations are performed for a uniform flow in a steady case, the so-called normal
conditions. The value of the Reynolds number Re = hU/ν is chosen. The kinematic
viscosity is fixed at ν = 1.0 × 10−6 m2 s−1. This gives the value qn of the discharge
q = hU. The friction coefficient Cfn for a uniform and steady flow is then calculated
with (4.20). The value of the Froude number F = U/(gh)1/2 is chosen and the angle
θ is then calculated by sin θ = F2Cfn in order to have a normal flow. The average
velocity of the normal flow is then found by Un = (F2gνRe)1/3 and the normal depth
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Reconstruction of the 3-D fields with a depth-averaged model

hn is determined as well. The height of the weir d is calculated from the resolution of
the equation (gh3

n sin θ/Cfn)
1/2 = (2/3)Cd[2g(hn − d)3]1/2, Cd being calculated with the

normal depth.
The discharge qn is prescribed at the entrance. After a transient regime the system

reaches a steady state where the depth and the velocity are hn and Un everywhere
except near the beginning of the channel. Since ϕ = 0 is prescribed at the entrance of
the channel because the flow is supposed to be non-developed, the enstrophy relaxes
towards its equilibrium value. The enstrophy approaches asymptotically its normal value
ϕn = g sin θ/(κ2hn) and, after some distance, the flow is indistinguishable from a normal
flow with a fully developed boundary layer. The value of the enstrophy can be used as
an evaluation of the development of the boundary layer at the beginning of the channel,
with the value ϕ = 0 for a non-developed flow and the value ϕn for a fully developed flow.
Assuming that, for a partially developed boundary layer, the velocity profile satisfies the
usual logarithmic law below the boundary layer thickness δ and that it is uniform above
this limit up to the free surface, we have

u′
0 =

√
λ0h′

[
2 + μ

(
R − 1 + ln 2 + ln M + ln

z
δ

)]
if z � δ, (6.3)

and
u′

0 =
√
λ0h′[2 + μ(R − 1 + ln 2 + ln M)] if δ � z � h. (6.4)

Denoting ϕmax = ϕ(δ = h), this yields

ϕ

ϕmax
=
(

2 − δ

h

)
δ

h
. (6.5)

As the boundary layer thickness approaches its fully developed value asymptotically, it is
difficult to define precisely where the flow becomes fully developed and several definitions
were proposed. In our case, the goal is only to check whether the model gives the right
order of magnitude of the length of the flow developing zone L, i.e. the distance from the
entrance of the channel beyond which the flow is fully developed. A reasonable criterion is
to take δ/h > 0.99 for a fully developed boundary layer. The value δ/h = 0.99 corresponds
to ϕ/ϕmax = 0.9999 according to (6.5). In the following we use the criterion ϕ/ϕmax >

0.9999 to define a fully developed flow.
Numerical simulations were conducted for values of the Reynolds number between 104

and 106 and for values of the Froude number between 0.1 and 0.8. The case Re = 105

and F = 0.5 is presented in figure 3 where the black curve is ϕ/ϕmax and the red curve is
δ/hn calculated from (6.5), both given as a function of the normalized abscissa along the
channel x/hn counted from the entrance. The slope corresponding to these values of the
Reynolds and Froude numbers is sin θ = 1/2162 � 4.6 × 10−4 (note that tgθ is practically
equal to sin θ ). In this case, the length of the flow developing zone is L/hn = 81.7 (marked
on figure 3 with a dashed line).

The calculated values of L/hn for all studied cases are gathered in figure 4(a) for
different values of the Froude number. The different symbols and colours correspond to:
Re = 104 (black •); Re = 5 × 104 (blue �); Re = 105 (green �); Re = 5 × 105 (red �)
and Re = 106 (black �). The value of L/hn depends mainly on the Reynolds number but
weakly on the Froude number. For a given value of Re, it is larger when F becomes close
to 1 and slightly larger for very small values of F. For a given value of the Froude number,
L/hn increases with the value of Re. The variation of L/hn with the Reynolds number for
a Froude number equal to 0.5 is shown in figure 4(b) in a logarithmic plot. In the case
F = 0.5, it is very close to the law L/hn � 25.8Re1/10 (dashed line).

954 A24-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1012


G.L. Richard, F. Couderc and J.P. Vila

1.0

0.8

0.6

0.4

0.2

0 50 100 150

x/hn

δ/
h n

ϕ
/ϕ
m
ax

Figure 3. Variations of the normalized enstrophy ϕ/ϕmax (black curve) and of the normalized boundary layer
thickness δ/hn (red curve) according to law (6.5) with the normalized abscissa along the channel x/hn, in the
case Re = 105 and F = 0.5.
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Figure 4. (a) Variation of the ratio of the length of the flow developing zone L over the normal depth hn
with the Froude number: Re = 104 (black •); Re = 5 × 104 (blue �); Re = 105 (green �); Re = 5 × 105 (red
�); Re = 106 (black �). (b) Variations of L/hn with the Reynolds number for F = 0.5 (dots); dashed line:
L/hn = 25.8Re1/10.

It is very difficult to make comparisons with experimental results due to the fact that the
length of the flow developing zone is defined differently, that only relatively small values
of the Reynolds number can be studied in laboratory channels and that the channels used
in the experiments have a finite width. The goal here is only to check that the order of
magnitude of the calculated length L is reasonable.

Kırkgöz & Ardıçhoğlu (1997) conducted experiments in a smooth channel 0.3 m wide.
Due to the relatively small value of the channel width, many experiments are in fact
2-D situations and cannot be considered for a comparison with a 1-D model (the ratio
width/depth is as low as 1.50 in an experiment). Therefore, only the cases where the
ratio width over depth is larger than 4 are considered thereafter (and a ratio of 4 is
already quite small). The remaining measurements have values of the Reynolds numbers
between 7 × 103 and 2.1 × 104 and values of the Froude number between 0.30 and 0.72.
The authors presented the values of L/h as a function of the ratio 4Re/F (or ReH/F,
where ReH = 4Re) and proposed the empirical law L/h = 76 − 0.0001(4Re/F). We can
remark that this law gives obviously wrong results if the Reynolds number is high enough
since the predicted value of L/h becomes negative. For values of the Froude number
equal to 0.1, 0.5 and 0.8, L/h becomes negative if Re is higher than 19 000, 95 000 and
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Figure 5. Ratio of the length of the flow developing zone over the normal depth L/hn as a function of
4Re/F: calculated with the model (red •); measured values of Kırkgöz & Ardıçhoğlu (1997) (black �); values
calculated with the empirical law of Kırkgöz & Ardıçhoğlu (1997) (blue �).

152 000, respectively. Furthermore, the lowest measured values of L/h were found in the
cases of narrow channels (when the ratio width/depth is smaller than 4).

The calculated values of L/hn as a function of 4Re/F are presented in figure 5 (red
•) together with the measured values of Kırkgöz & Ardıçhoğlu (1997) (black �) and
the values calculated from their empirical law (blue �). The range of the Reynolds and
Froude numbers was restricted to the range of the experiments with the largest width/depth
ratios (i.e. Re = 104 and 0.25 � F � 0.8) In spite of all above reservations about this
comparison, the order of magnitude of the length of the flow developing zone seems
reasonable for these values of the Reynolds and Froude numbers.

6.3. Unsteady flows
The numerical simulations of unsteady flows are inspired by the experiments of Nezu et al.
(1997). The discharge q0 prescribed at the entrance of the channel is sinusoidal for half a
period to take into account one rising stage followed by one falling stage, after a delay time
tR large enough for the base flow to be in steady-state conditions. At time tR the discharge
is increased from a base value qb to a peak value qp after a time Td, then decreased to
the base value qb after the same duration. Therefore, q0 = qb if t � tR or if t � tR + 2Td.
Otherwise, q0 is given by

q0 = qb + qp − qb

2

[
1 − cos

π(t − tR)

Td

]
if tR � t � tR + 2Td. (6.6)

The flow is supposed to be non-developed at the beginning of the channel. This means that
ϕ = 0 is prescribed at the entrance. The flow is studied far enough from the entrance, at
an abscissa x, for the flow to be fully developed (x > L). Simulations were performed for
values of the Reynolds number equal to 104, 105 and 106, values of the Froude number
equal to 0.18, 0.5 and 0.8, and values of Td equal to 30 s (a strongly unsteady case), 120 s
and 240 s. In addition, the ratio qp/qb was set to 4 for Re = 104 and to 5 otherwise and
various channel lengths � were considered. The base flow is in the normal conditions and
this prescribes the value of sin θ . The various parameters of the simulations are gathered
in table 1.

