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Abstract. We give some extensions of classical results of Kellogg and
Warschawski to a class of quasiconformal (q.c.) mappings. Among the other results we
prove that a q.c. mapping f , between two planar domains with smooth C1,α boundaries,
together with its inverse mapping f −1, is C1,α up to the boundary if and only if the
Beltrami coefficient µf is uniformly α Hölder continuous (0 < α < 1).
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1. Introduction and notation.

1.1. Quasiconformal mappings. Let D and � be subdomains of the complex
plane C.

We say that a function w : D → C is ACL (absolutely continuous on lines) in the
region D, if for every closed rectangle R ⊂ D with sides parallel to the x and y-axes, u
is absolutely continuous on a.e. horizontal and a.e. vertical line in R. Such a function
has of course, partial derivatives wx, wy a.e. in D.

A sense-preserving homeomorphism w: D → �, where D and � are subdomains
of the complex plane C, is said to be K-quasiconformal (K-q.c.), with K � 1, if w is
ACL in D and

|wz̄| � k|wz| a.e. on D,

where k = (K − 1)/(K + 1) (cf. the Ahlfors book [1, pp. 23–24]). See also the book of
Lehto and Virtanen [3] for good setting of quasiconformal mappings.

It is well known that an orientation preserving quasiconformal mapping f : � �→
�′ ⊂ � of a planar domain is a solution to the Beltrami equation:

fz̄(z) = µ(z)fz(z), (1.1)

where µ(z), a measurable function in � with ‖µ‖∞ < 1, is called the Beltrami coefficient
or the complex dilatation of f . We recommend the book [2] of Astala Iwaniec and
Martin, where authors establish all the classical results in a modern setting and
discuss future development and applications of the theory of the planar Beltrami
equation.

The starting point of this note is the following classical result.
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PROPOSITION 1.1 (Kellogg (n = 1) see [6, 8] and Warshawski (n > 1), [13, 14]). Let
n ∈ �, 0 < α � 1. If � and �′ are Jordan domains having C n,α boundaries and ω is a
conformal mapping of � onto �′, then ω(n) ∈ C α(�) and (ω−1)(n) ∈ C α(�′).

For a function ξ ∈ Cα(�), i.e. a function ξ : � → C satisfying the condition

Lipα(ξ ) := sup
z	=w,z,w∈�

|ξ (z) − ξ (w)|
|z − w|α < ∞

we say that is a uniformly α−Hölder continuous function. From now one, instead of
ω(n) ∈ C α(�) we write ω ∈ C n,α(�). In the similar way, we define the class C n,α(�) of
non-necessarily conformal mappings. The theorem of Kellogg and of Warshawski has
been extended in various directions, see for example the extension to minimal surfaces
by Nitsche [10], and to q.c. harmonic mappings w.r. hyperbolic metric by Tam and Wan
[12, Theorem 5.5.]. For some other extensions and quantitative Lipschitz constants,
we refer to the papers [7] and [9].

In this note is presented the following extension of Kellogg theorem to the class
of quasiconformal mappings.

THEOREM 1.2. Let f be a quasiconformal mapping between two domains � and �′

of the complex plane having C 1,α compact boundaries. Then the following conditions are
equivalent:
(1) µf is uniformly α−Hölder continuous in �

(2) µf −1 is uniformly α−Hölder continuous in �′

(3) f ∈ C 1,α(�) and f −1 ∈ C 1,α(�′).

REMARK 1.3. If f is conformal then µf = µf −1 ≡ 0 and therefore µf and µf −1 are
trivial Hölder continuous functions, and consequently Theorem 1.2 is an extension
of Kellogg’s theorem. The condition that � is a planar domain having C 1,α compact
boundary means that the boundary is consisted of a finite number of mutually disjoint
C 1,α Jordan curves.

EXAMPLE 1.4. [2, p. 391]. Let U = {z : |z| < 1} be the unit disk. Let g(z) =
−z log |z|2, where |z| � r = e−2. Then g : rU → 4rU is a homeomorphism and

∂g
∂ z̄

= −z
z̄
,

∂g
∂z

= −1 − log |z|2, µg(z) = z
z̄(1 + log |z|2)

.

Thus, g is quasiconformal with continuous Beltrami coefficient, and yet g is not
Lipschitz. The mapping f (z) = 1

4r g(rz) is a q.c. mapping of the unit disk onto itself
with a continuous Beltrami coefficient, but g is not Lipschitz neither locally Lipschitz.
Thus, the condition that µf is Hölder continuous in Theorem 1.2 is important even
for local Lipschitz behaviour of a solution to the Beltrami equation fz̄ = µ(z)fz.

