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Abstract

During nematode surveys in natural vegetation in Sierra Magina, Jaén province, southern
Spain, a Longidorus species closely resembling Longidorus carpetanensis was found, but appli-
cation of integrative taxonomic approaches clearly demonstrated that it is a new species
described herein as Longidorus maginicus n. sp. The new species is amphimictic, characterized
by a moderately long body (4.2-5.2 mm); lip region anteriorly flattened, slightly separated from
the rest of body by a depression, 9.0-11.0 um wide and 3.5-6.0 um high; amphidial fovea not
lobed; relatively short odontostyle (61.0-70.5 um); guiding ring located 23.5-27.0 um from
anterior end; vulva located at 42.0%-51.3% of body length; female tail 39.0-61.0 pm long,
conoid, dorsally convex with rounded terminus (¢’ =1.3-2.1), with two or three pairs of
caudal pores; and males common (1:2 ratio males:females), with moderately long spicules
(39.0-48.5 um) and 1+ 6-9 ventromedian supplements and three juvenile developmental
stages. According to the polytomous key, codes for the new species are (codes in parentheses
are exceptions): A2-B1-C2-D2-E1-F2(3)-G2-H5(4)-12-J1-K6. The results of molecular ana-
lysis of D2-D3 28S, internal transcribed spacer region, partial 18S rDNA, and cytochrome
oxidase ¢ subunit 1 (coxI) gene sequences further characterized the new species status, and
separated it from L. carpetanensis and other related species.

Introduction

Longidorus Micoletzky, 1922 comprises a large and complex genus of the family
Longidoridae Thorne, 1935 with approximately 180 species of plant-ectoparasitic nematodes
that are polyphagous and distributed almost worldwide (Peneva et al., 2013; Subbotin et al,
2014; Trisciuzzi et al., 2015; Archidona-Yuste et al., 2019; Amrei et al., 2020; Cai et al.,
2020a, b; Clavero-Camacho et al., 2021a, b). In Spain, 41 species of Longidorus have been
reported, from which 31 were molecularly characterized, and 19 of them were described
as new species of this genus (Arias et al, 1986; Andrés & Arias, 1987; Gutiérrez-
Gutiérrez et al, 2013; Archidona-Yuste et al, 2016, 2019; Cai et al, 2020a, b;
Clavero-Camacho et al, 2021a, b). The importance of these nematodes is based not only
in their polyphagy and cosmopolitan distribution but also some species are vectors of
plant viruses that cause significant damage to a wide range of agricultural crops
(Decraemer & Robbins, 2007; Cai et al., 2020a). Species discrimination in Longidorus is
difficult because of the large number of species and because the conserved morphology
and morphometric characters often overlap, leading to potential misidentification.
Consequently, an accurate Longidorus species identification is essential and has significant
implications in food security, quarantine measures and agronomic management in the
field (Palomares-Rius et al., 2014; Cai et al., 2020a).

For these reasons, the development of molecular methods using different fragments of
nuclear ribosomal and mitochondrial DNA gene sequences to be used in DNA barcoding
during the last years led to an accurate species diagnosis, to clarify phylogenetic relationships
and species delimitation under the genus Longidorus (Neilson et al., 2004; Ye et al., 2004;
Kumari & Subbotin, 2012; Gutiérrez-Gutiérrez et al, 2013; Subbotin et al., 2014; Archidona-
Yuste et al, 2016, 2019; Amrei et al, 2020; Cai et al, 2020a, b; Clavero-Camacho et al,
2021a, b). In addition, the use of these molecular markers in species identification of
Longidorus over the last decade has indicated that some species actually comprise multiple gen-
etically divergent and morphologically similar cryptic species (Archidona-Yuste et al., 2016,
2019; Gutiérrez-Gutiérrez et al., 2020; Cai et al., 2020a, b).

https://doi.org/10.1017/50022149X22000311 Published online by Cambridge University Press


https://www.cambridge.org/jhl
https://doi.org/10.1017/S0022149X22000311
mailto:p.castillo@csic.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4446-0642
https://doi.org/10.1017/S0022149X22000311

A species of needle nematode of the genus Longidorus mor-
phologically resembling Longidorus carpetanensis Arias et al.,
1986, was detected during nematological surveys conducted in
2019 and 2020 in the natural vegetation of a mountain in south-
ern Spain (Sierra Magina, province of Jaén, Spain). Recently, how-
ever, topotypes of this species were recently morphologically and
molecularly characterized (Archidona-Yuste et al., 2019) which
prompted us to study this population under an integrative taxo-
nomic approach based on morphological and molecular, as well
as a comprehensive, scanning electron microscope (SEM) analyses.