The variation of the depth h against the average velocity U shows the characteristic
loop diagram observed for rivers in flood, which are simulated with the rising and falling
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Case Re F sin θ Td (s) � (m) qp/qb x (m)

C3S30 105 0.5 1/2162 30 20 5 17
C3M30 105 0.5 1/2162 30 30 5 17
C3M24 105 0.5 1/2162 240 30 5 17
C4M30 105 0.8 1/844 30 30 5 17
C4M24 105 0.8 1/844 240 30 5 17
C7M30 105 0.18 1/16680 30 40 5 30
C7M24 105 0.18 1/16680 240 40 5 30

Table 1. Parameters used for the numerical simulations in the unsteady case.

discharge implied by (6.6). The peak velocity appears before the peak depth. The cases
C7M24 (low Froude number F = 0.18, weakly unsteady Td = 240 s, black curve), C7M30
(low Froude number F = 0.18, strongly unsteady Td = 30 s, blue curve) and C4M24
(larger Froude number F = 0.8, weakly unsteady Td = 240 s, red curve) are presented in
figure 6(a) with Re = 105 (see table 1) where the loops are run counterclockwise. The loop
is wider if the flow is more strongly unsteady (C7M30) or if the Froude number increases
(C4M24). The evolutions of the depth (black curve), the average velocity (red curve) and
the enstrophy (blue curve) are presented in figures 6(b) (C7M24), 6(c) (C4M24) and 6(d)
(C7M30). Weakly unsteady cases (figures 6(b) and 6(c) are closer to a kinematic wave with
only slight shape changes during the propagation, whereas, in a strongly unsteady case
(figure 6(d), the front of the wave steepens with a tendency to take a sawtooth shape. The
evolution of the enstrophy depends on the case: for a small Froude number, the enstrophy
increases in the wave (figures 6b and 6d) while it decreases for a larger Froude number
(figure 6c). For intermediate values of the Froude number, the enstrophy increases in the
early stages of the wave and then decreases (figure 7(a) for F = 0.5).

The influence of the downstream boundary condition can be important in some cases,
particularly during the falling stage of the wave, as there is some reflection on the weir.
This phenomenon can lead to a complex behaviour at the end of the falling stage or
shortly after that as in the C7M30 case (figure 6d). The abscissa x considered to study
the flow was usually chosen far from the weir (which is at an abscissa �), but the effects
of the interactions with the weir are not trivial as it can be seen from the comparison in
figure 7(a) between the cases C3S30 (x = 17 m and � = 20 m, solid curves) and C3M30
(x = 17 m and � = 30 m, dashed curves), where in both cases Re = 105 and F = 0.5. The
graphs of h/hn (black curves), U/Un (red curves) and ϕ/ϕn (blue curves) show that the
end of the falling stage is more complex when the distance to the weir is larger. Even the
amplitude of the wave is modified by the distance to the weir. Because of this sensitivity
to the downstream boundary condition, it is not possible to make precise comparisons
to experimental results without a precise knowledge of the weir used at the end of the
channel and, more generally, of the precise hydraulic conditions of the experiments, such
as the slope.

The reconstruction of the bottom shear stress with the expression (5.1) is presented in
figure 7(b) for the cases C7M24 (black curves), C7M30 (blue curves) and C4M24 (red
curves). The solid curves show the ratios of τsh(0), denoted by τb, over its value for the
base flow, denoted by τbn, and the dashed curves show the ratios of h/hn. As for the average
velocity, the peak value of the bottom shear stress is attained before the peak depth. This
is in accordance with the results of Nezu et al. (1997). The difference between these two
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Figure 6. (a) Normalized depth h/hmax as a function of the normalized velocity U/Umax: cases C7M24 (black
curve), C7M30 (blue curve) and C4M24 (red curve) (see table 1). (b–d) Evolution of the depth (black curve),
velocity (red curve) and enstrophy (blue curve) normalized by their value for the normal flow as a function of
normalized time: cases C7M24 (b), C4M24 (c) and C7M30 (d).
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Figure 7. (a) Comparison between the cases C3S30 (solid curves) and C3M30 (dashed curves): depth (black
curves), velocity (red curves) and enstrophy (blue curves) normalized by their normal value as a function of
normalized time. (b) Reconstruction of the bottom shear stress normalized by its value in the base flow (solid
curves) for the cases C7M24 (black), C7M30 (blue) and C4M24 (red); dashed curves: normalized depth (same
colours).

peaks increases for a strongly unsteady case or for a larger Froude number. In a strongly
unsteady case (C7M30), the graph of the bottom shear stress approaches a sawtooth shape
and the end of the falling stage is complex due to reflections on the weir.

The reconstruction of the velocity profile is presented in figure 8(a) for the C7M24 case
and in figure 8(b) for the C7M30 case, with u+ = u/ub, z+ = zub/ν, ub being the friction
velocity calculated with (5.1) and ub = √

τb/ρ. Even in the case of a relatively weak
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Figure 8. Reconstruction of the velocity profile. (a) Case C7M24: steady profile (black) and profile at the peak
depth (red); (b) Case C7M30: steady profile (black) and profiles at the early part of the rising stage (green), at
the peak depth (red) and at the end of the falling stage (blue).

unsteadiness (C7M24), the velocity profile during the wave is modified with respect to
the velocity profile of the steady case (black curve) both in the inner layer and in the outer
layer. The red curve shows the velocity profile at the peak depth. In a strongly unsteady
case (C7M30), the evolution of the velocity profile is more complex. The black curve is
the profile of the steady flow and the green, red and blue curves are the profiles during
the early part of the rising stage, at the peak depth and at the end of the falling stage,
respectively.

These curves can be approximately interpreted with the same laws as in the steady case
but the constants have apparent values that are different from the steady-case values. In
the outer layer a log law is approximately satisfied with an apparent von Kármán constant
κapp and an apparent integration constant Bapp. Furthermore, in many cases, a deviation
from this apparent log law can be interpreted as a wake function, as in Coles (1956), with
an apparent wake-strength parameter Πapp. The velocity profiles can be approximately
described in the outer layer with the law

u+ = 1
κapp

ln z+ + Bapp + 2Πapp

κapp
sin2 πz

2h
. (6.7)

Note that this relation is only a convenient description of the actual velocity profile in
the outer layer, which is in fact given by (5.3). This relation and, in particular, the wake
function, are only a rough approximation of the real function calculated by the model. It
is mainly useful for comparisons with laws given in the literature in the case of unsteady
flows.

The variations of the apparent von Kármán constant are presented in figure 9(a) for
the weakly unsteady cases (Td = 240 s) C7M24 (F = 0.18, black �), C3M24 (F = 0.5,
blue �) and C4M24 (F = 0.8, red •), and in figure 9(b) for the strongly unsteady cases
(Td = 30 s) C7M30 (F = 0.18, black �), C3M30 (F = 0.5, blue �) and C4M30 (F = 0.8,
red •). For F = 0.8, the value of the apparent von Kármán constant remains close to the
value κ = 0.41 but, for smaller Froude numbers, the difference between κapp and κ can
be important. For the weakly unsteady cases, the overall evolution is that κapp increases in
the rising stage, reaching a value κapp � 0.435 for F = 0.18, and decreases in the falling
stage. For the strongly unsteady cases, the evolution of κapp is more complex, especially
because the interaction with the weir can have a strong effect at the end of the falling stage.
The value of κapp increases at the beginning of the rising stage, reaching κapp � 0.46 for
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Figure 9. Apparent von Kármán constant (a,b), apparent integration constant (c,d) and apparent wake-strength
parameter (e, f ) as a function of normalized time. (a,c,e) Cases C7M24 (black �), C3M24 (blue �) and C4M24
(red •); (b,d, f ) Cases C7M30 (black �), C3M30 (blue �) and C4M30 (red •).

F = 0.18, and decreases before the peak depth and becomes negative at the end of the
falling stage.

The variations of the apparent integration constant Bapp are similar. They are presented
in figure 9(c) for the cases C7M24 (black �), C3M24 (blue �) and C4M24 (red •), and
in figure 9(d) for the cases C7M30 (black �), C3M30 (blue �) and C4M30 (red •). From
the steady value B = 5.28, Bapp increases and can become larger than 7 for F = 0.18. At
the end of the falling stage, Bapp becomes negative in some cases. The difference between
Bapp and B is not small, even for F = 0.8.

