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Roll waves on laminar sheet flow of Newtonian
fluid with negligible surface tension

Boyuan Yu1 and Vincent H. Chu1,†
1Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, QC H3A 0C3,
Canada

(Received 12 April 2024; revised 10 August 2024; accepted 10 September 2024)

We conduct direct numerical simulations (DNS) to study the temporal and spatial
developments of the roll waves on a laminar sheet flow of Newtonian fluid. The DNS unveil
the physics of the wavefront and show the limitation of the widely used shallow-layer
approximations. The most prominent wave, the front runner, is determined by the
DNS for the first time in studying the spatial development of the laminar sheet flow
with negligible surface tension. Depending on the Froude and Reynolds numbers, the
front runner can be a multi-peaked undular bore or a single-peaked non-breaking or
breaking wave. The simulation has uncovered an extended region behind the wavefront,
where the bed-friction stress is much higher than the corresponding friction in the
undisturbed uniform flow. It also produces an uplift velocity needed in the description
of wave breaking. For comparison, we also examine the nonlinear development of the
instability using two-equation and four-equation shallow-layer models. The two-equation
shallow-layer model has produced the bulk of the wave profile but is deficient because
it fails to predict the uplift velocity and the substantial increase in bed friction in the
frontal region. The four-equation shallow-layer model correctly predicts the bed friction
but cannot produce the breaking wave. The simulations also determine the celerity and
amplitude of the front runner to follow a linear relationship, qualitatively similar to the
roll waves in a turbulent flow.

Key words: shallow water flows, nonlinear instability, channel flow

1. Introduction

Roll waves exist in thin films of millimetre thickness and at depths of many metres in
landslide mudflows and volcanic lava flows. This paper focuses on the large-scale roll wave
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instability affected mainly by inertia and gravity. We conduct direct numerical simulations
(DNS) in this paper, solving the full Navier–Stokes equations for the nonlinear instability
of the sheet flow of Newtonian fluid where the surface tension is negligible.

The aim of the present investigation differs from previous studies conducted for roll
waves on film with a small thickness in the millimetre range affected mainly by surface
tension. A teardrop smooth hump with short-wavelength capillary bow waves in front of
the hump are characteristics of roll waves dominated by surface tension and viscosity
(Kapitza 1948; Julien & Hartley 1986; Liu, Paul & Gollub 1993; Alekseenko, Nakoryakov
& Pokusaev 1994; Liu & Gollub 1994; Nosoko et al. 1996; Ramaswamy, Chippada & Joo
1996; Malamataris, Vlachogiannis & Bontozoglou 2002; Gao, Morley & Dhir 2003; Park
& Nosoko 2003).

On the other hand, gravity and inertia are the dominant influences in mudflow and
debris-flow avalanches. Hungr, Morgan & Kellerhals (1984) and Hungr (1988) found
debris flow at 1–5 metre depths in western Canada and Japan to be laminar, with apparent
viscosity approximately 3 × 106 times that of water. Hunt (1994) analysed field and
laboratory data, and concluded that the debris flows are Newtonian fluid flow in the
laminar regime.

Giordano, Russell & Dingwell (2008), Hui & Zhang (2007), Giordano & Dingwell
(2003) and Giordano et al. (2006) modelled volcanic magma and lava also as viscous
Newtonian fluids. Giordano et al. (2008) stated that the viscosity of natural silicate
magmas generally spans from 10−1 to 1014 Pa s, depending on the melt temperature and
composition. The wave phenomena, such as regular hydraulic jump, undulating hydraulic
jump, oblique hydraulic jump and standing waves, were observed in channelized lava flows
during natural volcanic events (Finch & Macdonald 1955; Takahashi & Griggs 1987; Wolfe
et al. 1988; Heslop et al. 1989). Appendix A shows how and why debris torrents and
volcanic magma can be modelled as laminar sheet flows with negligible surface tension.

Shkadov (1967) examined the laminar flow instability using a depth-averaged model
including the surface tension. Ng & Mei (1994) formulated the theory of mudflow
instability by extending Shkadov’s model to power-law fluids, and found a ‘permanent
roll waves’ solution between discontinuities using their shallow-layer formulation.

Other studies of roll waves were devoted to turbulent flow with quadratic friction
(Jeffreys 1925; Dressler 1949; Brock 1967; Zanuttigh & Lamberti 2002; Balmforth &
Mandre 2004; Que & Xu 2006; Richard & Gavrilyuk 2012; Ivanova et al. 2017; Yu &
Chu 2022, 2023). Jeffreys (1925) analysed the linear stability of turbulent sheet flow
using a shallow-layer model, and found the critical Froude number Fr = 2 – a critical
Froude number very different from the value Fr = 0.527 obtained by Yih (1955, 1963)
and Benjamin (1957) for laminar sheet flow. The hyperbolic equations of the shallow-layer
model for the turbulent flow also produce solutions with mathematical discontinuities.
Dressler (1949) found the ‘permanent roll waves’ by matching the smooth profiles between
discontinuities. Richard & Gavrilyuk (2012) and Richard (2024) proposed supplemental
energy and enstrophy equations in modelling the front of roll waves in turbulent flow, and
found improved agreement with laboratory observation of the roll waves by Brock (1967).

One focus of the present study of the roll waves in the laminar sheet flow is the physics in
a region immediately behind the wavefront. The other focus is examining the relationship
between temporal and spatial instability. The temporal instability depends on a fixed
wavelength specification. In spatial instability development, the prominent wave emerges
as a front runner, which advances with increasing wavelength, wave amplitude and celerity.
Yu & Chu (2022, 2023) studied these problems in turbulent flow. This paper is about
laminar flow of Newtonian fluid with negligible surface tension. In the DNS, we solve
the Navier–Stokes equations using the volume of fluid (VOF) method. For comparison,
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Roll waves on laminar sheet flow of Newtonian fluid

we also conduct the simulation using the two-equation shallow-layer simulations (SLS)
model of Ng & Mei (1994) and the four-equation shallow-layer weighted residual integral
boundary layer (WRIBL) model of Ruyer-Quil & Manneville (2000).

This paper has seven sections and four appendices, including this Introduction. Section 2
describes the formulation for DNS, the two-equation SLS model and the four-equation
shallow-layer WRIBL model. Section 3 reviews the existing linear instability theories.
Section 4 presents the simulations of the roll waves developed from temporal instability of
a specified wavelength using a periodic boundary condition. The difference between the
DNS and SLS is presented in this section using the analytical solution of Ng & Mei (1994)
as a reference. Section 5 presents the spatial development of the roll waves. In this section,
we determine the dependence of the celerity on the roll wave’s amplitude. Section 6
examines a more accurate but still inadequate shallow-layer WRIBL model. Section 7
further explains the roll wave’s spatial development versus its temporal development,
and discusses the limitations of the two-equation and four-equation shallow-layer models.
Appendix A explains why surface tension is negligible in geophysical debris and lava
flows. Appendix B describes the adaptive quadtree mesh used in the DNS, and its
refinement for numerical accuracy. Appendix C provides the computation details of
the four-equation shallow-layer model. Appendix D evaluates the computation resources
requirement for DNS compared with two-equation and four-equation shallow-layer
approximations.

2. Formulation and numerical methods

We conduct DNS of the roll wave instability by solving the full Navier–Stokes equations
using a two-phase VOF solver. The simulation starts from the initial instability of the
sheet flow to the full nonlinear development of the roll waves. For comparison, we
also conduct simulation using a two-equation SLS model of Ng & Mei (1994) and a
four-equation WRIBL model by Ruyer-Quil & Manneville (2000). Figure 1 shows two
roll wave instability problems examined in this paper. Figure 1(a) shows the temporal
development of the roll waves produced by a periodic disturbance. Figure 1(b) shows the
spatial development of the roll waves produced by a localized disturbance.