Therefore, the main objectives of this study were: (i) to char-
acterize morphologically and morphometrically the new Spanish
population of Longidorus and compare it with L. carpetanensis
and related species; (ii) to characterize molecularly the new
Longidorus population using the D2-D3 28S rRNA, internal tran-
scribed spacer region (ITS) rRNA, partial 185 rRNA and cyto-
chrome oxidase ¢ subunit 1 (coxI) gene sequences; and (iii) to
study the phylogenetic relationships of the identified Longidorus
species with available sequenced species of the genus.

Material and methods
Nematode population and morphological characterization

In the spring of 2019 and 2020, seven soil samples were collected,
with a shovel, from the upper 40-cm of soil in the rhizosphere of
spiny madwort (Ptilotrichum spinosum (L.) Boiss.) in Albanchez
de Migina, Jaén province, Spain, and in three of them, low to
moderate population densities of a new Longidorus population
were detected. Subsequently, nematodes were extracted from a
500 cm” subsample of soil by centrifugal flotation and a modifi-
cation of Cobb’s decanting and sieving methods (Flegg, 1967;
Coolen, 1979).

Specimens for study using light microscopy (LM) and mor-
phometric studies were killed and fixed in a heat aqueous solution
of 4% formaldehyde + 1% glycerine, dehydrated using an alcohol-
saturated chamber and processed to pure glycerine using
Seinhorst’s method (Seinhorst, 1966) as modified by De Grisse
(1969). Light micrographs and measurements of the nematode
population, including important diagnostic characteristics (i.e.
de Man indices, body length, odontostyle length, lip region, tail
shape, amphid shape and oral aperture-guiding ring) (Jairajpuri
& Ahmad, 1992) were done using a Leica DM6 compound micro-
scope with a Leica DFC7000T digital camera (Leica, Wetzlar,
Germany). The raw photographs were edited using Adobe
Photoshop v. 22.5.2 (San Francisco, CA, USA).

For SEM, fixed specimens were dehydrated in a gradient series
of ethanol, critical-point dried, sputter-coated with gold accord-
ing to the protocol by Abolafia et al. (2002) and observed with
a Zeiss Merlin Scanning Electron Microscope (5kV; Zeiss,
Oberkochen, Germany).

Molecular characterization and phylogenetic analyses

For molecular analyses, and in order to avoid mistakes in case of
mixed populations in the sample, single specimens were temporarily
mounted in a drop of 1 M sodium chloride containing glass
beads (to avoid nematode crushing/damaging specimens) to ensure
specimens conformed with the target population. All necessary
morphological and morphometric data were recorded. This was fol-
lowed by DNA extraction from single individuals as described by
Archidona-Yuste et al. (2016). The D2-D3 segments were amplified
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using the D2A (5'-ACAAGTACCGTGAGGGAAAGTTG-3) and
D3B (5-TCGGAAGGAACCAGCTACTA-3") primers (De Ley
et al, 1999). The ITS was amplified using forward primer 18S
(5-TTGATTACGTCCCTGCCCTTT-3') and reverse primer
26S (5-TTTCACTCGCCGTTACTAAGG-3') (Vrain et al., 1992).
The portion of 18S rRNA was amplified using primers 988F
(5'-CTCAAAGATTAAGCCATGC-3), 1912R (5-TTTACGGTC
AGAACTAGGG-3'), 1813F (5-CTGCGTGAGAGGTGAAAT-3)
and 2646R (5-GCTACCTTGTTACGACTTTT-3') (Holterman
et al., 2006). Finally, the portion of the coxI gene was amplified as
described by Lazarova et al (2006) using the primers COIF
(5"-GATTTTTTGGKCATCCWGARG-3) and COIR (5'- CWAC
ATAATAAGTATCATG-3').