The apparent wake-strength parameter Πapp is shown in figure 9(e) for the cases C7M24
(black �), C3M24 (blue �) and C4M24 (red •), and in figure 9( f ) for the cases C7M30
(black �), C3M30 (blue �) and C4M30 (red •). Its value remains close to 0 for F = 0.8
but is larger for smaller Froude numbers, particularly for F = 0.18 where it reaches a
maximum of Πapp � 0.10 for Td = 240 s and Πapp � 0.4 for Td = 30 s. In most cases,
Πapp is positive but it can take negative values at the beginning of the rising stage for
F = 0.18 and Td = 30 s or at the end of the falling stage in some cases.
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Figure 10. Ratio u+/z+ as a function of normalized time for the cases C7M24 (black �), C7M30 (blue �)
and C4M24 (red �).

The graphs of figure 9 show that the constants of the apparent law (6.7) depend strongly
on the Froude number. On the contrary, simulations performed for Re = 104, Re = 105 and
Re = 106 at a given Froude number show that these apparent constants depend weakly on
the Reynolds number.

In the viscous sublayer the expression (5.8) can be used to reconstruct the velocity
profile. The ratio u+/z+ is calculated with this expression and the results are presented
in figure 10 for the cases C7M24 (black �), C7M30 (blue �) and C4M24 (red �). In the
steady state u+/z+ = 1 but, for unsteady flows, this ratio is smaller. For F = 0.8, u+/z+
remains close to 1 but, for F = 0.18, u+/z+ decreases below 0.8. For the weakly unsteady
case (Td = 240 s), this ratio decreases in the rising stage and increases in the falling stage,
but in the strongly unsteady case (Td = 30 s), the minimum value of u+/z+ is reached
before the peak depth and there is some further perturbations at the end of the falling stage
due to interactions with the weir.

The calculation of the von Kármán constant by Onitsuka & Nezu (2000) and Nezu &
Onitsuka (2002) in unsteady flows used an evaluation of the friction velocity assuming
the validity in unsteady situations of the law u+ = z+ in the viscous sublayer. One of the
results of the present work is that this law is not valid in an unsteady case where u+ is
still a linear function of z+ but with u+/z+ < 1. As seen in figure 10, the difference can
be important, particularly for low Froude numbers, with values of u+/z+ as small as 0.7.
Consequently, using the relation u+ = z+ in the viscous sublayer to evaluate the friction
velocity in unsteady situations can entail a large error in the calculation of the apparent
von Kármán constant and also in the apparent integration constant.

We have calculated the apparent von Kármán constant by using u+ = z+ to calculate
the friction velocity instead of using the relation (5.1) in order to replicate the calculation
of Onitsuka & Nezu (2000) and Nezu & Onitsuka (2002). Deliberately using this wrong
value of the friction velocity gives entirely different values of the apparent von Kármán
constant. The results are presented in figure 11(a) for the case C7M24 and in figure 11(b)
for the case C7M30, where the values of κapp calculated by this method (red �) are
compared with the normal calculation (black •) that uses the friction velocity predicted by
the model. When u+ = z+ is used, κapp decreases in the rising stage instead of increasing
and then increases during the falling stage or, for a strongly unsteady case, before the
end of the rising stage. This evolution is rather close to the results of Nezu & Onitsuka
(2002). There is also, particularly for a strongly unsteady case, a sudden increase of κapp
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Figure 11. Comparison of the apparent von Kármán constant calculated with the friction velocity obtained
with (5.1) (black) or by assuming that u+ = z+ (red): (a) case C7M24; (b) case C7M30.

near the beginning of the rising stage before a rapid decrease, and this feature was noted
by Onitsuka & Nezu (2000). Because of the similarity between our calculations of κapp
using u+ = z+ in the viscous sublayer, even if this relation is not valid in our approach,
and the results of Onitsuka & Nezu (2000) and Nezu & Onitsuka (2002), we think that the
qualitative discrepancies between our really predicted values of κapp (figures 9a and 9b)
and the calculations made from experimental results in the literature are due to the wrong
assumption that u+ = z+ is valid in unsteady situations, which leads to large errors in the
evaluation of κapp. The evaluation of the apparent integration constant is also flawed if the
validity of u+ = z+ is assumed in unsteady flows.

6.4. Comparisons with experiments in 1-D unsteady open-channel flows

6.4.1. Test case 1: experiment SC3T1 of Nezu et al. (1997)
To assess the validity of the model, it is necessary to compare with experiments made
in an unsteady and variable case since the model introduces the first-order corrections,
which are equal to zero in a stationary and uniform flow. The experiments of Nezu &
Nakagawa (1995) and Nezu et al. (1997) were conducted in a 10 m long and 40 cm wide
channel where the discharge was controlled in order to produce a flood flow. Starting
from a base flow of depth hb, the discharge was increased and then decreased with a peak
depth hp. The hydrograph was a sine curve. The duration from the base discharge to the
peak discharge was Td. Detailed information on the experiments and measurements are
available in Nezu & Nakagawa (1995) and Nezu et al. (1997). In our model, the Reynolds
number is assumed to be very large since η = 1/(κ2Re) is supposed to be of O(ε2+m) with
m > 0. The hydraulic conditions of these experiments are at the lower limit of validity
since the Reynolds number is only of the order of 104. This order of magnitude is typical
of laboratory conditions but natural flows have usually much higher values of the Reynolds
number, typically around 105 or 106, which are more suited to our model.

We simulated the experiment SC3T1 where Td = 60 s and hb = 4.05 cm. Since the flow
is subcritical, it is controlled by the downstream boundary condition. The authors gave no
information on their downstream control, but it is likely that it was a weir of some sort. As
above, we used a formula used for sharp-crested weirs,

qN+1 = 2
3

(
C1 + C2

hN − d
d

)√
2g(hN − d)3, (6.8)

to calculate the discharge q = hU at cell N + 1 from the depth h at cell N. In this
expression d is the weir height. We tuned the coefficients C1 and C2 to obtain the values
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at the peak flow. Some hydraulic conditions were not given by the authors and some
conjectures were necessary to obtain some parameters of the calculation. Neither the mean
velocity Ub of the base flow nor the Reynolds number of the base flow were given. From
the values of the von Kármán constant κ , the integration constant B, the wake-strength
parameter Π and the value of the friction velocity vb for the base flow, the average velocity
of the base flow was estimated by an integration over the depth of the law (1.2). The
viscosity is not given either, nor the temperature. With the values of κ , B, Π and vb for the
peak flow, the peak mean velocity Up was estimated. The Reynolds number of the peak
flow was provided, which allowed us to estimate the kinematic viscosity ν.

The friction coefficient Cf was calculated with the explicit relation (4.21). The base
flow is supposed to be a steady and uniform flow. However, it was not possible to obtain
a stationary and uniform flow with the value 1/600 given for the slope. This would imply
a friction coefficient roughly twice as large as what can be calculated with classical
relations used in hydraulics, even considering the hydraulic radius instead of the depth
in the definition of the Reynolds number. Since no value of the friction coefficient and no
discussion about this coefficient are given by the authors, we assumed that it was a 2-D
effect due to the lateral walls or some other unspecified condition. To obtain a uniform
base flow, we had to use a smaller slope of 1/1456.

In a first scenario, we chose the coefficients C1 and C2 to have a uniform base flow of
depth hb, mean velocity Ub and also the same value of hp as in the experiments, and the
same value of Up at the peak flow as it can be deduced from the integration of (1.2) over
the depth with the parameters κ = 0.41, B = 3.44 and Π = 0.33 found by Nezu et al.
(1997). However, it appears that the model underestimated the velocity in the defect layer.
Nezu et al. (1997) found a value Π = 0.33 of the wake-strength parameter at the peak
flow whereas the model finds an apparent wake-strength parameter of only Πapp � 0.02.
Because the average velocities were assumed to be equal, the velocity was overestimated
in the ‘log layer’ as a result. As the velocity profile in this layer was only shifted vertically
by a constant value, it seemed more logical to use a second scenario where the downstream
boundary condition was chosen to obtain the same mean velocity in the ‘log layer’.

The final set of parameters used for the calculations in this second scenario was: ν =
8.68 × 10−7 m2 s−1 (which corresponds to a temperature of 26.3 ◦C), C1 = 0.61, C2 =
0.0305, d = 7.9 mm, Ub = 0.316 m s−1, κ = 0.41, R = 2.67, g = 9.8 m s−2. The friction
coefficient, calculated with (4.21), was equal to 0.00275 in the base flow and decreased
during the flood event. The various quantities were taken at a distance of 7 m from the
beginning of the channel, as in the experiments. The peak depth was hp = 6.6 cm and
the average velocity at the peak depth was Up = 0.513 m s−1. However, since the peak
velocity is reached before the peak depth, this was not the maximum velocity, which was
Umax = 0.517 m s−1. The peak value of the Reynolds number was Rep = 3.9 × 104, as in
the experiments.