2.1. Two-dimensional DNS
The governing equations for the DNS are

∂ui

∂xi
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ ρgi, (2.2)

∂α

∂t
+ ui

∂α

∂xi
= 0, (2.3)

where the i and j subscripts follow Einstein’s summation convention, ui is the velocity
vector in the xi-direction, and gi is the gravity component in the xi-direction. The deviatoric
stress tensor is related to the strain-rate tensor as follows:

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.4)

where μ is the dynamic viscosity. For a two-dimensional simulation of the flow down an
incline shown in figure 1, the components of the velocity vector are ui = (u, w), and the
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Figure 1. (a) Periodic wave trains fully developed nonlinearly from temporal instability on an incline of angle
θ relative to the horizontal. (b) Wave packet characterized by the front runner (FR) developed from spatial
instability. The dashed lines show the perturbation to the initial steady and uniform flow, which has depth H and
average depth velocity U. The four identical waves of wavelength λ in (a) are initiated by periodic disturbance
simulated using the periodic boundary conditions. On the other hand, the ‘wave packet’ and the front runner
in (b) are developed from a localized disturbance near the inlet. The colour map shows the magnitude of the
velocity

√
u2 + w2/U, where (u, w) are velocity components in the x- and z-directions, respectively.

components of gravity are gi = g(sin θ, cos θ) in the x- and z-directions, respectively. The
volume fraction of the liquid α, varying from 0 to 1, determines the volumetric average of
density and viscosity as follows:

ρ = αρf + (1 − α)ρa, (2.5)

μ =
[

α

μf
+ 1 − α

μa

]−1

, (2.6)

where the subscripts f and a refer to the liquid and air phases, respectively. Tryggvason,
Scardovelli & Zaleski (2011) recommended the harmonic average as specified by (2.6) for
large viscosity ratios. The piecewise linear interface calculation geometric VOF solver in
the Basilisk platform (Popinet 2009; Popinet & Collaborators 2013–2024) determines the
location of the air–liquid interface. The VOF scheme is momentum-conserving, enabling
the momentum flux to be advected consistently with the mass flux (Fuster & Popinet 2018;
Zhang, Popinet & Ling 2020), thus improving the computational robustness for cases with
large density and viscosity ratios. The DNS are conducted using an adaptive quadtree
mesh. The refined mesh has maintained within a less than 1 % computational error before
wave breaking, according to the mesh refinement study in Appendix B. The accuracy of
the simulation is not determined when the wave breaks randomly, entrapping air below the
waves.

2.2. Two-equation SLS model
The two equations for the SLS are

∂h
∂t

+ ∂ ūh
∂x

= 0, (2.7)

∂ ūh
∂t

+
∂

(
6
5 ū2h + 1

2 g′h2
)

∂x
= g′hSo − 3

μ

ρf

ū
h
, (2.8)
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Roll waves on laminar sheet flow of Newtonian fluid

where g′ = g cos θ is the reduced gravity on the slope, and So = tan θ is the channel slope.
The formulation for the two-equation SLS model assumes hydrostatic pressure distribution
and self-similar parabolic velocity profiles:

u(z) = 3
2

[
1 −

(
1 − z

h

)2
]

ū, (2.9)

where ū = (1/h)
∫ h

0 u(z) dz is the depth-averaged velocity. Ng & Mei (1994) developed the
two-equation SLS model for power-law fluid to study landslide mudflow. The power-law
index n = 1 reduces the model to Newtonian laminar flow. Equations (2.7) and (2.8) form
a hyperbolic equation set. They lead to mathematical discontinuities. The ‘permanent roll
wave’ solution of Ng & Mei (1994) comprises the smooth-wave profiles connecting the
discontinuities.

We conduct the SLS solving (2.7) and (2.8) on the Basilisk platform. The
central-upwind scheme by Kurganov & Levy (2002) is used for spatial discretization.
The method by Kurganov & Lin (2007) is adopted to reduce the numerical dissipation.
The generalized MINMOD TVD limiter is employed for proper shock capturing,
avoiding spurious numerical oscillation. The time integration scheme is a second-order
predictor–corrector scheme. The details of the solver are elaborated in Popinet (2011).

The two-equation SLS model is one-dimensional, involving only the ū velocity
component. But the sheet flow can have u and w velocity components. Once disturbed,
the pressure variation over the depth of the flow will no longer be hydrostatic, and velocity
variation will not be parabolic in the region behind the wavefront.

2.3. Four-equation WRIBL model
More accurate one-dimensional shallow-layer models exist to account for the deviation of
the velocity profile from the parabolic profile. One such model is the WRIBL model by
Ruyer-Quil & Manneville (2000). The model involves four equations, solving for depth
h, flow rate q = ūh, and two variables s1 and s2 introduced to account for deviation
from the parabolic velocity profile. We conduct the WRIBL model simulation to compare
with our DNS of roll waves using the open-source code WaveMaker by Rohlfs, Rietz
& Scheid (2018). The governing equations for the full second-order WRIBL model are
complicated, involving lengthy equations with terms of up to third-order derivatives, and
are not reproduced here. Interested readers could refer to (11), (38), (39) and (40) in
Ruyer-Quil & Manneville (2000).

Ruyer-Quil & Manneville (2002) performed linear stability analysis and numerical
simulation of thin film dominated by surface tension, and found good agreement of the
WRIBL model with experiment, analytical solution and DNS up to Re = 200. However, to
our knowledge, the WRIBL model has not been employed to study the sheet flow without
surface tension.

2.4. The compatibility condition for steady and uniform undisturbed flow
The numerical simulation for the instability starts with an undisturbed sheet flow, which
must be steady and uniform with a parabolic velocity profile given by (2.9). The depth and
depth-averaged velocity of the undisturbed flow are H and U, respectively. The balance
of the gravity driving force and the bed friction in the steady and uniform flow gives the
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relation

U = 1
3

[
ρg sin θ

μ
H2

]
, (2.10)

which in dimensionless form is

Fr2 = 1
3 Re So, (2.11)

where Fr = U/
√

g′H is the Froude number, and Re = ρUH/μ is the Reynolds number.
Equation (2.11) is a condition to ensure a steady and uniform undisturbed flow. Meaningful
stability analysis must satisfy this compatibility condition. The result of DNS depends on
any two of the three dimensionless parameters Fr, Re and So. However, the result of SLS
depends only on Fr (Ng & Mei 1994).

3. Linear instability theories

The instability of laminar sheet flow has been the subject of many studies. We summarize
the neutral stability boundaries obtained from various approximations for their dependence
on the Froude and Reynolds numbers, ignoring the surface tension effect.

3.1. The first-order long-wavelength approximation
Yih (1955, 1963) and Benjamin (1957) analysed the linear instability of the sheet flow
using a long-wavelength approximation of the Orr–Sommerfeld equations, and found that
the Froude number needs to be smaller than the critical value Fr = √

5/18 ≈ 0.527 as a
requirement for stability of the laminar flow. Ng & Mei (1994) found the critical Froude
number to be Fr = √

1/3 ≈ 0.577 using the two-equation shallow-layer model. The thick
blue dashed line and blue dotted lines in figure 2 delineate the neutral stability boundaries
of Fr = 0.527 and 0.577, respectively.

The stability analysis of Yih (1955, 1963) and Benjamin (1957), and the two-equation
model of Ng & Mei (1994), were both first-order approximations in long-wavelength
perturbation expansions. The neutral stability boundaries obtained from these first-order
approximations depend only on the Froude number. However, the critical Froude number
0.577 obtained by the two-equation model is slightly greater than the correct value 0.527
because of the two-equation model assumption of hydrostatic pressure and unchanged
parabolic velocity distribution over the depth of the laminar flow.

3.2. Higher-order long-wavelength approximation
Subsequent stability analyses by Chang & Demekhin (2002), Lee & Mei (1996) and
Ruyer-Quil & Manneville (2002) to higher orders of approximation have shown that
stability also depends on the Reynolds number and the wavelength of the perturbation.