All polymerase chain reaction (PCR) assays were done accord-
ing to the conditions described by Archidona-Yuste et al. (2016).
Then, the amplified PCR products were purified using ExoSAP-IT
(Affimetrix, USB products) and used for direct sequencing on a
DNA multicapillary sequencer (Model 3130XL genetic analyser;
Applied Biosystems, Foster City, CA, USA), using the BigDye
Terminator Sequencing Kit V.3.1 (Applied Biosystems, Foster
City, CA, USA), at the StabVida sequencing facilities (Costa da
Caparica, Portugal). The newly obtained sequences were submit-
ted to the GenBank database under the accession numbers indi-
cated on the phylogenetic trees.

Phylogenetic analyses

The D2-D3 expansion segments of 28S, ITS and 18S rDNA, and
cox] mtDNA sequences, of the recently recovered unidentified
Longidorus species were obtained in this study. These sequences,
and other sequences from species of Longidorus from GenBank,
were used for phylogenetic analyses. Outgroup taxa for each data-
set were chosen following previously published studies (He et al.,
2005; Holterman et al., 2006; Gutiérrez-Gutiérrez et al, 2013;
Archidona-Yuste et al., 2019; Cai et al., 2020a). Multiple sequence
alignments of the different genes were made using the FFT-NS-2
algorithm of MAFFT V.7.450 (Katoh et al, 2019). Sequence
alignments were manually visualized using BioEdit (Hall, 1999)
and edited by Gblocks ver. 0.91b (Castresana, 2000) in the
Castresana Laboratory server (http://molevol.cmima.csic.es/castre-
sana/Gblocks_server.html) using options for a less stringent
selection (minimum number of sequences for a conserved or a
flanking position: 50% of the number of sequences +1; maximum
number of contiguous non-conserved positions: 8; minimum
length of a block: 5; allowed gap positions: with half).
Phylogenetic analyses of the sequence datasets were based on
Bayesian inference (BI) using MrBayes 3.1.2 (Ronquist &
Huelsenbeck, 2003). The best-fit model of DNA evolution was
obtained using JModelTest V.2.1.7 (Darriba et al., 2012) with
the Akaike information criterion (AIC). The best-fit model, the
base frequency, the proportion of invariable sites, the gamma dis-
tribution shape parameters and substitution rates in the AIC were
then used in MrBayes for the phylogenetic analyses. BI analyses
were performed under a general time-reversible model with
invariable sites and a gamma-shaped distribution (GTR +1+G)
for the D2-D3 segments of 28S, ITS, and the partial 18S
rDNA, and Tamura-Nei model with invariable sites and a
gamma-shaped distribution (TRN +1+ G) for the partial coxI
gene. All Bayesian analyses were run separately per dataset with
four chains for 4 x 10° generations. The Markov chains were
sampled at intervals of 100 generations. Two runs were conducted
for each analysis. After discarding burn-in samples of 30% and
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evaluating convergence, the remaining samples were retained for
in-depth analyses. The topologies were used to generate a 50%
majority-rule consensus tree. Posterior probabilities (PP) were
given on appropriate clades. Trees from all analyses were visua-
lized using FigTree software version v.1.42 (Rambaut, 2014). A
combined analysis of the three ribosomal genes was not under-
taken due to some sequences not being available for all species.

Results

Low to moderate densities (5-10 nematodes/500 cm> of soil) of the
presently studied population of Longidorus were detected in three
out of seven soil samples collected from the rhizosphere of spiny
madwort (P. spinosum (L.) Boiss.) in Albanchez de Magina, Jaén
province, Spain. Detailed morphological, morphometrical and
molecular information about this species is provided below, con-
firming its identity as a new species of the genus described herein.

Taxonomy

Phylum: Nematoda Rudolphi, 1808

Class: Enoplea Inglis, 1983

Order: Dorylaimida Pearse, 1942

Suborder: Dorylaimina Pearse, 1936

Superfamily: Longidoroidea Khan and Ahmad, 1975

Family: Longidoridae Thorne, 1935

Genus: Longidorus Micoletzky, 1922

Longidorus maginicus n. sp.
ZooBank: urn:sid:zoobank.org:act: CFEEC5B2-A34F-440E-B92C-
029818AFC9E1

Description

(Figures 1-4, table 1)