The velocity profile was reconstructed for the base flow and at the peak depth (h = hp).
The results are presented in figures 12(a) and 12(b), respectively. The experimental
measures were presented with the inner variables u+ and z+ in Nezu et al. (1997)
(where our z is denoted by y). Using the value of the friction velocity used by the
authors and the kinematic viscosity conjectured as explained above, we reconstructed the
experimental dimensional velocity profile (black dots in figure 12). Nezu et al. (1997)
calculated the friction velocity for the SC3T1 case assuming the validity of the log law
u+ = (1/κ) ln z+ + B with κ = 0.41. With this method, they found a friction velocity of
1.63 cm s−1 for the base flow and 2.66 cm s−1 for the peak flow. Then the integration
constant and the wake-strength parameter were found to fit the measures. The curves
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Figure 12. Reconstructed velocity profile (red curve) and comparisons with the experimental measures of
Nezu et al. (1997) (black dots) and with the law (1.2) proposed by Nezu et al. (1997) to fit their measures (black
curve). (a) Base flow; (b) peak flow.

obtained with the law (1.2) are shown in black in figure 12 together with the law u+ = z+
used in the viscous sublayer. We did not reproduce the correction due to the Van Driest
damping function that would smooth the transition from one law to the other. For the base
flow, the standard value B = 5.3 was found. For the peak flow, they obtained the value
B = 3.44 for the integration constant. In addition, Nezu et al. (1997) used a wake-strength
parameter Π = 0.16 for the base flow and Π = 0.33 for the peak flow. Such a deviation
from the log law is clear at the peak depth (see figure 12b) but it is not so obvious for the
base flow (figure 12a).

The reconstruction of the velocity profile with the model is presented in figure 12
with a red curve. The relations (5.3) and (5.4) were used for the outer and inner layers,
respectively, with good matching. The agreement with the experimental measures is very
good for the base flow (figure 12a) in spite of the absence of a wake function. At the peak
flow, there is a discrepancy between the predictions of the model and the experimental
results in the defect layer. The apparent wake-strength parameter is underestimated since
we found that Πapp = 0.02, which is much smaller than the value Π = 0.33 found by
Nezu et al. (1997). The origin of this deviation in open channels is not always clear and
could be caused by 2-D effects. Below the defect layer, the agreement is very good. The
law (5.3) in the outer layer is presented, without the matching with the law of the inner
layer, in figure 13(a). The comparison with the experimental measures (black dots) shows
that the slope of the curve found with the model agrees slightly better in the ‘log-law
region’ than the law used by Nezu et al. (1997) (black curve). We use the term ‘log-law
region’ although the profile in this region does not satisfy a pure log law according to our
model.

The bottom shear stress was reconstructed with the relation (5.1). It is presented during
the whole flood event in figure 13(b) (red curve). The curve is superimposed over the
results of Nezu et al. (1997) where the bottom shear stress (denoted here by τw) is
first calculated by the log law with the assumption κ = 0.41 and then normalized by
the time-averaged value τ̄w. The results corresponding to the SC3T1 case is the case
α = 0.95 × 10−3 (α is an unsteadiness parameter defined in Nezu et al. 1997). The
duration used to calculate the time-averaged value is not specified. We assumed it was
the duration 2Td of the flood event. The value of the bottom shear stress presented by
Nezu et al. (1997) is thus not a measure but results from an assumption. In our model,
this assumption is not exactly satisfied since there is a small deviation to the log law due
to the first-order correction. Moreover, the apparent von Kármán constant κapp = 0.414
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Figure 13. (a) Comparison of the reconstructed velocity profile in the outer layer (red curve) with the
experimental measures of Nezu et al. (1997) (black dots) and the fitting law proposed by Nezu et al. (1997)
(black curve). (b) Bottom shear stress normalized by its time-averaged value calculated by the model (red
curve) superimposed over the curves calculated by Nezu et al. (1997) assuming the validity of the log law with
κ = 0.41. Variations of the flow depth during the same flood event expressed as Δh = h − hb normalized by
hp − hb (blue curve) superimposed over the measures of Nezu et al. (1997).

is slightly different from the standard value 0.41. This entails a small difference in the
friction velocity. We found the value vb = 2.45 cm s−1 at the peak depth instead of the
value vb = 2.66 cm s−1 found by Nezu et al. (1997). There is thus also a small difference
on the bottom shear stress. The curve α = 0.95 × 10−3 is not always distinguishable but
it is the second highest curve after the case α = 1.28 × 10−3. The curve found with the
model (red) is slightly smaller than the curve (black) of Nezu et al. (1997), but both curves
are very close. It can be noted that in both cases, the maximum value of the bottom shear
stress is reached before the maximum value of the depth. The variation of the depth is
presented with the quantity Δh = h − hb normalized by Δhp = hp − hb, in blue for our
model, superimposed with the black curve of Nezu et al. (1997). Both curves are very
close to one another. The depth variation is a consequence of the hydrograph, which was
exactly a sine curve in our simulation. In the experiments it was also a sine curve with
good accuracy. The small differences are probably not significant.

6.4.2. Test case 2: experiment U2 of Onitsuka & Nezu (2000)
The second test case is the case U2 of Onitsuka & Nezu (2000). The experiment is similar
to the first test case except that the measurements are made at a distance of 8 m from the
channel entrance and that Td = 120 s. The hydrograph, the slope and the viscosity are not
specified. We assumed that the hydrograph was a sine function as in the first test case. We
chose the slope in order to have a uniform base flow. This gives sin θ = 8.25 × 10−6. The
kinematic viscosity was calculated from the values of the base depth hb = 6.0 cm, the base
mean velocity Ub = 3.33 cm s−1 and the Reynolds number of the base flow Reb = 2.32 ×
103 (Re = hU/ν). This Reynolds number is very small and below the validity domain of
the matching procedure and of the viscous scaling, which necessitates Re = O(ε−2−m)

with m > 0. The slope is also too small for the model, which is not valid if the slope is
equal to zero. The Froude number of the base flow was also very small: Fb = 0.04. As a
rule, the model is valid if Re > 104 and sin θ > 10−4. Below these values, the matching
procedure and the viscous scaling are not accurate since some neglected terms are not
negligible. This implies that the velocity profile in the inner layer is not accurate. However,
the predictions of the model in the outer layer are very good.
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Figure 14. Velocity profile in the outer layer calculated with the model for the simulation of the experiment
U2 of Onitsuka & Nezu (2000) (red curve) and comparison with the law obtained by Onitsuka & Nezu (2000)
to fit their measures (black curve).

The friction coefficient was calculated with the explicit relation (4.21) with κ = 0.41
and R = 2.67. For the base flow, the friction coefficient was Cfb = 0.00438 and decreased
when the depth increased. The flow is subcritical and is controlled by the downstream
boundary condition. We used the same boundary condition as in the first test case, with
C1 = 0.70, C2 = 0.08 and d = 5.04 cm. These values were chosen to reach the same peak
values as in the experiment. The peak Reynolds number, depth and average velocity were
respectively Rep = 1.16 × 104, hp = 7.8 cm and Up = 12.8 cm s−1.

The velocity profile in the outer layer of the base flow is accurately reconstructed from
the model. The reconstruction of the velocity profile at the peak depth is presented in
figure 14 in the outer layer (from a depth corresponding to z+ = 30 in the inner variables
until the free surface). The experimental measurements were accurately fitted by Onitsuka
& Nezu (2000) with the law expressed with the inner variables u+ = (1/κ) ln z+ + B,
assuming the validity of the law u+ = z+ in the viscous sublayer to calculate the friction
velocity. Using the value of the friction velocity given by the authors (vb = 0.65 cm s−1

for the peak flow), we followed the reverse path to obtain the experimental dimensional
velocity profile (black line in figure 14). The solid red curve is the velocity profile
reconstructed from the model with the relation (5.3). The agreement with the experimental
curve is very good. Contrary to the first test case, no wake-strength parameter was found by
Onitsuka & Nezu (2000) whereas the reconstructed velocity profile shows a small non-zero
value of Πapp. As mentioned above, the existence or absence of a ‘wake function’ in the
case of open-channel flows is not well understood and could be caused by several effects
related to secondary currents or to the flow history.