2. Proof of Theorem 1.2. We need the following propositions:

PROPOSITION 2.1. [2, Corollary of Theorem 15.0.7] Let n � 0 be an integer and
suppose that f ∈ W 1,2

loc (�,�′) is a quasiconformal solution to Beltrami equation with
µ ∈ Cn,α

loc (�). Then f belongs to Cn+1,α
loc (�).
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PROPOSITION 2.2. (Mori’s theorem, [1, p. 47]) If w : U → U, w(0) = 0, is a K
quasiconformal mapping of the unit disk onto itself, then

|w(z1) − w(z2)| � 16|z1 − z2|1/K , z1, z2 ∈ U.

Mori’s theorem for q.c. selfmappings of the unit disk has been generalised in
various directions in the plane and in the space. See for example, the papers [4] and [5].

We now prove the following lemma.

LEMMA 2.3. Let f be a K-q.c. mapping of the unit disk U onto itself such that the
Beltrami coefficient µf is Hölder continuous in U with the power 0 < α < 1. Then µf −1

is uniformly α−Hölder continuous and f, f −1 ∈ C 1,α(U).

REMARK 2.4. Under the condition of Lemma 2.3, the function f is C 1,α
loc (U), α < 1,

([2, Theorem 15.0.7]) but the last fact of course does not imply that f is C 1,α(U).

Proof. Since µ is Hölder continuous, there exists a constant C such that |µ(z) −
µ(w)| � C|z − w|α z, w ∈ U. Thus, µ has a continuous extension to the boundary of
the unit disk. Now we can choose an α-Hölder continuous extension of µ in C. For
example, let

µ̂(z) =
{
µ(z), if |z| � 1;
µ(z/|z|), if |z| > 1.

First of all ‖µ̂‖∞ = ‖µ‖∞ < 1. It is clear that it is enough to consider the cases |z| > 1
and |w| > 1. If |z| > 1, we have

|µ̂(z) − µ̂(w)| = |µ(z/|z|) − µ(w/|w|)|
� C|z/|z| − w/|w||α
� 2αC|z − w|α.

Namely for z = Reit, w = reis, R � r,

|z/|z| − w/|w||2 = 2(1 − cos(t − s))

and

|z − w|2 = (R − r)2 + 2Rr(1 − cos(t − s))

= (1 − cos(t − s))
(

(R − r)2

(1 − cos(t − x))
+ 2Rr

)

� (1 − cos(t − s))
(

(R − r)2

2
+ 2Rr

)

= (1 − cos(t − s)) · (R + r)2

2
� (1 − cos(t − s))/2.

Similarly can be treated the case |w| > 1.
Let f̂ be a quasiconformal solution to Beltrami equation f̂z̄ = µ̂(z)f̂ z (for the

existence of f̂ , we refer to the Ahlfors book [1, Chapter V]). By Proposition 2.1, for n =
0, f̂ is C 1,α

loc (C). Let � = f̂ (U). Then � is a Jordan domain with C 1,α boundary. Let ϕ be a
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conformal mapping of � onto the unit disk such that ϕ(f̂ (0)) = f (0) and ϕ(f̂ (1)) = f (1).
Take g(z) = ϕ(f̂ (z)). For z ∈ U, we have µg(z) = µf̂ (z) = µ̂(z) = µ(z). We infer that
µf ◦g−1 = 0 for z ∈ U (see e.g. [1, p. 10]) and in view of the above normalisation we obtain
f (z) = g(z) for z ∈ U. By Kellogg’s theorem, ϕ has C 1,α extension to the boundary. It
follows that f has C 1,α extension to the boundary. Further, since µf −1 = −µf ◦ f −1,
because of Mori’s theorem, it follows that µf −1 is α

K −Hölder continuous. As above

we construct a mapping f̂ −1 such that f̂ −1 ∈ C 1,α/K
loc (C). Thus as above, we find out

that f −1 ∈ C 1,α/K (U). In particular, f −1 is Lipschitz continuous. By using the last fact
instead of Mori’s theorem, we find out that µf −1 is α− Hölder continuous. By applying
again the previous procedure, we obtain that f −1 ∈ C 1,α(U) as desired. �

Proof of Theorem 1.2. Prove the direction 1) ⇒ 3). It is clear that it is enough
to show that f has C 1,α extension in some neighbourhood of a fixed boundary point
t ∈ ∂�. Since ∂� ∈ C1,α, we can find a Jordan domain D1 with the boundary γ1 such
that t is an interior point of γ1 ∩ ∂�. Let � be a conformal mapping of the unit disk
onto D1 such that �(t) = t and assume that �−1(∂D1 ∩ ∂�) contains the chord eis,

−ε < s < ε. Let V ⊂ U be a Jordan domain with C1,α boundary containing the chord
eis, −ε/2 < s < ε/2. Then by Kellogg’s theorem, the domain D = �(V ) is a Jordan
domain with C 1,α Jordan boundary γ such that t is an interior point of γ ∩ ∂�.