Females. Body G-shaped after being relaxed by gentle heat
(fig. 2a), gradually tapering in both ends and with greater curva-
ture in posterior end. Cuticle apparently composed of two layers
(2.5-3.5 um at mid-body), thickened in tail region. Lateral body
pores observed in pharyngeal region (fig. 3). Lip region anteriorly
flattened, slightly separated from the rest of body by a depression.
Amphidial fovea pouchlike, not lobed. SEM observations showed
a slit-like oral aperture surrounded by six labial papillae in en face
view, and a pore-like aperture of amphidial fovea (fig. 4).
Odontostyle thin and moderately long, narrow, 1.5 (1.3-1.8)
times as long as odontophore, straight or flexible (figs 1 and 2),
odontophore moderately developed surrounding muscles at
base. Pharynx with three visible nuclei, the dorsal gland’s nucleus
at approximately 15.1-19.4%, and two smaller ventrosublateral
nucei (SIN) at almost the same level, 48.6-55.3% of pharyngeal
bulb length (according to Loof & Coomans, 1972). Nerve ring
surrounding anterior part of isthmus. Glandularium 74.0 (64.0-
82.0) um long. Cardia small, conoid-rounded. Reproductive sys-
tem didelphic amphidelphic with genital branches almost equally
developed with reflexed ovaries, 448.5 (310.0-623.0) um, 423.0
(308.0-505.0) um long, respectively. Vulva a transverse slit in ven-
tral view, situated about 50% of body length and vagina 10.1 (8.0-
12.0) um long, perpendicular to body axis at approximately 20%
of corresponding body width long, surrounded by constrictor
muscles. Sperm cells present in the genital branches of some spe-
cimens. Rectum 25.6 (22.0-28.0) um long. Tail moderately long,
conoid, dorsally convex with rounded terminus, with two or
three pairs of caudal pores on each side.
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Fig. 1. Longidorus maginicus n. sp. (drawings). (a) female neck region; (b) female
anterior region; (c) detail of posterior genital branch; (d) female tail; and (e, f)
male tail.

Males. Common, but less frequent than female (1:2 ratio
males:females). Morphologically similar to female except for geni-
tal system and secondary sexual features, and posterior region
more strongly curved ventrally. Genital tract diorchic with testes
opposed, containing multiple rows of spermatogonia. Tail conoid,
dorsally convex with rounded terminus and thickened outer
cuticular layer. Spicules dorylaimoid, moderately developed and
curved ventrally, lateral guiding piece more or less straight or
with curved proximal end. Supplements comprising one cloacal
pair 12-17 um from cloacal aperture and a midventral row
of 6-9.

Juveniles. Three developmental juvenile stages were detected
and distinguished by body length, odontostyle length and replace-
ment odontostyle length (Robbins et al., 1995, 1996). Morphology
resembling female except in slight variations in ¢’ ratio, body size
and sexual characteristics (table 1, fig. 2). The first-stage juvenile
was characterized by a bluntly conoid tail (¢’ = 2.6; fig. 2).

Diagnosis and relationships

Longidorus maginicus n. sp. is an amphimictic species character-
ized by a moderately long body (4.2-5.2 mm); lip region anteri-
orly flattened, slightly separated from the rest of body by
depression, 9-11 pum wide and 3.5-6.0 um high; amphidial
fovea not lobed; relatively short odontostyle (61.0-70.5 um);
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Fig. 2. Light micrographs of Longidorus maginicus n. sp. (a) entire female; (b-e) female anterior end showing guiding ring (arrowed); (f) vulval region; (g-k) female
tail; (1) entire male; (m-q) male tail with details of spicules, lateral guiding piece and ventromedian supplements (arrowed); and (r-u) tail region of 1st, 2nd and 4th
stage juveniles (J1, J2 and J4). Abbreviations: a = anus; gr = guiding ring; |p = lateral guiding piece; sp = spicule; V = vulva; vspl = ventromedian supplement. (Scale
bars: a, | =100 um; b-k, m-u =20 um).
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Fig. 3. Scanning electron microscope micrographs of Longidorus maginicus n. sp. (a, b) female anterior end in lateral view showing outer labial papillae (Ip) and
lateral body pore (lbp); (c, d) female lip region showing labial papillae (lp) and amphidial aperture (aa) arrowed; (e) en face view showing oral aperture (oa)
arrowed; (f) vulval region showing vulva (V) and lateral body pore (lbp); (g) female tail showing anus (a); and (h): male posterior body region showing anus
and ventromedian supplements. Abbreviations: a = anus; aa = ampbhidial aperture; lbp = lateral body pore; |p = labial papilla; oa = oral aperture; V = vulva; vspl = ven-