The neutral stability condition derived from the long-wavelength expansion of the
Orr–Sommerfeld equation by Chang & Demekhin (2002) is

4 Re

√
9009(−5 + 18 Fr2)

(
Soλ

H

)2

+ 5π2 = 9π
√

1 107 249 Fr2. (3.1)
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Figure 2. The dependence of the neutral stability boundaries on Froude number and Reynolds number
expressed in brown, green and purple colour according to (a) Chang & Demekhin (2002), (b) Lee & Mei
(1996) and (c) Ruyer-Quil & Manneville (2002), respectively. The thick curve is for the perturbation wavelength
Soλ/H = 4.72, while the thin curve is for a much shorter wavelength, Soλ/H = 0.472. The thick blue dashed
line is the neutral stability boundary obtained by Yih (1955, 1963), Benjamin (1957) and Ruyer-Quil &
Manneville (2002). The blue dotted line is the neutral stability boundary according to the two-equation
shallow-layer model of Ng & Mei (1994). The thin grey dotted lines are the relation between Fr and Re for
a given So, according to the compatibility condition (2.11). The black open squares, red open circles and red
solid circles denote the stable flows, non-breaking roll waves and breaking roll waves obtained from DNS for
wavelength Soλ/H = 4.72.

Lee & Mei (1996) captured the non-hydrostatic effect in their shallow-layer formulation,
and obtained the following neutral stability condition:

Re

√
(−1 + 3 Fr2)

(
Soλ

H

)2

= 6π

√
14
5

Fr2. (3.2)

The neutral stability condition by the simplified second-order WRIBL model of
Ruyer-Quil & Manneville (2002) is

Re
(

Soλ

H

)
= 6π

√
3
35

Fr2

√
−3 Fr2 + 5

√
333 Fr2 + 1470 Fr + 105
18 Fr2 − 5

. (3.3)

Equations (3.1), (3.2) and (3.3) are different in form from the original neutral stability
conditions given in Chang & Demekhin (2002), Lee & Mei (1996) and Ruyer-Quil &
Manneville (2002). We eliminated the dependence of the original stability conditions on
So using compatibility condition (2.11).

Figure 2 shows the neutral stability boundaries on the Fr–Re plane. The grey dotted
lines show the channel slope So that satisfies the compatibility condition. The brown,
green and purple colour lines in figures 2(a–c) represent (3.1), (3.2) and (3.3), respectively.
The neutral stability condition depends on the wavelength of the perturbation. The thick
and thin lines in the figure are neutral stability boundaries for the wavelength parameter
Soλ/H = 4.72 and 0.472, respectively. The selected wavelength Soλ/H = 4.72 represents
those roll waves observed in the laboratory by Julien & Hartley (1986). On the other hand,
the wavelength Soλ/H = 0.472 represents the much shorter wavelength cases, with greater
dependency on the wavelength and Reynolds number effects.
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3.3. Stability dependence on wavelength and Reynolds number
The higher-order approximations have led to the roll wave instability dependence on the
wavelength parameter Soλ/H and the Reynolds number Re. As shown by the thick and
thin curves in figure 2 of the neutral stability boundaries for the perturbation wavelengths
Soλ/H = 4.72 and 0.472, the critical Reynolds numbers are approximately Rec ≈ 4.50
and 45.0, respectively. Therefore, the laminar sheet flow with a small Reynolds number
Re < 4.50 would be stable to perturbation wavelengths shorter than Soλ/H = 4.72; even
the Froude number is greater than the critical value 0.527 determined by the first-order
approximation.

The laminar sheet flow is more unstable when perturbed by the longer wavelength of
Soλ/H = 4.72. The stability of the sheet flow depends only on the Froude number in the
limiting case when the perturbation wavelength is infinitely long.

4. Temporal development of periodic roll waves

The hydrodynamic stability of sheet flow has been examined using linear and nonlinear
theories. Assuming periodic disturbance, the eigenvalues of the linearized system of
equations determine the initial exponential growth rate. The growth rate diminishes with
the increase in the waves’ amplitude due to the nonlinear effect. The waves become fully
developed, in equilibrium with the nonlinear effect, as the growth diminishes to zero.

4.1. The DNS for roll waves with Soλ/H = 4.72
We conduct the DNS from the initial instability to the fully developed nonlinear roll
waves, then compare the results with the permanent roll waves of Ng & Mei (1994).
The simulation starts with a wavelength Soλ/H = 4.72 perturbation to find the fully
developed nonlinear waves when the growth rate diminishes to zero. Figure 3 shows the
DNS compared with the SLS. The blue dashed lines in the figure outline the wave profiles
obtained by SLS. The horizontal thin lines are the crest and trough of the permanent roll
wave solution by Ng & Mei (1994).

4.1.1. Stable cases
The temporal development of the waves depends on the wavelength parameter and the
Reynolds number Re = ρUH/μ and the Froude number Fr = U/

√
g′H of the base flow.

The DNS amplitude diminishes to zero for the two cases with (Fr, Re) = (0.840, 4.23)

and (1.10, 4.85). These two cases, denoted by the black open square symbols in the
stability diagram figure 2, are on the stable side of the neutral stability boundary with
Soλ/H = 4.72. Therefore, the diminishing DNS amplitude for these two cases agrees with
the stability theories by Chang & Demekhin (2002), Lee & Mei (1996) and Ruyer-Quil &
Manneville (2002).

4.1.2. Unstable cases a, b, c, d, e, f and g
We also conduct DNS for cases on the unstable side of the neutral stability boundaries
with Soλ/H = 4.72. The Reynolds number and Froude number of these unstable cases
labelled as a, b, c, d, e, f and g in figure 2 are (Fr, Re) = (0.840, 5.88), (1.10, 7.26),
(0.840, 70.6), (0.600, 72.0), (0.840, 141), (1.14, 260) and (1.40, 392), respectively. The
perturbation amplitude of these unstable periodic disturbances increases with time and
eventually approaches a fully nonlinear quasi-steady state when growth diminishes to zero.
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Figure 3. The periodic roll waves in a quasi-steady state developed from temporal instability. The colour
maps show the velocity contours of the roll waves obtained from DNS. The blue dashed lines outline the
wave profiles obtained by SLS. The horizontal thin lines are the crest and trough of the permanent roll wave
solution by Ng & Mei (1994). The iso-lines for the w velocity component, denoted by the green curves on
the right-hand side of the figure, show the significant uplifting velocity at the wavefront. Settings are (a i,ii)
Fr = 0.840, Re = 5.88, So = 0.360; (b i,ii) Fr = 1.10, Re = 7.26, So = 0.500; (c i,ii) Fr = 0.840, Re = 70.6,
So = 0.0300; (d i,ii) Fr = 0.600, Re = 72.0, So = 0.0150; (e i,ii) Fr = 0.840, Re = 141, So = 0.0150; ( f i,ii)
Fr = 1.14, Re = 260, So = 0.0150; (g i,ii) Fr = 1.40, Re = 392, So = 0.0150.
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Figure 3 shows these fully nonlinear roll wave profiles in their quasi-steady state. The plots
on the left-hand side of the figure show the roll waves over the entire wavelength from
Sox/H = 0 to 4.72. The right-hand plots show the close-up views of the wavefronts in
undistorted scales.

The wavefront in the left-hand plots of figure 3, expressed in terms of the compressed
coordinate Sox/H, appears like a discontinuity, the amplitude of which closely agrees with
the permanent roll wave solution of Ng & Mei (1994). However, in the close-up undistorted
scales in the right-hand plots, the wavefront is either a multi-peaked undular bore or a
single-peaked non-breaking or breaking wave.