6.4.3. Test case 3: experiment N30 of Nezu & Onitsuka (2002)
The third test case is the case N30 of Nezu & Onitsuka (2002). It is similar to the
second test case except that Td = 30 s, hb = 6 cm, Ub = 5.2 cm s−1 and Reb = 2.5 × 103.
The slope is calculated assuming the base flow is uniform. This leads to the value
sin θ = 1.97 × 10−5. As in § 6.4.2, the Reynolds number and the slope are very small
which implies that the matching and the profile in the inner layer are not accurate. On the
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Figure 15. Velocity profile reconstructed from the model for the experiment N30 of Nezu & Onitsuka (2002)
(red curve) and comparison with the experimental measures (black dots) and the fitting curve of Nezu &
Onitsuka (2002) (black curve).

other hand, the shallow-water scaling is still valid and the velocity profile in the outer layer
is accurate.

The parameters used for the simulation are C1 = 0.60, C2 = 0.03, d = 4.556 cm (with
the same downstream boundary condition as above), hp = 7.9 cm and Up = 14.2 cm s−1

(at the peak depth). The friction coefficient was calculated with the explicit relation (4.21),
κ = 0.41 and R = 2.67. It is not clear whether the values at t/Td = 1.0 were measured at
the peak depth or at the peak velocity, which is reached a little bit earlier. Since the average
velocity found from the integration over the depth of the fitting law given by the authors
with the values κ = 0.347 and B = 3.48 obtained at t/Td = 1.0 (Nezu & Onitsuka 2001,
2002) gives the maximum velocity Umax = 14.6 cm s−1, we assumed that it was the peak
velocity, where h = 7.78 cm.

The comparison of the velocity profile reconstructed in the outer layer using the relation
(5.3) (red curve) with the experimental results of Nezu & Onitsuka (2002) (black dots)
is presented in figure 15. The experimental results are given in Nezu & Onitsuka in the
inner variables u+ and z+. They were converted in dimensional form using the value of
the friction velocity (vb = 0.79 cm s−1 at the peak flow). The log law proposed by the
authors to fit the experimental results is shown in the figure (black line). The figure shows
the velocity profile in the outer layer from a value of z corresponding to z+ = 50 until
the free surface. The velocity profile found from the model is in good agreement with the
experimental profile in the outer layer.

6.5. Numerical scheme for the 2-D model
In the 2-D case the shape of the cross-section must be taken into account. This implies
defining the distance zb between the bed and the sloping plane Oxy (see figure 1). This
distance zb defines a bathymetry and can depend on x or y. We assume that the variations
of zb with x or y are very small such that ‖grad zb‖/‖grad h‖ = O(ε). In this case, the
asymptotic expansions are exactly the same as above and the only difference is the presence
of a term in grad zb in the depth-averaged momentum equation. The hyperbolic system
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with source terms of (4.26)–(4.28) can thus be written as

∂U
∂t

+ div (F) = S(U), (6.9)

where

U = (h, hU, hϕ)T, F =
(

hU, hU ⊗ U + gh2

2
cos θ I + h3ϕ, hϕ ⊗ U

)T

, (6.10a,b)

and S(U) = (S1, S2, S3) with S1 = 0,

S2 = −gh grad zb +
(

1 − α1

κ

√
Cf

)
(ĝh − Cf U‖U‖)

+ α(κ − α1
√

Cf )
√

Cf h
(

h tr ϕ − ĝ
κ2

)
ĝ
ĝ

− α1κ
√

Cf h
(

hϕ · ĝ
ĝ

− ĝ
κ2

)
, (6.11)

and
S3 = 2hϕ div U − grad U · hϕ − hϕ · (grad U)T

+ α2

κ

√
Cf

h2 [U ⊗ (Cf U‖U‖ − ĝh) + (Cf U‖U‖ − ĝh) ⊗ U]

− κα2

√
Cf

h

[
U ⊗

(
hϕ · ĝ

ĝ
− ĝ

κ2

)
+
(

hϕ · ĝ
ĝ

− ĝ
κ2

)
⊗ U

]
, (6.12)

where ĝ = (g sin θ cos β, g sin θ sin β)T , ĝ = g sin θ , α = 3.15, α1 = 0.68, α2 = 2.47 and
Cf is computed locally from the explicit relation (4.21).

The system is numerically resolved using a classic first-order splitting method by
integrating first the hyperbolic part and then the source terms, both with the same
time step calculated from a CFL condition based on the maximum eigenvalue over the
mesh (Richard et al. 2019). The hyperbolic part is treated using a classic Godunov-like
scheme with the Rusanov approximate Rienmann solver, using MUSCL reconstructions
for all primitive variables and limiting all the slopes by a Barth limiter (Barth, Herbin
& Ohlberger 2017). The treatment of the bathymetry term gh grad zb is included in the
hyperbolic part of the splitting following the method of Audusse & Bristeau (2005) to
ensure the well-balancing property (conservation of a lake at rest, for example, in the
transverse direction of an open-flow channel). Note that the non-conservative terms of the
enstrophy equation are included in the hyperbolic step and treated as source terms. All
other relaxation source terms are integrated using an explicit scheme. In order to avoid
numerical instabilities at wet/dry fronts, the water depth is maintained over a critical
value h = max(h, hε), where hε = 1 cm for the enstrophy source terms (excluding the
computation of the friction source term). Finally, an Heun two-step temporal scheme
is applied considering the splitting procedure as a one-step method. Note that this
numerical resolution is adapted to unstructured meshes and implemented in the Tolosa
project (https://tolosa-project.com). For the following test case (§ 6.6), we compared the
numerical cost of the resolution of this 2-D system with the resolution of the classical
2-D Saint-Venant system. The resolution of this system has a cost 89 % larger than the
Saint-Venant system. We estimate that an optimisation of the treatment of the source terms
(which is not yet implemented) could reduce this additional cost to 50 % approximately.
The most important computational cost is in the assembly of the finite-volume flux due
to the data access in memory from local stencil. It is thus consistent to find a similar cost
for the computation of the source terms despite the much higher number of arithmetic
operations.

954 A24-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://tolosa-project.com
https://doi.org/10.1017/jfm.2022.1012


G.L. Richard, F. Couderc and J.P. Vila

B

H

b

Figure 16. Geometry of a symmetrical trapezoidal channel (half-cross-section).

6.6. Two-dimensional flow in a trapezoidal channel and 3-D reconstruction of the
velocity

The model (6.9) is applied to the case of a free-surface flow in a channel with a
simple trapezoidal cross-section, following the experiments of Yuen (1989). In this case,
∂zb/∂x = 0. The geometrical parameters of these experiments are the half-length b of the
flat part of the bottom and the maximum water depth H in the middle of the channel
(see figure 16). The size of the computational domain is 20 m long and 60 cm wide
to simulate the experiment number 23 of Yuen (1989) with the aspect ratio 2b/H = 10,
where 2b = 45 cm and H = 4.5 cm giving a large flat open-channel flow in the crosswise
direction. Due to the assumption of a slowly varying bottom (see above) and the simple
turbulence model used for the asymptotic expansions, the validity of the model is restricted
to the cases where the aspect ratio is large. Smaller aspect ratios will require a refined
turbulence model and asymptotic expansions suited for an arbitrary bathymetry. In this
case, the lateral slope is large but, since the aspect ratio is large, the model is still able to
produce accurate results.

In order to control the inflow boundary condition, given the maximum water depth
H = 4.5 cm corresponding to the experiment 23 of Yuen, the velocity is enforced in
the ghost cell at the inflow respecting the local equilibrium U = √

ĝh/Cf . The water
depth is calculated solving the nonlinear problem using a classic Newton method
and arising from the equality of the two ingoing Riemann invariants U + 2

√
gh from

the ghost cell and the first cell in the interior of the mesh domain. For the inflow
components of the enstrophy, the Dirichlet boundary conditions are prescribed if the
cell is not dry with ϕ11 = 0.01ĝ/(κ2h), ϕ22 = ϕmin

22 + (ϕmax
22 − ϕmin

22 )( y/(b + H))2 and
ϕ12 = ϕmax

12 tanh(3y/(b + H)), where ϕmin
22 = ϕmax

12 , ϕmax
22 = 2ϕmin

22 and ϕmax
12 = ϕmin

11 with
ϕmin

11 = 0.01 ĝ/(κ2H). This small value of ϕ11 is chosen to simulate the development of the
flow in the channel. For the component V of the velocity, a Neumann boundary condition
is applied. Considering the outflow boundary condition, given again the maximum water
depth H = 4.5 cm, the local water depth h is enforced and the velocity U is calculated from
the two outgoing Riemann invariants U + 2

√
gh. For the component V of the velocity and

the components ϕ11, ϕ22 and ϕ12 of the enstrophy tensor, Neumann boundary conditions
are applied.