tromedian supplement. (Scale bars: a, f, g=10 um; b=2 um; c-e=1 pm; h=50 um).
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Fig. 4. Relationship of body length to length of functional and
replacement odontostyle (Odt and rOdt, respectively) length in
all developmental stages from first-, second and fourth-stage
juveniles (J1, J2 and J4) and mature females of Longidorus
maginicus n. sp.
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Table 1. Morphometrics of Longidorus maginicus n. sp. from of spiny madwort (Ptilotrichum spinosum (L.) Boiss.) in Albanchez de Magina, Jaén province, Spain). All measurements are in um and in the form: mean +

standard deviation (range).

Paratypes
Character ? Holotype Female Male J1 J2 J4
n 19 9 2 3 4
L 4.351 4.554 +0.296 4.222£0.215 (1.270, 1.388) 2.658 +0.183 3.792£0.575
(4.168-5.177) (3.939-4.560) (2491-2853) (3.306-4.560)
a 106.1 99.4+11.5 95.2+10.1 (57.7, 60.3) 75.7+2.7 116.8+18.6
(80.2-120.4) (82.1-108.1) (73.2-78.5) (103.1-142.5)
b 13.9 149+13 13.9+1.0 (7.2, 7.6) 112+1.2 14.6+1.0
(11.7-18.1) (12.4-15.5) (9.9-12.0) (13.1-15.5)
c 85.3 88.6+10.4 79.7+4.4 (25.4, 27.2) 50.3+1.1 67.5+8.3
(76.5-114.9) (73.1-86.5) (49.6-51.6) (60.7-79.3)
d 1.8 1.8+0.2 16+0.1 (2.6, 2.6) 24+0.1 1.7+£0.1
(1.3-2.1) (1.6-1.7) (2.3-2.4) (1.6-1.7)
d 2.5 2.5+0.2 2.7+0.1 (2.6, 2.6) 1.9+0.4 23+0.1
(2.3-2.9) (2.5-2.9) (1.6-2.3) (2.2-2.4)
d 1.7 1.7+£0.1 1.75+0.1 (1.9, 1.9) 2.1+0.5 16+0.1
(1.5-1.9) (1.6-1.8) (1.6-2.4) (1.5-1.7)
VorT 49.1 49.4+1.3 50.0+7.2 - - -
(46.4-51.3) (43.1-61.6)
G1 10.7 9.9+17 = = = =
(6.9-12.8)
G, 9.5 9.3%14 - - - -
(6.8-11.3)
odontostyle 64.0 66.1+2.6 67.7+1.4 (40.0, 41.5) 51.7+2.1 58.0+0.8
(61.0-70.5) (66-70) (50-54) (57-59)
odontophore 42.0 439+3.0 45.6+3.0 (25.0, 26.0) 36.5+2.3 42.0+0.8
(38-48) (39-49) (34.0-38.5) (41-43)
total stylet 106.0 110.0+3.5 113.3+29 (65.0, 67.5) 86.8+3.9 100.0+ 1.6
(104-117) (109-117) (84.0-89.5) (98-102)
replacement odontostyle - - - (48.0, 49.5) 58.7+1.9 64.1+1.7
(56.5-60.0) (62.5-66.0)
lip region diameter 9.5 10.0+0.7 9.8+0.5 (6.5, 7.0) 9.2+0.1 10.4+0.5
(9-11) (9.0-10.5) (9.0-9.5) (10-11)
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guiding ring located 23.5-27.0 um from anterior end; vulva
located at 46.4%-51.3% of body length; female tail 39-61 um
long, conoid, dorsally convex with rounded terminus (¢’ =
1.3-2.1), with two or three pairs of caudal pores; and males com-
mon (1:2 ratio males:females), with medium size spicules (39.0--
48.5 pm) and 1 pair + 6-9 ventromedian supplements. According
to the polytomous key by Chen et al. (1997) and the new code
by Peneva et al. (2013), codes for the new species are (codes
in parentheses are exceptions): A2-B1-C2-D2-E1-F2(3)-G2-H5
(4)-12-J1-K6.

