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Asymptotic simplicity

The analysis of the conformal structure of exact solutions carried out in

Chapter 6 exhibited a number of common features among the various spacetimes

considered. The most conspicuous one is that they all admit a smooth conformal

extension which attaches a boundary to the spacetime. This conformal boundary

represents points at infinity. It is natural to ask whether this property is

shared by a larger class of spacetimes. This question leads to the notion of

asymptotic simplicity. In formulating this notion one tries to strike a delicate

balance: the definition should be strong enough so that it excludes clearly

pathological situations, but at the same time it should leave enough room to

include interesting spacetimes that go beyond the obvious explicit examples.

The original definition of asymptotic simplicity is due to Penrose (1963, 1964,

1965). This definition has had a lasting influence on the field of mathematical

relativity, in general, and in the applications of conformal methods to the analysis

of global properties of spacetimes, in particular.

7.1 Basic definitions

The following definition of asymptotic simplicity is adapted from Hawking and

Ellis (1973):

Definition 7.1 (asymptotically simple spacetimes) A spacetime (M̃, g̃) is

said to be asymptotically simple if there exists a smooth, oriented, time-

oriented, causal1 spacetime (M, g) and a smooth function Ξ on M such

that:

(i) M is a manifold with boundary I ≡ ∂M.

(ii) Ξ > 0 on M\ I , and Ξ = 0, dΞ �= 0 on I .

1 A causal spacetime is one in which there exist no closed timelike or null (i.e. causal) curves;
see also Chapter 14.
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(iii) There exists an embedding ϕ : M̃ → M such that ϕ(M̃) = M\ I and

ϕ∗g = Ξ2g̃.

(iv) Each null geodesic of (M̃, g̃) acquires two distinct endpoints on I .

The spacetime (M̃, g̃) is called the physical spacetime, while (M, g) is

known as the unphysical spacetime. The boundary I is generally known as

conformal infinity. In the cases where I corresponds to a null hypersurface

one calls it null infinity. More informally, I is also called scri2 – a shortened

version of script I. In a slight abuse of notation, one usually identifies M̃ and

M\ I so that one writes g = Ξ2g̃; see, for example, the examples discussed in

Chapter 6. In what follows phrases like “at infinity” are to be understood as

meaning in a suitable neighbourhood of I in M.

Definition 7.1 allows for a non-vanishing matter content. Spacetimes for which,

in addition, one has that Rab = 0 in a neighbourhood of I in ϕ−1(M) are

sometimes called asymptotically empty and simple.

Remarks

(a) Restriction on the conformal class. Definition 7.1 imposes restrictions

only on the conformal class of the admissible spacetimes (M̃, g̃). It does not

single out any specific conformal representation; that is, it does not provide

a canonical unphysical spacetime (M, g).

(b) Conformal infinity is a hypersurface. The boundary I as introduced

in point (i) in Definition 7.1 is a well-defined three-dimensional hypersurface

of M with normal given by dΞ. In particular, sets where dΞ = 0 – such as

spatial infinity i0 and the timelike infinities i± of the Minkowski spacetime –

are excluded from I . Points of this type, if present, will still be regarded as

belonging to the conformal boundary but will be treated separately.

(c) Conformal infinity is at infinity. Points (ii) and (iii) of Definition 7.1

ensure that the boundary I shares the key properties of the null infinity of

the Minkowski, de Sitter and anti-de Sitter spacetimes. To see that this is the

case one needs to analyse the behaviour of null geodesics. The transformation

behaviour of null geodesics under conformal rescalings has already been

discussed in Section 5.5. In what follows, let s̃ and s denote, respectively,

g̃-affine and g-affine parameters of a null geodesic γ ⊂ M̃. It follows then

that s̃ and s are related to each other by the equation

ds̃

ds
=

1

Ξ2
.

Without loss of generality, one can choose the unphysical affine parameter

s to vanish at I ; that is, Ξ = O(sα) along the null geodesic with α > 0.

2 Remarkably, the word scri is pronounced in the same way as the Polish word scraj meaning
boundary.
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Now, as dΞ �= 0 at I , one concludes that, in fact, α ≥ 1. Hence, s̃ → ∞ as

Ξ → 0 – that is, from the physical point of view (as measured by the affine

parameter s̃) the null geodesic never reaches the conformal boundary I .