In order to obtain a stationary solution, the time integration has to be greater than 250 s
and is finally equal to 500 s. The kinematic viscosity is fixed at ν = 10−6 m2 s−1. The
slope is equal to 10−3. The flow is subcritical.

The results obtained for h, U, ϕ11, ϕ22, ϕ12 and Cf are presented in figure 17.
The component V of the velocity is not shown because its values are very small and
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Figure 17. Numerical simulation of the experiment 23 of Yuen (1989): (a) depth h (m); (b) average velocity
U(m s−1); (c) enstrophy component ϕ11 (s−2); (d) enstrophy component ϕ22 (s−2); (e) enstrophy component
ϕ12 (s−2); ( f ) friction coefficient Cf .

not significant. The maximum values of the depth and the velocity are obtained in the
flat part of the channel where they are almost constant and they decrease on the lateral
slopes until the wet/dry front. It is the opposite for the enstrophy components that are the
largest where the depth is small. The crosswise variations of the depth-averaged velocity U
is shown in figure 18(a). The maximum value of U is not at the centre of the channel but it
is slightly larger around the limits between the flat and sloping parts. The component ϕ11 is
much larger than the two other components (note that ϕ12 can be negative). The enstrophy
components evolve from the beginning of the channel in relation to the development of
the boundary layer (see § 6.2). The development of the boundary layer, evaluated from the
growth of ϕ11, is faster in the lateral parts of the channel than in the centre since the depth
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Figure 18. (a) Transverse variations of the depth-averaged velocity U. (b) Variations of ϕ11 at the beginning
of the channel.
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Figure 19. Isovels calculated from the 3-D reconstruction of the velocity (a) and comparisons with the
isovels measured by Yuen (1989) (b).

is larger in the flat central part. The variations of ϕ11 near the entrance of the channel is
shown in figure 18(b). The friction coefficient is calculated locally with (4.21) and is larger
in the lateral part where the depth is small.

The 3-D velocity profile is reconstructed in the outer layer with the relation (5.3). The
isovel pattern in the trapezoidal cross-section is shown in figure 19 together with the isovel
pattern measured by Yuen (1989). The mean velocity U is normalized by the section mean
velocity and the values of the isovels are approximately the same. The agreement is quite
good, especially in the sloping lateral parts.

7. Conclusion

A consistent 2-D depth-averaged model for open-channel flows in the smooth turbulent
case is derived with a matched asymptotic method and a mixing length model of
turbulence including the free-surface damping effect but without the wake function. The
model can predict accurate velocity profiles in the inner layer and in the outer layer. It can
be used in unsteady situations to reconstruct the bottom shear stress and the 3-D velocity
profile, where the effects of the first-order corrections can be clearly seen. The friction
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coefficient has an explicit form and can be consistently calculated from the water depth.
Shearing effects are taken into account with the variable enstrophy.

The development of the turbulent boundary layer can be evaluated from the model’s
enstrophy. Numerical simulations with the 1-D model show that the predicted length of
the flow developing zone has a correct order of magnitude. The ratio of this length over
the normal depth increases with the Reynolds number but depends weakly on the Froude
number in the case of subcritical flows.

Numerical simulations were conducted for unsteady flows in the subcritical case with a
rising stage followed by a falling stage and a sinusoidal hydrograph. The peak value of the
velocity and of the bottom shear stress is attained before the peak depth, and the delay of
the peak depth is larger for a larger Froude number or for a stronger unsteadiness.

The velocity profile in unsteady flows can be described by an apparent logarithmic law
with an apparent von Kármán constant and an apparent integration constant. In many
cases, a deviation from this log law can be described by Coles’ wake function with
an apparent wake-strength parameter. The variations of these apparent constants depend
weakly on the Reynolds number but strongly on the Froude number. The variations are
large for small Froude numbers and very small for Froude numbers close to 1. The apparent
von Kármán constant increases at the beginning of the rising stage and decreases during
the falling stage for weakly unsteady flows or before the peak depth for strongly unsteady
flows, where it can become smaller than the steady value at the end of the falling stage. The
variations of the apparent integration constant and of the apparent wake-strength parameter
are qualitatively similar.

In the viscous sublayer the law u+ as a function of z+ can be studied since the friction
velocity can be calculated with the model. It is found that u+ in unsteady flows is a linear
function of z+ but that u+/z+ < 1 if the flow is unsteady. The value of u+/z+ remains
close to 1 for the larger subcritical Froude numbers but can be as small as 0.7 for small
Froude numbers. This ratio decreases at the beginning of the rising stage and increases at
the peak depth and in the falling stage for a weak unsteadiness or before the peak depth for
a strong unsteadiness. Consequently, our model predicts that the law u+ = z+ is not valid
in unsteady flows. Assuming the validity of this law to evaluate the friction velocity can
lead to large errors in the calculation of the von Kármán constant and of the integration
constant in unsteady situations. Indeed, if we assume the validity of this law to calculate
the friction velocity instead of using the value predicted by the model, we find values of the
apparent von Kármán constant and of the integration constant that are completely different
from the consistent predicted values but which are rather similar to the values obtained
from experimental measurements by authors who used this method of calculation of the
friction velocity.

The capability of the model to reconstruct accurately the velocity profiles is shown
by the comparisons with experiments from Nezu et al. (1997), Onitsuka & Nezu (2000)
and Nezu & Onitsuka (2002) in the case of 1-D unsteady open-channel flows and with
the experiments of Yuen (1989) in the case of wide trapezoidal channels where the 3-D
velocity profiles can be reconstructed from the values of the depth, average velocity and
enstrophy calculated by the 2-D depth-averaged model.
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Appendix A. Asymptotic expansion at order 1

In the shallow-water scaling, at order 1, the momentum balance equation becomes

∂u′
0

∂t′
+ div

(
u′

0 ⊗ u′
0
) + ∂w′

0u′
0

∂z′ = κ2 ∂τ
′(1)
sh

∂z′ − 1
F2 grad p′

0, (A1)

with the boundary condition τ
′(1)
sh (h) = 0. The integration of (A1) in the Ox direction,

taking into account the boundary conditions, leads to

κ2τ ′(1)
xz = ∂

∂t′

∫ z′

h′
u′

0 dz′ + ∂

∂x′

∫ z′

h′
u′2

0 dz′ + ∂

∂y′

∫ z′

h′
u′

0v
′
0 dz′ + u′

0w′
0 + 1

F2
∂

∂x′

∫ z′

h′
p′

0 dz′.

(A2)

The calculation in the Ox and Oy directions gives the result

τ
′(1)
sh = λ0h′

κ2 λ̂(λ̂ · grad h′)[1 − s + μT1(s) + μ2T2(s)] + h′

κ2 grad h′ cos θ

F2 (s − 1), (A3)

with

T1(s) = (1 − s)(R + 1 + ln 2 + ln M) + s ln s
2

, (A4)

T2(s) =
[

R2

2
+ R − 7

2
+ ln 2

(
R + 1 + ln 2

2

)
+ ln M

(
R + 1 + ln 2 + ln M

2

)]
1 − s

2

+ s ln s
2

(
−5

2
+ R

2
+ ln 2

2
+ ln M

2
+ ln s

)
. (A5)

At the bottom we obtain

τ
′(1)
sh (0) = λ0h′

κ2 λ̂(λ̂ · grad h′)[1 + μT1(0) + μ2T2(0)] − λ0h′

κ2 grad h′ cos θ

λ0F2 , (A6)

with T1(0) = R + 1 + ln 2 + ln M and

T2(0) = R2

4
+ R

2
− 7

4
+ ln 2

2

(
R + 1 + ln 2

2

)
+ ln M

2

(
R + 1 + ln 2 + ln M

2

)
. (A7)

As for the order 0, the velocity is obtained with the constitutive law τ ′ = 2ν′
eff D′. Using

(2.12), the constitutive relation in the outer layer yields

τ ′
sh = z′2(1 − s)

√(
∂u′

∂z′

)2

+
(

∂v′

∂z′

)2
∂u′

∂z′ . (A8)

From this relation, we obtain

τ ′2
xz + τ ′2

yz = z′4(1 − s)2
∥∥∥∥∂u′

∂z′

∥∥∥∥4

. (A9)

At order 1, this gives

2(τ ′(0)
xz τ ′(1)

xz + τ ′(0)
yz τ ′(1)

yz ) = 4z′4(1 − s)2
∥∥∥∥∂u′

0
∂z′

∥∥∥∥2 (
∂u′

0
∂z′ · ∂u′

1
∂z′

)
. (A10)
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Reconstruction of the 3-D fields with a depth-averaged model