Conforming to the polytomous key by Chen et al. (1997), and
on the basis of sorting on matrix codes A (odontostyle length), B
(lip region width), C (distance of guiding-ring from anterior body
end), D (lip region shape) and F (body length), L. maginicus n. sp.
is closely related to Longidorus pini Andrés & Arias, 1987, L. car-
petanensis Arias et al., 1986, Longidorus unedoi Arias et al., 1986,
Longidorus indalus Archidona-Yuste et al., 2016, and Longidorus
bordonensis Gutiérrez-Gutiérrez et al., 2020, from which it can be
differentiated by a combination of characters discussed below.
Longidorus maginicus. n. sp. differs from L. carpetanensis by a
slightly longer odontostyle (61.0-70.5 vs. 54.0-65.0 um), longer
body (4.2-5.2 vs. 3.5-4.4 mm), longer spicules (39.0-48.5 vs.
34.0-38.5 um), and amphidial fovea (not lobed vs. bilobed sym-
metrically) (Arias et al., 1986). From L. pini by lip region shape
(anteriorly flattened, slightly separated from the rest of body by
a depression vs. offset and slightly expanded lip region), and
amphidial fovea (not lobed vs. bilobed symmetrically) (Andrés
& Arias, 1987). From L. unedoi by a slightly longer odontostyle
(61.0-70.5 vs. 52.0-64.0 pm), a shorter body length (4.2-5.2 vs.
5.0-6.0 mm), larger spicules (39.0-48.5 vs. 35.0 um) and amphi-
dial fovea (not lobed vs. bilobed asymmetrically) (Arias et al,
1986). From L. indalus by a longer odontostyle (61.0-70.5 vs.
54.0-59.5 um) and lip region shape (anteriorly flattened, slightly
separated from the rest of body by a depression vs. expanded dis-
tinctly set off from body contour) (Archidona-Yuste et al., 2016).
From L. bordonensis by lip region shape (anteriorly flattened,
slightly separated from the rest of body by a depression vs. offset
and slightly expanded lip region), amphidial fovea (not lobed vs.
bilobed asymmetrically) and ¢ ratio (1.3-2.1 vs. 1.9-3.1)
(Gutiérrez-Gutiérrez et al, 2020). In addition, L. maginicus
n. sp. can be separated from these species by ribosomal and mito-
chondrial molecular markers (see below).

Etymology

The species epithet refers to the mountain where the species was
detected (Sierra Magina, Jaén province, Spain).

Type host and locality

The new species was recovered from the rhizosphere of spiny
madwort (P. spinosum (L.) Boiss.) in Albanchez de Maigina,
Jaén province, Spain (coordinates 37°43'58.7"N 3°28'11.4"W).

Type material

Holotype female and 17 female and seven male paratypes depos-
ited at the Institute for Sustainable Agriculture (IAS) of Spanish
National Research Council (CSIC), Cérdoba, Spain (slide num-
bers SM7-02-SM7-11); one female and one male at the Istituto
per la Protezione delle Piante (IPP) of Consiglio Nazionale delle
Ricerche (C.N.R.), Sezione di Bari, Bari, Italy (SM7-012); and
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Fig. 5. Phylogenetic relationships of Longidorus maginicus n. sp. with species of Longidorus. Bayesian 50% majority rule consensus tree as inferred from D2 and D3
expansion domains of 28S rDNA sequence alignment under the GTR + 1+ G model (—InL = 16,234.1335; Akaike information criterion =32,936.2669; freqA = 0.2265;

freqC =0.2250; freqG=0.2913; freqT =0.2571; R(a)=

0.9207; R(b) =

2.7156; R(c) = 1.6004;

R(d) = 0.4273; R(e)=5.2793; R(f)=1.0000; Pinva=0.3230; and shape =

0.8070). Posterior probabilities more than 0.70 are given for appropriate clades. Newly obtained sequences in this study are shown in boldface type, and coloured
box indicates clade association of the new species. Scale bar=expected changes per site.
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one female and one male at the United States Department of
Agriculture Nematode Collection (T-7607p).