Thus, the conformal boundary lies at infinity from the perspective of the

physical metric g̃.

(d) Smoothness of the conformal extension and decay. As will be

discussed in Chapter 10 the smoothness assumption in Definition 7.1 imposes

a sharp decay behaviour on the gravitational field at infinity – in particular,

it leads to what is known as the peeling behaviour of the Weyl tensor.

There are variations of Definition 7.1 in which the smoothness requirement

is relaxed to admit conformal extensions of class Ck for some suitable

positive integer k; see Penrose and Rindler (1986). The physical relevance

of these weaker regularity conditions is a delicate technical point which

cannot be satisfactorily assessed by just looking at specific examples. These

weaker regularity conditions lead to a different asymptotic behaviour of the

gravitational field.

(e) Matter and causal nature of null infinity. As already mentioned,

Definition 7.1 allows for the presence of matter in the spacetime. If the

energy-momentum tensor of the matter models has a suitable decay at

infinity, then the causal nature of I is fixed by the sign of the cosmological

constant λ: it is spacelike if λ < 0, null if λ = 0 and timelike if λ > 0; see

Theorem 10.1.

(f) The completeness requirement. Point (iv) in Definition 7.1 is a com-

pleteness condition which, in particular, excludes spacetimes such as the

Schwarzschild solution in which there exist null geodesics which do not reach

I – not only those falling into the black hole region, but also those lying in

the photon sphere at r = 3m; see Wald (1984).

(g) Regular solutions which are not asymptotically simple. That a

spacetime is smooth and geodesically complete is not a guarantee that it

admits a smooth conformal extension. An example of this is given by the

so-called Nariai spacetime described by

M̃ = R× (S1 × S2), g̃ = dt⊗ dt− cosh2 tdψ ⊗ dψ − σ, (7.1)

which is a solution to the vacuum Einstein field equations with λ = −1.

In addition to being geodesically complete, the Nariai spacetime is also

globally hyperbolic; see Section 14.1. Remarkably, the Nariai spacetime does

not even admit a patch of a conformal boundary. To see this, assume one has

a conformal extension with the required properties. The standard conformal

transformation laws imply that

C̃abcdC̃
abcd = Ξ4CabcdC

abcd.

Thus, if the solution admits a smooth conformal extension, then

C̃abcdC̃
abcd = 0. On the other hand, a direct computation with the line
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element (7.1) shows that C̃abcdC̃
abcd = constant �= 0. This is a contradiction,

and accordingly there cannot exist a piece of conformal boundary which

is C2. This argument is adapted from Friedrich (2015a); an alternative

topological argument has been given in Beyer (2009a).

In order to consider spacetimes for which the completeness condition (iv)

in Definition 7.1 does not hold, one introduces the further notion of weakly

asymptotically simple spacetimes, that is, spacetimes whose asymptotic

region is diffeomorphic to that of an asymptotically simple spacetime. More

precisely, one has the following:

Definition 7.2 (weakly asymptotically simple spacetimes) A spacetime

(M̃, g̃) is said to be weakly asymptotically simple if there exists an asymp-

totically simple spacetime (M̃′, g̃′) and a neighbourhood U ′ of I ′ ≡ ∂M′ such

that ϕ−1(U ′) ∩ M̃′ is isometric to an open subspace Ũ of M̃.

Basic examples of asymptotically simple spacetimes have been given in

Chapter 6. Notoriously, all the given examples are time independent. More

generally, it can be shown that stationary solutions to the vacuum equations

Rab = 0 with a suitable behaviour at infinity are at least weakly asymptotically

simple; see Damour and Schmidt (1990) and Dain (2001b). Thus, it is natural

to ask whether there are dynamic solutions to the Einstein field equations. At

the level of exact solutions, the closest examples are given by the spacetimes

known as boost-rotation symmetric spacetimes – see, for example, Bičák

and Schmidt (1989), Bičák (2000) and Griffiths and Podolský (2009) – and in

particular the so-called C-metric – see Ashtekar and Dray (1981). All these

exact solutions contain some pathologies (e.g. naked singularities, piercing of

null infinity) which prevent them from being true examples of asymptotically

simple spacetimes.