4.2. The SLS and permanent roll waves
We also conducted the SLS to compare them with the DNS. The SLS profiles obtained
from the hyperbolic model equations (2.7) and (2.8) shown as dashed lines in figure 3 are
infinitely steep at the wavefront. The amplitudes of the wavefronts obtained by the SLS
are in perfect agreement with the ‘permanent roll wave’ solution of Ng & Mei (1994)
delimited between the blue horizontal thin lines in the figure.

On the other hand, the SLS for this case a, however, has produced a wave profile
delineated by the blue dashed line, with depth ĥSLS = 1.29 at the wave crest, and depth
ȟSLS = 0.824 at the wave trough, which are in perfect agreement with the permanent
roll wave solution of Ng & Mei (1994) delimited between the blue horizontal thin lines,
because the Froude number Fr = 0.840 in this case is greater than the critical value 0.577
according to the one-dimensional two-equation model of Ng & Mei (1994).

4.3. Smooth wavefronts and undular bore for marginally unstable cases a, b and d
The difference between the DNS and SLS profiles occurs mainly at the wavefront, where
the long wavelength approximation breaks down. The wavefront is smooth and gradually
varying for the marginally unstable cases a and b, where the Reynolds number is slightly
greater than the critical value, which is slightly above the neutral stability boundaries
as shown in figure 2. Figures 3(a) and 3(b) show the smooth wavefronts with the roll
wavefront amplitude slightly smaller than in the SLS model.

The other significant difference between the DNS and SLS is the profile for the
marginally unstable case d. The Froude number of this case is Fr = 0.600, which is higher
but very close to the critical value Frc = 0.527. However, the Reynolds number for this
case, Re = 72, is quite large. The profile behind the wavefront in this marginally unstable
case, with a large Reynolds number, is the in the multi-peaked undular bore profile as
shown in figure 2(d).

4.4. Breaking wavefront for unstable cases c, e, f, and g
The sheet flows in cases d, e, f and g are on the same slope So = 0.0150. The frontal
region of case d is a multi-peaked undular bore. As the Froude number increases from
Fr = 0.600 to 0.840, 1.14 and 1.40, away from the critical value 0.527, the wavefronts in
cases c, e, f and g become progressively more chaotic, as shown in figures 2(c) and 2(e–g).
We identify the smooth waves using open circle symbols, and breaking waves using solid
circle symbols, in figure 2.

The breaking wavefront shows the entrainment of air bubbles. The process of air
entrapment is chaotic. The present level of mesh refinement predicts the initiation of
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Roll waves on laminar sheet flow of Newtonian fluid

breaking and the bulk of the roll wave but may not correctly simulate the detailed chaotic
process of air entrapment.

4.5. The perturbation wavelength associated with the temporal analysis
The simulation cases from a to g presented in figure 3 are for a specified perturbation
wavelength parameter Soλ/H = 4.72. The results would be different, and the neutral
stability boundary would be the thin curves in figure 2, if we had selected a much shorter
wavelength Soλ/H = 0.472. Cases a and b would become stable, and cases c and d become
marginally unstable because cases a and b would be on the stable side of the neutrally
stable boundaries for Soλ/H = 0.472, which are the thin curves in figure 2.

On the other hand, if the perturbation wavelength is infinitely long, then the stability of
laminar sheet flow would depend only on the critical Froude number. The flow will become
unstable due to the disturbance of infinitely long wavelength as long as the Froude number
exceeds the critical value Frc = 0.527 – unaffected by the Reynolds number.

5. Spatial development of the front runner produced by localized disturbances

The classical hydrodynamic stability theory derived from the normal-mode approach
assumes periodic disturbance, which leads to periodic roll waves, whose amplitudes are
not determined until the wavelength is specified. The permanent roll waves by Ng & Mei
(1994) also depend on the wavelength.

To overcome this difficulty of indeterminacy, Yu & Chu (2022, 2023) studied the spatial
development of roll waves produced by a localized disturbance, focusing on the dominant
leading waves – the front runner. The works of Yu and Chu were for the turbulent flow of
clear waters.

We conduct DNS for the spatial development of the roll waves on the laminar sheet flow,
initiated by localized disturbance at the inlet, then follow the growth of the disturbance for
a series of unstable sheet flows of undisturbed Froude number Fr = 0.70, 0.84 and 1.00.
The corresponding undisturbed flow Reynolds numbers of these unstable sheet flows are
Re = 98.0, 35.3 and 50.0, and the channel slopes are So = 0.015, 0.06, 0.06, respectively.
The Froude number Fr, the Reynolds number Re, and the channel slope So are selected for
the simulation to satisfy the compatibility equation (2.11) so that gravity is in balance with
the bed friction stress in the undisturbed base flow, which is steady and uniform flow.

The most prominent roll wave in spatial development is the front runner, which leads
the waves in the packet developed from instability. Yu & Chu (2022) studied the front
runner in turbulent sheet flow. The front runner in a wave packet was also observed in a
mudflow simulation by Liu & Mei (1994) and by Meza & Balakotaiah (2008), who studied
the nonlinear waves on vertically falling films dominated by viscosity and surface tension.
Meza & Balakotaiah (2008) used the word ‘tsunami’ in exaggeration to describe the front
runner in their study of the falling film.

Figures 4, 5, 6 and 7 show the development of the front runner. The depth hFR(DNS) and
the depth-averaged velocity ūFR(DNS) of the front runner obtained from DNS are compared
with the corresponding results hFR(SLS) and ūFR(SLS) obtained from SLS in a table at the
bottom of each figure. On the left-hand sides of the figures, the depth and velocity profiles
are on the compressed coordinate Sox/H. The right-hand sides show the close-up profiles
of the front runner on the undistorted scales.

The front runner development is not dependent on the form of the inlet disturbance. Yu
& Chu (2022) examine the instability due to six types of localized disturbances. For the
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Figure 4. The development of the front runner produced by a localized disturbance at the inlet on an unstable
sheet flow with Fr = 0.560, Re = 15.7 and So = 0.060. The colour maps show the DNS results, while the
blue dashed lines denote the free-surface profiles obtained by the SLS. The green curves are iso-lines for
the w velocity component. Here: (a i,ii) SotDNSU/H = 4.25, SotSLSU/H = 3.94; (b i,ii) SotDNSU/H = 8.50,
SotSLSU/H = 8.02; (c i,ii) SotDNSU/H = 12.8, SotSLSU/H = 12.2; (d i,ii) SotDNSU/H = 17.0, SotSLSU/H =
16.4; (e i,ii) SotDNSU/H = 21.3, SotSLSU/H = 20.6.

present simulation, the disturbance is ‘type c of constant Fr’, which, according to Yu &
Chu (2022), is a small rise in depth in the form of a half-sinusoid, and at the same time a
slight increase in velocity to keep the disturbance Froude number Fr unchanged.
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Figure 5. The development of the front runner produced by a localized disturbance at the inlet on an unstable
sheet flow with Fr = 0.700, Re = 98.0 and So = 0.0150. The colour maps show the DNS results, while the
blue dashed lines denote the free-surface profiles obtained by the SLS. The green curves are iso-lines for
the w velocity component. Here: (a i,ii) SotDNSU/H = 2.00, SotSLSU/H = 1.87; (b i,ii) SotDNSU/H = 4.00,
SotSLSU/H = 3.77; (c i,ii) SotDNSU/H = 6.00, SotSLSU/H = 5.68; (d i,ii) SotDNSU/H = 8.00, SotSLSU/H =
7.61; (e i,ii) SotDNSU/H = 10.0, SotSLSU/H = 9.54.