Molecular characterization

Longidorus maginicus n. sp. was molecularly characterized by the
sequences of three ribosomal genes, D2-D3 segment of 28S, ITS
and partial 18S rDNA, and the mitochondrial gene coxl. The
amplification of these regions yielded single fragments of approxi-
mately 900, 1600, 1600 and 400 base pairs (bp), respectively,
based on gel electrophoresis. Six D2-D3 of 28S rDNA sequences
from 716 to 749 bp (OL471525-0L471530), four ITS rDNA
sequences from 1504 to 1522 bp (OL471535-0L471538), four
185 rDNA sequences from 1719 to 1733bp (OL471531-
OL471534) and three coxI sequences of 365bp (OL471046-
OL471048) were generated for this new species without intraspe-
cific sequence variations. D2-D3 segment of 285 rDNA of
L. maginicus n. sp. (OL471525-0OL471530) was 97% identical to
L. carpetanensis (MH430019) and L. pini (MH430028) and
96% identical to L. bordonensis (MN082422). ITS of L. maginicus
n. sp. (OL471535-0L471538) was 86% identical to L. pini
(MH430001), 84% identical to L. carpetanensis (MH429991),
L. pacensis Archidona-Yuste et al., 2019 (MH429992) and 83%
similar to L. bordonensis (MN150062). Partial 18S of L. maginicus
n. sp. (OL471531-OL471534) was 99% identical to several
Longidorus species such as Longidorus vineacola (AY283169),
Longidorus elongatus de Man 1876 (EU503141), L. pini
(MH430011) and Longidorus tabernensis Cai et al, 2020a, b
(MK941261). Finally, coxI of L. maginicus n. sp. (OL471046-
OL471048) was 80% identical to L. carpetanensis (MH454068),
and 79% to L. pini (MH454070) and Longidorus iliturgiensis
Archidona-Yuste et al, 2019 (MH454065).

Phylogenetic relationships of L. maginicus n. sp. with other
Longidorus spp.

Phylogenetic relationships among Longidorus species, as
inferred from analyses of D2-D3 expansion domains of 28S,
ITS, the partial 185 rDNA and the partial cox] mtDNA gene
sequences using BI, are shown in figs 5-8, respectively. The phylo-
genetic trees generated with the ribosomal and mitochondrial
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DNA markers included 113, 18, 89 and 60 sequences, and their
alignment had 741, 1709, 1675 and 383 characters, respectively.
The presently resolved D2-D3 tree of Longidorus spp., L. maginus
n. sp. (OL471525-0L471530), L. pini (MH430028), L. bordonen-
sis (MNO082421) and L. carpetanensis (MH430019) formed a well-
supported subclade (PP =1.00), including while other morpho-
logically related species (viz. L. indalus and L. iliturgiensis) occu-
pied a separate clade (PP =0.97) (fig. 5).

Difficulties were detected in finding suitable sequences for the
phylogenetic reconstruction of ITS sequences due to the low
coverage and identity with other sequences of Longidorus.
Consequently, only related sequences were chosen for ITS phyl-
ogeny and ambiguously aligned regions were discarded from the
alignment (fig. 6). In ITS phylogeny, the new species occupied
a placement inside a well-supported clade (PP = 1.00). However,
the clade of the new species (OL471535-0L471538) with L. car-
petanensis (MH429991 and MH429993), L. pacensis (MH429992)
and L. pini (MH430001) received a 0.88 PP. Other morphologic-
ally related species (viz. L. indalus and L. iliturgiensis) showed
very low sequence identity and were excluded from the analysis.

In a 50% majority rule consensus 185 rDNA BI tree,
L. maginicus n. sp. (OL471531-OL471534), L. carpetanensis
(MH430006) and L. pini (MH430011) formed a well-supported
clade (PP =1.00), while L. indalus (KT308894) and L. iliturgiensis
(MH430002) clustered separately (fig. 7).

Finally, the phylogenetic relationships of L. maginicus n. sp.
(OL471046-0L471048) with other species, using coxI gene
sequences, were not resolved due to polytomy (fig. 8).