Using the expressions found at order 0 and those of τ
′(1)
xz and τ

′(1)
yz , leads to the relation

λ

λ
· ∂u′

1
∂z′ = 1

2κ2

√
λ0

h′

(
λ

λ
· grad h′

)[
T0(s) + μT1(s) + μ2T2(s)

μs(1 − s)
− cos θ

μλ0F2s

]
. (A11)

Then we can write at order 1,

τ
′(1)
sh = z′2(1 − s)

[∥∥∥∥∂u′
0

∂z′

∥∥∥∥−1 (
∂u′

0
∂z′ · ∂u′

1
∂z′

)
∂u′

0
∂z′ +

∥∥∥∥∂u′
0

∂z′

∥∥∥∥ ∂u′
1

∂z′

]
, (A12)

which gives

τ
′(1)
sh = s(1 − s)h′√λh′

[
λ

λ

(
λ

λ
· ∂u′

1
∂z′

)
+ ∂u′

1
∂z′

]
, (A13)

and finally

∂u′
1

∂z′ = 1
2κ2

√
λ0

h′
λ

λ

(
λ

λ
· grad h′

)[
T0(s) + μT1(s) + μ2T2(s)

μs(1 − s)
+ cos θ

λ0F2
1
μs

]
− 1

κ2

√
λ0

h′ grad h′ cos θ

λ0F2
1
μs

. (A14)

Integrating this equation gives

u′
1 = u′

1(h) +
√
λ0h′

2κ2 λ̂(λ̂ · grad h′)

×
[

ln s
μ

+ T1(0) ln s + Li2(1 − s)
2

+ μT2(0) ln s + μ

4
(R − 5 + ln 2 + ln M)Li2(1 − s)

+ μ

2
(− ln(1 − s) ln2 s − 2 ln sLi2(s) + 2Li3(s) − 2ζ(3))

]
−

√
λ0h′

κ2
cos θ

λ0F2
ln s
μ

[
grad h′ − 1

2
λ̂(λ̂ · grad h′)

]
. (A15)

In this expression, Lin denotes the polylogarithm function of order n. For n = 2, the
dilogarithm is defined as

Li2(s) = −
∫ s

0

ln(1 − s′)
s′ ds′. (A16)

For n = 3, the trilogarithm can be defined as

Li3(s) =
∫ s

0

Li2(s′)
s′ ds′. (A17)

The function ζ is the Riemann zeta function and ζ(3) = Li3(1) � 1.20 is the Apéry’s
constant.

Because the expression of u′
1 above diverges when s → 0, a matching procedure is

necessary to connect this expression with the expression in the inner layer found with the
viscous scaling. This procedure yields the expression of u′

1(h).
In the viscous scaling, the momentum balance equation (2.23a–c) implies that

∂ τ̃
(1)
sh /∂ z̃ = 0. The matching procedure for τ

(1)
sh is thus straightforward: τ̃

(1)
sh = τ

′(1)
sh (0).
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The velocity field is obtained from the constitutive law. The constitutive law gives

τ̃sh = ν̃eff
∂ũ
∂ z̃

, (A18)

with

ν̃eff = 1 + z̃2(1 − s)(1 − e−ξ/A)2
∥∥∥∥∂ũ

∂ z̃

∥∥∥∥ . (A19)

At order 1, we obtain

τ̃
(1)
sh = ∂ũ1

∂ z̃
+ z̃2(1 − s)

(
1 − e− ξ

A

)2
[∥∥∥∥∂ũ0

∂ z̃

∥∥∥∥ ∂ũ1

∂ z̃
+
∥∥∥∥∂ũ0

∂ z̃

∥∥∥∥−1 (
∂ũ0

∂ z̃
· ∂ũ1

∂ z̃

)
∂ũ0

∂ z̃

]
.

(A20)

We can write ∥∥∥∥∂ũ0

∂ z̃

∥∥∥∥−1 (∂u′
0

∂z′ · ∂u′
1

∂z′

)
= λ
λ

· ∂ũ1

∂ z̃
, (A21)

and

τ̃ 2
xz + τ̃ 2

yz =
[

1 + z̃2(1 − s)(1 − e−ξ/A)2
∥∥∥∥∂ũ

∂ z̃

∥∥∥∥]2 ∥∥∥∥∂ũ
∂ z̃

∥∥∥∥2

. (A22)

We obtain at order 1,

τ
′(0)
sh (0) · τ

′(1)
sh (0)√

τ
′(0)2
xz (0) + τ

′(0)2
yz (0)

=
(
λ

λ
· ∂ũ1

∂ z̃

)[
1 + 2z̃2(1 − s)(1 − e−ξ/A)2

∥∥∥∥∂ũ0

∂ z̃

∥∥∥∥] . (A23)

This leads to

λ

λ
· ∂ũ1

∂ z̃
= 1√

Δ

λ0h′

κ2

(
λ

λ
· grad h′

)[
T0(0) + μT1(0) + μ2T2(0) − cos θ

λ0F2

]
, (A24)

where

Δ = 1 + ξ2
(

1 − ξη

2
√
λh′3

)
(1 − e−ξ/A)2. (A25)

Because of (2.11), this expression can be reduced to

Δ � 1 + ξ2(1 − e−ξ/A)2. (A26)

With these relations, (A20) becomes

∂ũ1

∂ z̃
= 1√

Δ

λ0h′

κ2
λ

λ

(
λ

λ
· grad h′

)
[T0(0) + μT1(0) + μ2T2(0)]

− 2

1 + √
Δ

λ0h′

κ2 grad h′ cos θ

λ0F2 − 1 − √
Δ√

Δ(1 + √
Δ)

λ0h′

κ2
λ

λ

(
λ

λ
· grad h′

)
cos θ

λ0F2 .

(A27)
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Reconstruction of the 3-D fields with a depth-averaged model

The integration from the bottom to an arbitrary depth gives

ũ1 =
√
λ0h′

2μκ2 λ̂(λ̂ · grad h′)[T0(0) + μT1(0) + μ2T2(0)][ln(ξ +
√

1 + ξ2) + R1(ξ)]

−
√
λ0h′

μκ2 grad h′ cos θ

λ0F2

[
R(ξ) − ξ

1 +
√

1 + ξ2
+ ln(ξ +

√
1 + ξ2)

]

−
√
λ0h′

2μκ2 λ̂(λ̂ · grad h′)
cos θ

λ0F2

[
2ξ

1 +
√

1 + ξ2

− ln(ξ +
√

1 + ξ2) + R1(ξ) − 2R(ξ)

]
+ O(μ2), (A28)

where the function R1 is defined by

R1(ξ) =
∫ ξ

0

dξ√
1 + ξ2(1 − e−ξ/A)2

−
∫ ξ

0

dξ√
1 + ξ2

. (A29)

The matching procedure follows the same principle as for order 0, i.e.

u′
1(s = b

√
η) = ũ1

(
ξ = 2b

√
λh′3

√
η

)
+ O(

√
η). (A30)

We obtain

u′
1(h) =

√
λ0h′

2κ2 λ̂(λ̂ · grad h′) ×
[

2
μ2 + 1

μ
(R1 + ln 2 + ln M + 2T1(0))

− π2

12
+ 2T2(0) + T1(0)(R1 + ln 2 + ln M)

]
−

√
λ0h′

κ2
cos θ

λ0F2 grad h′
[

2
μ2 + 1

μ
(R − 1 + ln 2 + ln M)

]
−

√
λ0h′

2κ2
cos θ

λ0F2 λ̂(λ̂ · grad h′)
[
− 2

μ2 + 1
μ

(2 + R1 − 2R − ln 2 − ln M)

]
+ O(μ),

(A31)

where

R1 =
∫ +∞

0

dξ√
1 + ξ2(1 − e−ξ/A)2

−
∫ +∞

0

dξ√
1 + ξ2

(A32)

is the limit of R1(ξ) when ξ → +∞. This procedure yields the complete expression
of u′

1. Note that the leading term in u′
1 is of O(1/μ2). Denoting U ′

1 = (U′
1, V ′

1)
T, the
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depth-averaged velocity at order 1 is then

U ′
1 =

√
λ0h′

2κ2 λ̂(λ̂ · grad h′)
[

2
μ2 + 1

μ
(R1 − 1 + ln 2 + ln M + 2T1(0))

− 1
2

+ 2T2(0) + T1(0)(R1 − 1 + ln 2 + ln M)

]
−

√
λ0h′

κ2
cos θ

λ0F2 grad h′
[

2
μ2 + 1

μ
(R − 2 + ln 2 + ln M)

]
−

√
λ0h′

2κ2
cos θ

λ0F2 λ̂(λ̂ · grad h′)
[
− 2

μ2 + 1
μ

(3 + R1 − 2R − ln 2 − ln M)

]
+ O(μ).