To reproduce the wave packet from the instability, we introduced a localized perturbation
to the uniform flow. The depth-averaged initial perturbation at t = 0 is

h(x, t = 0) =

⎧⎪⎪⎨⎪⎪⎩
H

[
1 + ε sin

(
2πx
�

)]
for 0 < x ≤ �

2
,

H for x >
�

2
,

(5.1a)
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Figure 6. The development of the front runner produced by a localized disturbance at the inlet on an unstable
sheet flow with Fr = 0.840, Re = 35.3 and So = 0.0600. The colour maps show the DNS results, while the
blue dashed lines denote the free-surface profiles obtained by the SLS. The green curves are iso-lines for
the w velocity component. Here: (a i,ii) SotDNSU/H = 4.60, SotSLSU/H = 4.32; (b i,ii) SotDNSU/H = 9.20,
SotSLSU/H = 8.74; (c i,ii) SotDNSU/H = 13.8, SotSLSU/H = 13.2; (d i,ii) SotDNSU/H = 18.4, SotSLSU/H =
17.8; (e i,ii) SotDNSU/H = 23.0, SotSLSU/H = 22.3.

ū(x, t = 0) = Fr
√

g′[h(x, t = 0)]3. (5.1b)

The depth of the initial disturbance h(x, t = 0), is the upper half of a sinusoid of length
� raised to an amplitude ε over the extent 0 < x ≤ �/2, while ū is selected to keep the
Froude number of the disturbance equal to the Froude number of the undisturbed flow.
This initial perturbation defined by (5.1) is similar to the ‘type c disturbance of constant

999 A49-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.887


Roll waves on laminar sheet flow of Newtonian fluid

70.3

54.4

39.8

26.2

13.5

1.88

1.72

1.56

1.41

1.29

2.00

1.81

1.67

1.55

1.47

0

1

2

3

0

1

2

3

2010 40 5030 60 70 80

Sox/H

z/
H

x/H
11721170 1174 1176 11801178 1182

(i) (ii)

0

1

2

3

0

1

2

3

2010 40 5030 60 70 80

z/
H

904902 906 908 912910 914

(i) (ii)

0

1

2

0

0

1

2

3

2010 40 5030 60 70 80

z/
H

658656 660 662 666664

(i) (ii)
3

1

2

3

0

1

2

3

2010 40 5030 60 70 80

z/
H

432430 434 436 440438

(i) (ii)

0

1

2

3

0

1

2

3

2010 40 5030 60 70 80

z/
H

220218 222 224 228226

(i) (ii)

1.06

1.05
1.07

1.10
1.14

2.16

1.94

1.73

1.54

1.38

2.19

1.98

1.80

1.66

1.49

1.01

1.02

1.02

1.08

1.07

3.48

3.25

3.04

2.84

2.70

3.33

3.22

2.94

2.74
2.56

1.58

1.48

1.39

1.30

1.21

1.54

1.42

1.32

1.26

1.20

203

167

135

109

88.5

218

173

143

122

107

FrFR(SLS) ReFR(SLS)FrFR(DNS) ReFR(DNS)

(e)

( f )
SoxFR

H
hFR(SLS)

H
hFR(DNS)

H
hFR(DNS)

hFR(SLS)

uFR(SLS)

U
uFR(DNS)

U
uFR(DNS)

uFR(SLS)

c(SLS)

U
c(DNS)

U

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

�u2 + w2

U
�u2 + w2

U

Full view Close-up view

(a)

(b)

(c)

(d)

Figure 7. The development of the front runner produced by a localized disturbance at the inlet on an unstable
sheet flow with Fr = 1.00, Re = 50.0 and So = 0.0600. The colour maps show the DNS results, while the
blue dashed lines denote the free-surface profiles obtained by the SLS. The green curves are iso-lines for
the w velocity component. Here: (a i,ii) SotDNSU/H = 4.80, SotSLSU/H = 4.53; (b i,ii) SotDNSU/H = 9.60,
SotSLSU/H = 9.13; (c i,ii) SotDNSU/H = 14.4, SotSLSU/H = 13.8; (d i,ii) SotDNSU/H = 19.2, SotSLSU/H =
18.4; (e i,ii) SotDNSU/H = 24.0, SotSLSU/H = 23.2.

Fr’, which is one of the six inlet disturbances examined by Yu & Chu (2022) and Yu &
Chu (2023), who found that all six produced the same front runner.

For DNS, we assume parabolic variation of velocity over the depth. The initial profiles
for α, u and w are

α(x, z, t = 0) =
{

1 for 0 < z ≤ h(x, t = 0),

0 for z > h(x, t = 0),
(5.2a)
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u(x, z, t = 0) =

⎧⎪⎪⎨⎪⎪⎩
3
2

ū(x, t = 0)

[
1 −

(
1 − z

h(x, t = 0)

)2
]

for 0 < z ≤ h(x, t = 0),

3
2

ū(x, t = 0) for z > h(x, t = 0),

(5.2b)

w(x, z, t = 0) = 0. (5.2c)

The front runner is not sensitive to the amplitude and length of the initial inlet
disturbance, as demonstrated in the previous papers by Yu & Chu (2022, 2023). For the
simulations shown in figures 4, 5, 6 and 7, ε = 0.2 and So�/H = 2.

5.1. Profile of the front runner
Depending on the Froude and Reynolds numbers, the front runner can be a multi-peaked
undular bore or a single-peaked non-breaking or breaking wave. However, according to
the SLS model, the wavefront is nothing but a discontinuity.

The front runner for the case (Fr, Re) = (0.56, 15.7) shown in figure 4 has a smooth
wavefront. The case (Fr, Re) = (0.70, 98.0) shown in figure 5 has a smooth frontal region
in the form of an undular bore.

For the higher Froude number cases with (Fr, Re) = (0.84, 35.3) and (1.00, 50.0)

shown in figures 6 and 7, the steep wavefront eventually breaks, entrapping air in the
form of a plunging wave breaker. The process of breaking is somewhat chaotic. The
Reynolds number of the front runner is as large as ReFR(DNS) = ρhFRūFR/μ = 218 nearly
in the transition from laminar to turbulent flow in these high Froude number cases. The
laboratory observation of laminar falling films by Adomeit & Renz (2000) has found
isolated turbulent spots interacting with surface waves at Reynolds numbers varying from
75 to 200. The wave breaking and entrapment of air in the front runner are chaotic, as
shown in figures 6(e) and 7(e). Further mesh refinement would be required to resolve the
turbulent spots (if any) in our DNS.

The table at the bottom of each figure provides the critical data obtained from the
simulations. The front runner velocity obtained by DNS, uFR(DNS), is approximately 2 %
larger than the velocity uFR(SLS) obtained by SLS.

For the case shown in figure 6, the front runner Froude numbers are FrFR(DNS) =
ūFR/

√
g′hFR = 0.909, 1.04, 1.15, 1.32 and 1.54, and the front runner Reynolds numbers

are ReFR(DNS) = ρhFRūFR/μ = 64.0, 79.9, 95.5, 121 and 164, at front runner positions
SoxFR/H = 13.8, 26.8, 40.6, 55.3 and 71.7, respectively. A breaking wave is observed to
occur as the front runner advances to a position SoxFR/H = 40, beyond which the motion
progressively becomes chaotic.

For the case shown in figure 7, the front runner Froude numbers are FrFR(DNS) = 1.20,
1.26, 1.32, 1.42 and 1.54, and the front runner Reynolds numbers are ReFR(DNS) = 107,
122, 143, 173 and 218, at front runner positions SoxFR/H = 13.5, 26.2, 39.8, 54.4 and 70.3,
respectively. At position SoxFR/H = 70.3, the front runner Froude number in this case has
value FrFR(DNS) = 1.54, which is getting close to the critical Froude number Fr = 2.0 for
turbulent roll waves according to the stability analysis of Jeffreys (1925).
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Figure 8. The front runner’s depth hFR/H and its relation to the velocity ūFR/U for (a) Fr = 0.56 (Re = 15.7,
So = 0.060), (b) Fr = 0.70 (Re = 98.0, So = 0.015), (c) Fr = 0.84 (Re = 35.3, So = 0.060) and (d) Fr = 1.00
(Re = 50.0, So = 0.060).