A detailed discussion of the properties of asymptotic simple spacetimes

requires the conformal Einstein field equations and is deferred to Chapter 10.

7.2 Other related definitions

The definition of asymptotic simplicity makes neither reference to nor restricts

the behaviour of the conformal spacetime (M, g) at spatial infinity. Several

authors have introduced more refined definitions of asymptotic simplicity in

which further requirements on the behaviour of the gravitational field at null

infinity are prescribed, as in, for example, Persides (1979), or at spatial infinity,

as in the concept of asymptotically empty and flat spacetime at null and

spatial infinity of Ashtekar and Hansen (1978); see also Persides (1980). Similar

ideas have been pursued by a number of authors in an attempt to analyse the

structure of timelike infinity; see, for example, Persides (1982a,b), Porrill (1982),

Cutler (1989) and Herberthson and Ludwig (1994).
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The aim of the definitions mentioned in the previous paragraph and similar

other proposals for the analysis of the asymptotic structure of spacetime is to

identify a minimal number of assumptions on the asymptotic structure which, in

turn, can be used to develop a formalism to construct physical and geometrical

notions of interest. A critique to this approach is that, a priori, they do not

provide any information on the genericity of the assumptions or on the size of the

class of spacetimes they contain. Moreover, it is not clear how these spacetimes

can be constructed. As pointed out in Geroch (1976), pages 3–4:

Conditions too strong will have the effect of eliminating solutions which

would seem clearly to represent isolated systems; conditions too weak may

have the effect of admitting too many solutions, or what is worse, may

result in a structure which is so weak that potentially useful aspects of the

asymptotic behaviour of one’s fields are lost in a sea of bad behaviour · · ·
There are no correct or incorrect definitions, only more or less useful ones.

The point of view pursued in this book is that rather than making assumptions

on the nature of spatial, null or timelike infinity, the structures of the conformal

boundary of a spacetime should arise as a result of the evolution of some initial

data set for the Einstein field equations.

7.3 Penrose’s proposal

Asymptotically empty and simple spacetimes (i.e. spacetimes with a vanish-

ing cosmological constant and matter suitably decaying at infinity) play an

important role in the approach to the analysis of isolated systems in general

relativity put forward by Penrose (1963, 1964). The notion of an isolated system

is a convenient idealisation of astrophysical systems where the effects of the

cosmological expansion are ignored. This notion allows one to define concepts of

clear physical interest such as the total energy of a system or its mass loss

due to gravitational radiation. Intuitively, an isolated system should behave

asymptotically like the Minkowski spacetime. Penrose, based on earlier work by

Bondi et al. (1962) and Sachs (1962b), takes this idea further; see also Friedrich

(2002, 2004):

Penrose’s proposal. Far fields of isolated gravitating systems behave like those

of asymptotically simple spacetimes in the sense that they can be smoothly

extended to null infinity after a suitable conformal rescaling.

In other words, if a spacetime (M̃, g̃) describes an isolated system, then it

should be weakly asymptotically simple.

As pointed out in Remark (d) earlier in the chapter, the requirement of

smoothness results in a very definite decay behaviour of the gravitational field at

infinity. Whether this behaviour is actually realised in solutions to the Einstein

equations, and if so to what extent, is a delicate question which will be analysed

in later chapters of this book.
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7.4 Further reading

The literature on asymptotic simplicity and other definitions of asymptotic

flatness is dauntingly vast and is best accessed through reviews. There are a good

number of references covering various periods and aspects of the topic. Penrose

(1964, 1967) gives an overview of the early ideas and results on asymptotic

simplicity; Geroch (1976) provides a good discussion on the physical motivation

of the study of isolated systems in general relativity, the notion of conserved

quantities and asymptotic symmetries; Schmidt (1978), Newman and Tod (1980)

and Ashtekar (1980, 1984) provide alternative discussions of these topics and

Friedrich (1992, 1998a, 1999) provides reviews of the notion of asymptotic

simplicity from the point of view of the conformal Einstein field equations and

the construction of global solutions. More recent reviews of the topic can be

found in Frauendiener (2004), Ashtekar (2014) and Friedrich (2015a).
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