Then D′ = f (D) is a Jordan domain with boundary γ ′ containing the point t′ = f (t)
in an open arc of ∂�′ ∩ γ ′. Let ψ be a conformal mapping of the unit disk onto D
and let ϕ be a conformal mapping of D′ onto the unit disk. Then f1 = ϕ ◦ f ◦ ψ is a
q.c. mapping of the unit disk onto itself having α− Hölder Beltrami coefficient µf1 .
Namely by [1, p. 9] we have

µf1 (z) = µf ◦ψ (z) = µf ◦ ψ(z) ·
( |ψ ′(z)|

ψ ′(z)

)2

.

On the other hand, by Kellogg’s theorem ψ and its inverse ψ−1 is C 1,α up to the
boundary. Further for w = ψ(z) and w′ = ψ(z′)

|µf1 (z) − µf1 (z′)| � |µf (w) − µf (w′)| + 2|µf (w′)| ·
∣∣∣∣ |ψ ′(z)|

ψ ′(z)
− |ψ ′(z′)|

ψ ′(z′)

∣∣∣∣
� C|w − w′|α + 2‖µf ‖∞‖1/ψ ′‖∞ · |ψ ′(z) − ψ ′(z′)|
�

(
C‖ψ ′‖α

∞ + 2‖µf ‖∞‖1/ψ ′‖∞Lipα(ψ ′)
) |z − z′|α.

The conclusion of the theorem now follows from Lemma 2.3 and Kellogg’s theorem
to the conformal mapings ψ and ϕ near the points t and t′ respectively.

The implication 3) ⇒ 1) of the theorem is obvious, because under the condition
3), we have 0 < c � |fz̄| < |fz| < C < ∞. Now µf = fz̄/fz is uniformly α−Hölder
continuous, because fz̄ and fz are uniformly α−Hölder continuous. The proof of 2)
⇔ 3) is the same. �

By following the lines of the proof of Theorem 1.2, having in mind Proposition 2.1
for n � 2, and Proposition 1.1, the following extension of theorem of Warschawski can
be proved.

THEOREM 2.5. Let n ∈ N. Let f be a quasiconformal mapping between two domains
� and �′ of the complex plane having C n,α compact boundaries. Then the following
conditions are equivalent:
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(1) µf ∈ C n,α(�)
(2) µf −1 ∈ C n,α(�′)
(3) f ∈ C n+1,α(�) and f −1 ∈ C n+1,α(�′).

REFERENCES

1. L. Ahlfors, Lectures on quasiconformal mappings (Van Nostrand Mathematical Studies,
D. Van Nostrand, 1966).

2. K. Astala, T. Iwaniec and G. J. Martin, Elliptic partial differential equations and
quasiconformal mappings in the plane (Princeton University Press, Princeton, 2009).

3. O. Lehto and K. I. Virtanen, Quasiconformal mapping (Springer-Verlag, New York,
1973).

4. R. Fehlmann and M. Vuorinen, Mori’s theorem for n-dimensional quasiconformal
mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 13(1) (1988), 111–124.

5. F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann.
Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 203–219.

6. G. L. Goluzin, Geometric theory of functions of a complex variable. Translations of
Mathematical Monographs, vol. 26 (American Mathematical Society, Providence, R.I. 1969
vi+676 pp).

7. D. Kalaj, On boundary correspondence of q.c. harmonic mappings between smooth
Jordan domains, arxiv: 0910.4950 (To appear in Math Nachr).

8. O. Kellogg, Harmonic functions and Green’s integral, Trans. Amer. Math. Soc. 13
(1912), 109–132.

9. F. D. Lesley and S. E. Warschawski, Boundary behavior of the Riemann mapping
function of asymptotically conformal curves, Math. Z. 179 (1982), 299–323.

10. J. C. C. Nitsche, The boundary behavior of minimal surfaces, Kellogg’s theorem and
branch points on the boundary, Invent. Math. 8 (1969), 313–333.

11. C. Pommerenke, Univalent functions (Vanderhoeck & Riprecht, Göttingen, 1975).
12. L. Tam and T. Wan, Quasiconformal harmonic diffeomorphism and universal
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