5.2. The front runner’s depth and velocity
The velocity of the front runner ūFR/U increases with its depth hFR/U following closely a
linear relationship as shown in figure 8. The strong linear dependence of velocity on depth
is observed in debris flow, and it has been used by Hungr et al. (1984) and Wu et al. (1990)
to show debris flow to be in a laminar regime.

5.3. Front runner’s celerity–amplitude relationship
The celerity of the front runner depends on wave amplitude. Figure 9 shows the
celerity–amplitude relationship. We use the front runner’s depth-averaged speed ūFR/U
to represent its amplitude, and the celerity cFR/U is related to the front runner’s amplitude
ūFR/U. The DNS results all follow approximately a linear relationship denoted by the
dashed lines in the figure. The SLS produces slightly different trends. The front runner is
the most prominent wave because it advances faster than all trailing waves. It is destructive
because the wave advances at a celerity speed greater than the base flow.

The square symbol in the figure denotes the limiting condition when cFR = U + √
g′H

and ūFR/U = 1. The dashed line traces back to the square symbol. For Fr = 0.56,
0.70, 0.84 and 1.00, the slopes of the dashed lines are dcFR/dūFR = 1.10, 1.21,
1.18 and 1.15, which are nearly constant. The corresponding limiting conditions are
(cFR/U, ūFR/U) = (1 + Fr−1, 1) = (2.79, 1), (2.43, 1), (2.19, 1) and (2.00, 1).
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Figure 9. The front runner’s celerity cFR/U and its dependence on the speed of the front runner ūFR/U for (a)
Fr = 0.56 (Re = 15.7, So = 0.060), (b) Fr = 0.70 (Re = 98.0, So = 0.015), (c) Fr = 0.84 (Re = 35.3, So =
0.060) and (d) Fr = 1.00 (Re = 50.0, So = 0.060).

The dependence of celerity on amplitude explains the existence of the front runner. The
dominant wave with the most significant amplitude advances with the maximum celerity
among the waves, and emerges from the pack of waves as the front runner.

Yu & Chu (2022) found that the turbulent roll wave has similar celerity–amplitude
relations. Meza & Balakotaiah (2008) studied the dynamics of nonlinear large-amplitude
waves on vertically falling films for viscosity and surface tension effects. The
celerity–amplitude relationships of the vertical falling films also follow approximately
linear relationships, independent of the forcing frequency and amplitude of the disturbance
introduced at the inlet. The similarity in the production of waves due to nonlinear
instability between our laminar sheet flow, the turbulent sheet flow studied by Yu & Chu
(2022) and the vertical falling film problem by Meza & Balakotaiah (2008) is remarkable
– despite the difference in inertia, gravity, viscosity and surface tension effects between
these problems.

5.4. Bed friction and uplifting velocity at the wavefronts
The difference in results between DNS and SLS occurs mainly in the frontal region
of the roll wave where, strictly speaking, the long-wavelength approximation fails. One
parameter of significance is the bed friction τb = [μ(∂u/∂z)]|z=0. The other is the w
velocity component, which also is significant in the frontal region. The w velocity occurs
mainly near the free surface. Searching for the maximum w velocity over the depth gives
the ‘uplifting velocity’ ŵ. The significant increases in bed friction and uplifting velocity
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Figure 10. The bed-shear stress τb/τb profiles near the wavefronts for the simulation cases (a) Fr = 0.700,
Re = 98.0 (So = 0.0150), (b) Fr = 0.840, Re = 35.3 (So = 0.0600), (c) Fr = 1.00, Re = 50.0 (So = 0.0600)
shown in figures 5, 6 and 7, respectively. The blue solid lines and red dashed lines denote the DNS and SLS
results, respectively.

are also the characteristics of breaking shallow-water waves in a tank (Perlin, He & Bernal
1996; Mostert & Deike 2020; Liu et al. 2023).

Figure 10 shows the variation of the bed-friction shear stress τb relative to the
undisturbed τb, τb/τb, in the frontal region over a distance from (x − xFR)/H = −30 to 10.
The blue solid line in the figure shows the bed-friction shear stress obtained by DNS. The
red dashed line is the bed friction significantly underestimated by SLS. The SLS model
may produce a profile for the bulk body of the roll wave, but is inadequate in describing
the roll wave’s frontal region. The inability to predict bed-friction shear stress correctly is
due to the assumed self-similar parabolic velocity profile in formulating the SLS model.

The tables at the bottom of figure 10 provide the peak values of the bed friction obtained
from DNS and SLS. The DNS give the relative bed friction varying from τ̂b(DNS)/τb =
1.37 to 1.95. The substantial increase of bed friction in the frontal region suggests the
need for an accurate model to study soil erosion in debris flow and avalanche.

Figure 11 shows the uplifting velocity ŵ/U profile in the frontal region obtained from
DNS. The uplifting velocity rises sharply before the breaking of the waves. It then becomes
slightly chaotic with the air entrapment by the plunging breaker. The uplifting velocity can
be upwards (positive) or downwards (negative) after the breaking. The SLS model could
not predict the breaking of the wave without the w velocity component in the model.

999 A49-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.887


B. Yu and V.H. Chu

–30 –20 –10 0 10
–0.2

0

0.2

0.4

–30 –20 –10 0 10 –30 –20 –10 0 10

(x – xFR)/H (x – xFR)/H (x – xFR)/H

ŵ/
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ŵ/
U

–0.2

0

0.2

0.4

ŵ/
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Figure 11. The peak uplifting velocity ŵ/U profile near the wavefronts for the simulation cases (a) Fr = 0.700,
Re = 98.0 (So = 0.0150), (b) Fr = 0.840, Re = 35.3 (So = 0.0600), (c) Fr = 1.00, Re = 50.0 (So = 0.0600)
shown in figures 5, 6 and 7, respectively.

5.5. Length of the frontal region
The wavefront is a region of excessive bed-friction stress and uplifting velocity. The
profiles of τ

(DNS)
b /τb and ŵ/U denoted by the blue lines in figures 10 and 11 show

that the excessive bed friction and uplifting velocity occur over the length varying from
(x − xFR)/H ≈ −10 to 0. Therefore, the length of the frontal region is approximately 10H,
ten times the depth of the undisturbed flow.

5.6. Front runner velocity and pressure variation over the depth
The velocity variation over the depth in the frontal region is not precisely parabolic,
and the pressure is not hydrostatic. Figures 12(a)–12(c) show the velocity profiles, while
figures 12(d–f ) show the corresponding DNS pressure profiles at the front runner obtained
by the DNS. The dashed lines are the profiles of the undisturbed flow.

The front runner region’s DNS velocity deviates slightly from the parabolic profile given
by (2.9). The velocity gradient near the channel bed exceeds the undisturbed flow, leading
to higher bed-friction stress in the region near the wavefront.

The vertical pressure distribution obtained by DNS is approximately linear. However, the
value pFR/(rg′hFR) at the bottom is slightly smaller than unity, which reflects the effect of
the vertical uplift velocity and air entrapment at the wavefront of the front runner.

6. Four-equation WRIBL model

Ruyer-Quil & Manneville (2000) introduced an accurate four-equation WRIBL model.
We perform the WRIBL model simulation using the open-source code WaveMaker by
Rohlfs et al. (2018). The WRIBL model equations have many high-order derivative terms.
Therefore, the spectral method is used for spatial discretization to guarantee simulation
convergence, while a fifth-order Runge–Kutta adaptive scheme is used for time integration.
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Figure 12. The front runner velocity uFR/ūFR as a function of z/hFR, and front runner pressure pFR/(ρg′H)

as a function of z/hFR obtained by DNS. The dashed line delineates the reference profile of the undisturbed
flow. (a–c) The velocity profiles; (d–f ) the pressure profiles, for (a,d) Fr = 0.70, Re = 98, So = 0.015, (b,e)
Fr = 0.84, Re = 35, So = 0.060, and (c, f ) Fr = 1.0, Re = 50, So = 0.060.