(A33)

Appendix B. Derivation of the enstrophy equation

Forming u′⊗(4.23) + (4.23)⊗u′, we obtain

∂u′ ⊗ u′

∂t′
+ div(u′ ⊗ u′ ⊗ u′) + ∂w′u′ ⊗ u′

∂z′ + u′

F2 ⊗ grad p′

+ grad p′

F2 ⊗ u′ = κ2

ε

(
u′ ⊗ λ+ λ⊗ u′ + u′ ⊗ ∂τ ′

sh

∂z′ + ∂τ ′
sh

∂z′ ⊗ u′
)

+ O(ε). (B1)

Averaging this equation, taking into account the boundary conditions and the expression
(3.33) of the pressure at order 0, leads to

∂

∂t′
(h′〈u′ ⊗ u′〉) + div(h′〈u′ ⊗ u′ ⊗ u′〉) + U ′ ⊗ grad

(
h′2

2F2 cos θ

)
+ grad

(
h′2

2F2 cos θ

)
⊗ U ′ = κ2

ε
(h′U ′ ⊗ λ+ h′λ⊗ U ′ − 2W ) + O(ε), (B2)

where the expression of the dissipation tensor W is (4.25). The averaged quantity 〈u′ ⊗ u′〉
is expressed with the enstrophy tensor in (4.5) and 〈u′ ⊗ u′ ⊗ u′〉 can be written as

〈u′ ⊗ u′ ⊗ u′〉 = U ′ ⊗ U ′ ⊗ U ′ + h′2U ′ ⊗ ϕ′ + h′2ϕ′ ⊗ U ′

+ 〈u′∗ ⊗ U ′ ⊗ u′∗〉 + 〈u′∗ ⊗ u′∗ ⊗ u′∗〉, (B3)

where u∗ = u − U . Since u′∗
0 = O(μ), we have 〈u′∗ ⊗ u′∗ ⊗ u′∗〉 = O(μ3) + O(ε). All

terms of O(μ3) are neglected in the approximation of weakly sheared flows. We obtain

∂

∂t′
(h′U ′ ⊗ U ′ + h′3ϕ′) + div(h′U ′ ⊗ U ′ ⊗ U ′ + h′3U ′ ⊗ ϕ′ + h′3ϕ′ ⊗ U ′)

+ div(h′3ϕ′) ⊗ U ′ + h′3ϕ′ · (grad U ′)T + U ′ ⊗ grad
(

h′2

2F2 cos θ

)
+ grad

(
h′2

2F2 cos θ

)
⊗ U ′ = κ2

ε
(h′U ′ ⊗ λ+ h′λ⊗ U ′ − 2W ) + O(μ3) + O(ε).

(B4)
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Reconstruction of the 3-D fields with a depth-averaged model

Equation (4.2) is written as

∂h′U ′

∂t′
+ div(h′U ′ ⊗ U ′ + h′3ϕ′) + grad

(
h′2

2F2 cos θ

)
= κ2

ε
[h′λ− τ ′

sh(0)] + O(ε). (B5)

Forming U ′⊗(B5) + (B5)⊗U ′ yields

∂

∂t′
(h′U ′ ⊗ U ′) + div(h′U ′ ⊗ U ′ ⊗ U ′ + h′3U ′ ⊗ ϕ′)

+ div(h′3ϕ′) ⊗ U ′ − grad U ′ · h′3ϕ′ + U ′ ⊗ grad
(

h′2

2F2 cos θ

)
+ grad

(
h′2

2F2 cos θ

)
⊗ U ′ = κ2

ε
(h′U ′ ⊗ λ+ h′λ⊗ U ′ − U ′ ⊗ τ ′

sh(0)

− τ ′
sh(0) ⊗ U ′) + O(ε). (B6)

The difference (B4)–(B6) leads to the evolution equation of the enstrophy tensor

∂h′ϕ′

∂t′
+ div(h′ϕ′ ⊗ U ′) − 2h′ϕ′div U ′ + grad U ′ · h′ϕ′ + h′ϕ′ · (grad U ′)T

= κ2

ε

1
h′2 [U ′ ⊗ τ ′

sh(0) + τ ′
sh(0) ⊗ U ′ − 2W ] + O(μ3) + O(ε). (B7)

The direct integration of (4.25) is not possible, but the asymptotic expansion of the
dissipation tensor can be calculated with (B4). We obtain

W 0 = h′

2
(U ′

0 ⊗ λ+ λ⊗ U ′
0) (B8)

and

W 1 = (λ0h′)3/2

κ2
λ⊗ λ⊗ λ
λ3 · grad h′

{
3 + cos θ

λ0F2 + μ

[
1
2

+ 4R + R1

2
+ 9

2
ln 2 + 9

2
ln M

− cos θ

λ0F2

(
3
2

− R + R1

2
− ln 2

2
− ln M

2

)]
+ μ2

[
−17

2
+ 7

4
R2 + 9

4
ln2 2 + ln 2

2

+ R1

2
+ R1

2
ln 2 + 9

4
ln2 M + RR1

2
+ 4R ln 2 + ln M

(
1
2

+ 4R + R1

2
+ 9

2
ln 2

)]}
− (λ0h′)3/2

κ2
cos θ

λ0F2 [2 + μ(R − 2 + ln 2 + ln M)] ×
(
λ

λ
⊗ grad h′ + grad h′ ⊗ λ

λ

)
.

(B9)

The right-hand side of (B4) can be written as

κ2(h′U ′
1 ⊗ λ+ h′λ⊗ U ′

1 − 2W 1). (B10)
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Using the asymptotic expansions found above, we can write

2W 1 − (h′U ′
1 ⊗ λ+ λ⊗ h′U ′

1)

=
(

1 − α
μ

C(μ)

)
μ2

C2(μ)

[
U ′

0 ⊗
(

U ′
1‖U ′

0‖ + U ′
0

U ′
0 · U ′

1
‖U ′

0‖
)

+
(

U ′
1‖U ′

0‖ + U ′
0

U ′
0 · U ′

1
‖U ′

0‖
)

⊗ U ′
0

]
+ α

(
−1 + α

μ

C(μ)

)
μ

C(μ)
h′2 tr ϕ′

1

(
U ′

0 ⊗ λ
λ

+ λ
λ

⊗ U ′
0

)
+ α

μ

C(μ)

(
U ′

0 ⊗ h′2ϕ′
1 · λ
λ

+ h′2ϕ′
1 · λ
λ

⊗ U ′
0

)
+ O(μ3). (B11)

Using (4.13) and (4.14), this expression enables us to write the right-hand side of (4.24) as
a sum of relaxation terms.

Appendix C. Expressions of the zero-order and first-order velocity in the inner layer

In the inner layer the expressions (3.12) and (A28) lead to

ũ0 = μ

C(μ)
U ′

0

[
R(ξ) − ξ

1 +
√

1 + ξ2
+ ln(ξ +

√
1 + ξ2)

]
(C1)

and

ũ1 =
{

μ

C(μ)
U ′

1 +
[(

1 − 2
α

κ

κμ

C(μ)
+ 2

αα1

κ2

(
κμ

C(μ)

)2
)

μ

C(μ)

(
U ′

1 · λ
λ

)

+ 2α2
μ

C(μ)

⎛⎝ μ

C(μ)

(
U ′

1 · λ
λ

)
− h′ tr ϕ′

1

2
√

tr ϕ′
0

⎞⎠⎤⎦ λ
λ

⎫⎬⎭
[
R(ξ) − ξ

1 +
√

1 + ξ2

+ ln(ξ +
√

1 + ξ2)

]
+
[(

1 − α

κ

κμ

C(μ)
+ αα1

κ2

(
κμ

C(μ)

)2
)

μ

C(μ)

(
U ′

1 · λ
λ

)

+ α2
μ

C(μ)

⎛⎝ μ

C(μ)

(
U ′

1 · λ
λ

)
− h′ tr ϕ′

1

2
√

tr ϕ′
0

⎞⎠⎤⎦ λ
λ

[
R1(ξ) − 2R(ξ)

+ 2ξ

1 +
√

1 + ξ2
− ln(ξ +

√
1 + ξ2)

]
+ O(μ2). (C2)
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