Discussion

Accurate species identification in the genus Longidorus is often
problematic due to a huge number of valid species, presence of
cryptic species and many potential diagnostic features that must
be considered. The main objective of this study was to identify
and describe, morphologically (including LM and SEM analyses)
and molecularly, a new population of Longidorus detected in a
natural environment in Albanchez de Maigina, Jaén province,
southern Spain, as well as clarify the phylogenetic relationships
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within the genus Longidorus. All the provided results confirmed
that the unknown Longidorus population is morphologically
and morphometrically very close to L. carpetanensis described
from central Spain, except for slight differences in odontostyle
length and shape of the amphidial fovea. Nevertheless, all the
molecular markers clearly separated both taxa confirming that
the new population is a new valid species of the genus. Only a
few species of Longidorus and Paralongidorus have been described
with complete SEM observations (Roca, 2006; Cai et al., 2018;
Clavero-Camacho et al, 2021a, b). Our SEM results provide
clear evidence of pore-like amphidial apertures dissipating doubts
about the generic placement as recently established for Longidorus
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iberis (Clavero-Camacho et al., 2021a, b). Interestingly, although
more studies are needed for confirming this hypothesis, these
results suggest that native deciduous leguminous shrubs (brooms)
of the family Fabaceae may be a common host-plant of these
nematodes, since the latter species was also described from com-
mon broom (Cytisus scoparius (L.) Link). Likewise, these results
increase the already high biodiversity of this genus in the
Iberian Peninsula (45 species reported so far) and support that
species richness in natural environments is higher than in culti-
vated areas (Archidona-Yuste et al, 2016, 2019;
Gutiérrez-Gutiérrez et al., 2016, 2020; Cai et al, 2020a, b;
Clavero-Camacho et al, 2021a, b). This fact can be easily
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understood from the consideration that the larger nematodes (i.e.
Longidorus spp.) seem to be mainly affected by the short-term
consequences of the establishment of agricultural systems
(Archidona-Yuste et al., 2021). Notably, the description of this
new species increases the data on the biodiversity of the genus
Longidorus in the Euro-Mediterranean region (Navas et al., 1993).

Again, ribosomal and mitochondrial markers (D2-D3 expan-
sion domains of the 28S, ITS rDNA, and the mtDNA gene coxI)
are important tools for accurate identification of Longidorus and
remain essential for accurate diagnosis of needle nematodes
(Archidona-Yuste et al, 2019; Cai et al, 2020a, b; Clavero-
Camacho et al,, 2021a, b). However, the low nucleotide variability
found in partial 185 rRNA makes it difficult to identify indivi-
duals to the species level. Phylogenetic analyses based on riboso-
mal genes resulted in a consensus of species’ phylogenetic
positions for the majority of species and this was congruent
with those given by previous phylogenetic analyses (Peneva
et al, 2013; Subbotin et al, 2014; Trisciuzzi et al, 2015;
Archidona-Yuste et al., 2019; Amrei et al., 2020; Cai et al,
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2020a, b; Clavero-Camacho et al., 2021a, b). In particular, in all
three ribosomal genes trees, L. maginicus n. sp. clustered with
all the morphologically related species, including L. carpetanensis,
L. pini and L. bordonensis (figs 5-7). The close phylogenetic rela-
tionships of species of Longidorus have been already documented
(Gharibzadeh et al, 2018). However, the resolution of the phylo-
genetic relationship for this genus with coxI was very low due to
polytomy (fig. 8), probably because mtDNA evolves faster than
ribosomal DNA and also by the relatively shorter size of the
region sequenced (Lazarova et al, 2006; Kumari et al., 2010;
Palomares-Rius et al, 2017). However, coxI is an excellent
molecular marker for species separation and identification
(Gutiérrez-Gutiérrez et al, 2012; Cai et al, 2020a
Clavero-Camacho et al., 2021a, b).

A brief review of the available literature shows that nematolo-
gical efforts during the last decades on longidorid species in
southern Spain have been higher than those in other parts of
our country; however, the current distribution of the genus
Longidorus in Spain suggests that this part of the country can
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be considered as a potential hotspot of biodiversity. Nevertheless,
further research is needed to definitely confirm this hypothesis.

In summary, the present study confirms the usefulness of
application of an integrative approach based on the combination
of morphometric and morphological traits and genotyping rRNA
and mtDNA markers for correct species discriminating among
Longidorus species, and suggesting the need for continuing nema-
tode surveys in natural environments in order to complete the
unexplored biodiversity of this genus in this region and all over
the world.
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