Figures 13 and 14 show the close-up profiles near the wavefronts for the velocity
and bed-shear stress in the region near the wavefront, obtained by DNS, two-equation
SLS and four-equation WRIBL model simulation for the cases Fr = 0.600, Re = 72.0
(So = 0.0150) and Fr = 0.840, Re = 141 (So = 0.0150), respectively. The simulation was
conducted for the temporal development with a periodic boundary condition over one
wavelength Soλ/H = 4.72. Appendix C provides the profiles over the entire wavelength
obtained from the simulations.

Despite the improvement in predicting the bed-friction stress at the wavefront as shown
in figures 13( f ) and 14( f ), the four-equation WRIBL model still does not produce the
undular bores and wave breaking predicted by the DNS shown in figures 13(a) and 14(a),
respectively. The WRIBL model agrees better with DNS than with SLS. However, the
WRIBL simulation wavefront is too steep, unlike any profiles predicted by the DNS.

7. Summary and conclusion

We conduct numerical simulations (DNS) to study roll waves’ temporal and spatial
development on a laminar sheet flow with negligible surface tension. The DNS results
are compared with the two-equation shallow-layer simulation (SLS) and the four-equation
WRIBL model to determine the limitations of these approximation models.

The DNS for temporal development are to show consistency with existing theories of
roll waves with different orders of approximations. The existing linear stability theories
developed using the normal mode approach are for disturbance of a specified wavelength.
The ‘permanent roll wave’ solution obtained by Ng & Mei (1994) also depends on the
wavelength.
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Figure 13. The close-up profiles in the region near the wavefront obtained from (a,d) DNS, (b,e) full
second-order SLS, and (c, f ) WRIBL simulation, for Fr = 0.600, Re = 72.0 (So = 0.0150). (a–c) Velocity
contours; (d–f ) bed-friction stress profiles.

Roll waves’ spatial development is the primary focus of our DNS study. The spatial
development depends not on wavelength specification but on Froude number and distance
away from the localized disturbance. Our DNS form the first-ever study of the spatial
development of the roll waves on laminar sheet flow with negligible surface tension.
The front runner in the spatial development can be a multi-peaked undular bore or a
single-peaked non-breaking or breaking wave. The bed friction is significant in the frontal
region of the front runner. The frontal length with significant bed friction and uplifting
velocity is approximately ten times the undisturbed flow depth.

The two-equation SLS model has produced the bulk profile of roll waves with the least
computational cost among the three models. The model fails to predict the significant
increase in bed friction in the frontal region of the wave. It slightly underestimates the
roll wave amplitude and velocity compared with DNS. Much effort has been made to
improve the two-equation shallow-layer model. Ruyer-Quil & Manneville (2000) have
proposed a hierarchy of shallow-layer models with different degrees of simplification.
Their four-equation shallow-layer model can better predict the frontal region’s bed friction.
The two-equation SLS model by Ng & Mei (1994), and the four-equation WRIBL
model, are both one-dimensional models, solving the ū component of velocity. These
one-dimensional models, however accurate they may be, cannot produce the undular bore
or wave breaking phenomena correctly.
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Figure 14. The close-up profiles in the region near the wavefront obtained from (a,d) DNS, (b,e) two-equation
SLS, and (c, f ) the four-equation WRIBL model simulation, for Fr = 0.840, Re = 141 (So = 0.0150). (a–c)
Velocity contours; (d–f ) bed-friction stress profiles.

The present simulation of the laminar sheet flow ignores surface tension. The results are
therefore not comparable to small-scale laboratory experiments by Julien & Hartley (1986)
and Liu & Gollub (1994). However, surface tension should be negligible in large-scale
geophysical flow where gravity and inertia are the dominant influences. Hunt (1994), for
example, has suggested modelling debris flow using a Newtonian model of laminar sheet
flow. The modelling of mudflow with negligible surface tension, such as in the works of
Ng & Mei (1994), Liu & Mei (1994) and Balmforth & Liu (2004), are closely related to
the laminar sheet examined in this paper.

We found that the celerity of the roll waves in laminar sheet flow depends on the waves’
amplitude following a linear relationship. Yu & Chu (2022) found that the turbulent roll
wave has similar celerity–amplitude relations. Meza & Balakotaiah (2008) studied the
dynamics of nonlinear large-amplitude waves on vertically falling films for viscosity and
surface tension effects. The celerity–amplitude relationships of the vertical falling films
also follow linear relationships independent of the forcing frequency and amplitude of
the disturbance introduced at the inlet. The similarity in the production of waves due to
nonlinear instability between our laminar sheet flow, the turbulent sheet flow studied by
Yu & Chu (2022) and the vertical falling film problem by Meza & Balakotaiah (2008) is
remarkable – despite the difference in inertia, gravity, viscosity and surface tension effects
between these problems.
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The DNS require significant computation resources, as discussed in Appendix D. On
the other hand, the SLS are practical for some applications. The extension of the present
simulation study for Newtonian fluid flow to non-Newtonian mudflow is straightforward,
and it is our plan for a future investigation.
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Appendix A. Debris torrents modelled as laminar sheet flow

This appendix shows how and why debris torrents and volcanic magma have been
modelled as laminar sheet flows with negligible surface tension.

Analysing vast amounts of debris flow data collected in western Canada and Japan at
1 m to 5 m depths with velocity varying from 3 to 9 m s−1, Hungr (1988) determined the
apparent viscosity of the debris flows to be approximately 3 × 106 times that of water. Hunt
(1994) analysed the laboratory data, and concluded that debris flow is Newtonian fluid flow
in the laminar regime. Giordano et al. (2006, 2008), Hui & Zhang (2007) and Giordano
& Dingwell (2003) modelled volcanic magma and lava also as viscous Newtonian fluids.
Giordano et al. (2008) stated that the viscosity of natural silicate magmas generally spans
from 10−1 to 1014 Pa s, depending on the melt temperature and composition.

Table 1 lists the numerical values for steady uniform flow corresponding to typical
mudflow viscosity ν = 1 and 2 m2 s−1 estimated by Hungr (1988) and Hunt (1994). For
the range of Froude numbers from Fr = 0.56 to 1.00, the depths of the debris flow on
a slope So = 0.06 need to be varying from H = 4 to 10 m, with velocity in the range
from U = 4 to 10 m s−1, to balance the resistance force at the channel bed for flow with
large viscosity ν = 1 and 2 m2 s−1. The compatibility equation (2.11) relates the slope,
the Froude number and the Reynolds number. Taking the surface tension coefficient to be
0.072 N m−1, the Weber number We∗ in the table has a negligibly small value. Note that
the Weber number We∗, following the convention in the study of thin-film dynamics, is
defined as the ratio of surface tension to inertia effect (Chang 1994):

We∗ = σ

ρU2H
, (A1)

where σ is the surface tension coefficient and ρ is the density. The surface tension
for debris flow is likely of the same order as water. The surface tension of water is
0.072 N m−1 at room temperature. The surface tension coefficient of lava flow varies from
0.560 to 1.000 N m−1, according to Honda (2016).

It could be concluded from the numerical values of We∗ in table 1 that the surface
tension effect here is much weaker than that in the previous studies of thin films dominated
by large surface tension (Kapitza 1948; Liu et al. 1993; Park & Nosoko 2003), and the
surface tension effect could be negligible in large-scale geophysical flows.
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(a) ν = 1 m2 s−1.
Fr Re H (m) U (m s−1) We∗

0.56 15.0 4.24 3.53 9.05 × 10−7

0.70 24.5 5.00 4.90 2.18 × 10−7

0.84 35.2 5.64 6.24 2.18 × 10−7

1.00 50.0 6.34 7.88 1.22 × 10−7

(b) ν = 2 m2 s−1.
Fr Re H (m) U (m s−1) We∗
0.56 31.2 6.83 4.58 9.05 × 10−7

0.70 49.1 7.93 6.19 2.18 × 10−7

0.84 70.4 8.95 7.87 2.18 × 10−7

1.00 100 10.1 9.92 1.22 × 10−7

Table 1. Depth and velocity of the debris flow with kinematic viscosity ν = 1 and 2 m2 s−1 estimated by
Hungr (1988) and Hunt (1994). The slope is assumed to be So = 0.06, and the surface tension coefficient is the
same as the water–air coefficient 0.072 N m−1. The density of the debris flow is ρ = 1500 kg m−3.

Appendix B. Dynamic quadtree adaptive mesh and mesh refinement

In this appendix, we show the use of the dynamic quadtree adaptive mesh in the DNS
for periodic roll waves of wavelength Soλ/H = 4.72 with Fr = 0.650, So = 0.0600, Re =
21.1. Figure 15(a) shows the roll wave and the mesh at time SoUt/H = 40 when the waves
have reached the quasi-steady state. Figure 15(b) shows the approach of the roll wave depth
ĥrw/H to the quasi-steady depth ĥ/H at time SoUt/H = 40 obtained from the DNS using
four level of mesh refinements. The dynamic quadtree adaptive mesh has maximum mesh
size Δmax and minimum size Δmin.

The method of Stern et al. (2001) used three estimates (ĥk−1, ĥk, ĥk+1) for three levels
of mesh cell sizes to determine the true value by extrapolation using the formula

ĥ�x→0 = rP̂ĥk+1 − ĥk

rP̂ − 1
, (B1)

where r = �xk/�xk+1, and P̂ is the order of convergence determined by the formula

P̂ = 1
ln r

ln

[
ĥk − ĥk−1

ĥk+1 − ĥk

]
. (B2)

The true value ĥ�x→0 was determined by extrapolation using (B1) and (B2) to zero
mesh size. The error relative to this true value was |ĥk − ĥ�x→0|. In percentage, the peak
fractional error (F̂E) was

F̂E = |ĥk − ĥ�x→0|
ĥ�x→0

× 100. (B3)

We conducted a mesh refinement study following the method of Stern et al. (2001) to
estimate the accuracy of the simulation. Table 2 summarizes the key parameters of the
adaptive mesh and the mesh refinement calculation at four levels of refinements. The
numbers of computational cells over the length of the channel were Lx/Δmin = 1024,
2048, 4096 and 8192 in the simulations conducted for the grid-refinement study in
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Figure 15. The dynamic quadtree mesh and its refinement in the DNS of a periodic roll wave with the
undisturbed flow Froude number Fr = 0.650 and Reynolds number Re = 21.1 (So = 0.0600). The wavelength
is Soλ/H = 4.72. (a) The level 2 adaptive quadtree mesh at time SoUt/H = 40 when the waves have reached
the quasi-steady state. The blue and red cells denote the cells in the air and liquid, respectively. The green solid
curve denotes the free surface. (b) Time history of the roll wave depth ĥrw/H obtained from DNS from using
four mesh refinement levels. (c) The convergence of the fractional error F̂E on Δmin/Lx following the order of

convergence P̂ = 1.51.

Lx/Δmin Lx/Δmax H/Δmin H/Δmax ĥ/H F̂E (%) P̂

Level 1 1024 32 13.0 0.407 1.3086 6.36 × 10−1 1.41
Level 2 2048 64 26.1 0.814 1.3034 2.34 × 10−1 1.51
Level 3 4096 128 52.1 1.63 1.3014 8.21 × 10−2 —
Level 4 8192 256 104 3.26 1.3007 2.88 × 10−2 —

∞ ∞ ∞ ∞ 1.3003 0 —

Table 2. The mesh refinement data of the DNS for a periodic roll wave with the undisturbed flow Froude
number Fr = 0.650 and Reynolds number Re = 21.1, and slope So = 0.0600. The wavelength is Soλ/H =
4.72. The level 2 mesh is used in the DNS presented in this paper.

this appendix. Therefore, r = �xk/�xk+1 = 2. The wave’s quasi-steady depths at time
SoUt/H = 40 are estimated to be ĥ/H = 1.3085, 1.3034, 1.3014 and 1.3007 at level 1,
level 2, level 3 and level 4, respectively. The extrapolation formula gives an estimated true
value of ĥ/H = 1.003, and the order of convergence P̂ = 1.51. The logarithmic plot in
figure 15(c) shows this order of convergence.
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Figure 16. The profiles over one wavelength Soλ/H = 4.72 obtained from (a,d) DNS, (b,e) two-equation SLS,
and (c, f ) four-equation WRIBL model simulation, for Fr = 0.600, Re = 72.0 (So = 0.0150). (a–c) Velocity
contours; (d–f ) bed-shear stress profiles.

The mesh used in the DNS reported in this paper had a maximum number of cells
Lx/Δmin = 2048 and a minimum number of cells Lx/Δmax = 64 in the longitudinal
direction along the length of the channel. For this level of refinement, the fractional error
of the wave height is F̂E (%) = 0.234 % for the case considered in this appendix.

Appendix C. Profiles over one wavelength obtained by DNS, SLS and WRIBL model
simulation

We show only the close-up wave profiles obtained by the DNS, SLS and WRIBL
simulation in § 6. Figures 16 and 17 show the corresponding profiles over the entire
wavelength Soλ/H = 4.72 obtained from DNS, two-equation SLS and four-equation
WRIBL model simulation for Fr = 0.600, Re = 72.0 (So = 0.0150), and Fr = 0.840,
Re = 141 (So = 0.0150), respectively. The wave amplitude obtained by the WRIBL model
simulation agrees with DNS better than SLS, but the WRIBL model still predicts a smaller
wave than that of DNS.

Appendix D. Computation time and resources

We use the simulation examples in Appendix C to estimate the relative computation time
needed for the DNS, SLS and WRIBL model simulation. The DNS in the examples use
Lx/Δmin = 8192 cells for the periodic simulation. The simulation stops when reaching
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Figure 17. The profiles over one wavelength Soλ/H = 4.72 obtained from (a,d) DNS, (b,e) two-equation SLS,
and (c, f ) four-equation WRIBL model simulation, for Fr = 0.840, Re = 141 (So = 0.0150). (a–c) Velocity
contours; (d–f ) bed-shear stress profiles.

the quasi-steady state. The computation time for the DNS is about 9 hours on quadtree
adaptive mesh using 18 Intel 12th i7 cores running in parallel. In comparison, the SLS use
Lx/Δmin = 2048 cells, and the computation time is approximately 2 min on bitree adaptive
mesh using one Intel 12th i7 core for periodic simulation. The WRIBL model simulation
uses 2048 points and 676 Fourier modes for the periodic simulation. The computation
time is approximately 16 min for the simulation on one Intel 12th i7 core using Matlab
2023a. We need to use more Fourier modes to prevent computational breakdown near the
wavefront in our simulation with zero surface tension compared with the previous studies
by Rohlfs et al. (2018) and Scheid, Ruyer-Quil & Manneville (2006) for the surface tension
effect.

We observe that DNS take significantly more computational time than WRIBL
simulation and SLS. The WRIBL simulation takes more computational time than SLS
running on adaptive mesh because it has more complicated governing equations than
SLS, and it must perform a fast Fourier transformation at every time step on the static
mesh. For application, the WRIBL model is limited to the studies of thin-film dynamics.
On the other hand, DNS and SLS have been the models of many large-scale, real-world
mudflow events on natural terrains (Greco et al. 2019; Wang et al. 2020). Regarding the
extension to non-Newtonian viscoplastic fluids, SLS and DNS are more straightforward
than WRIBL simulation. The WRIBL models for viscoplastic fluids are quite complicated
(Amaouche, Djema & Abderrahmane 2012; Ruyer-Quil, Chakraborty & Dandapat 2012;
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Noble & Vila 2013), and to our knowledge, the generalization of the WRIBL models to
Herschel–Bulkley fluids is still missing.
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