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Abstract: An in vitro model of muscle damage was used to investigate the protective effect of mild 
hypothermia in muscle injury. Rat epitrochlearis muscles were dissected in their entirety and suspended 
in Krebs-Ringer solution and DNP, a mitochondrial uncoupler, was added. PGE, and lactate release 
and the contractile response to stimulation were measured and compared to untreated controls. 
Experiments were done at 37, 35, 33 and 27°C. At 37°C, DNP stimulated muscle releases large 
amounts of PGE2 and lactate and is unable to contract. As the temperature is reduced, there is progressive 
preservation of contractile force, although high lactate levels at the lowest temperatures indicate that 
the metabolic stress is still present. In contrast, DNP stimulated PGE2 release is completely inhibited 
at or below 35°C and may be related to a similar protective phenomenon seen in experimental ischemic 
neuronal death. 

Resume: L'hypothermie legere protege la fonction contractile et inhibe la liberation de prostaglandin E2 

par les muscles squelettiques soumis au stress. Nous avons utilise un modele in vitro de lesion musculaire pour 
investiguer l'effet protecteur d'une legere hypothermie dans le traumatisme musculaire. Des muscles 6pitrochl6ens 
de rat ont ete dissequ6s et suspendus dans une solution de Krebs-Ringer a laquelle du DNP, un dficoupleur mito­
chondrial, a ete ajoute. La liberation de PGE2 et de lactate ainsi que la reponse contractile a la stimulation ont 6t6 
mesurees et comparees a celles de controles non trait6s. Les essais etaient faits a 37, 35, 33 et 27°C. A 37°C, le 
muscle stimuld par le DNP libere de grandes quantites de PGE2 et de lactate et il est incapable de se contracter. A 
mesure que la temperature est abaissee, on observe une preservation progressive de la force contractile, bien que de 
fortes concentrations de lactate aux temperatures les plus basses indiquent que le stress m£tabolique est encore 
present. Par contre, la stimulation de la liberation de PGE2 par le DNP est completement inhibee a des temperatures 
de 35°C ou moins et peut etre reliee a un phenom^ne protecteur semblable a celui observe dans la mort neuronale 
experimental par ischemie. 
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Mechanisms which can prevent cell damage are a major 
interest in neurology because of the possible implications for 
therapy. Even if the primary neurological event cannot be 
prevented, the ability to decrease subsequent cell death may 
offer a viable treatment. This concept of "damage control" is 
being explored in stroke,1"4 Parkinson's disease,5 motor neuron 
disease6,7 and muscular dystrophy.8 Mild hypothermia exerts a 
profound protective effect against cerebral ischemia, both 
experimentally9"14 and clinically.15"18 An in vitro muscle prepa­
ration for investigating damage uses the rat epitrochlearis muscle 
and permits simultaneous monitoring of biochemical parameters 
and muscle function.19"20 2,4-dinitrophenol (DNP) which 
reversibly binds to mitochondria and uncouples oxidative phos­
phorylation is used as a metabolic stress to cause muscle damage. 
The release of prostaglandin E2 (PGE2) from the muscle cell is 
used as a measure of muscle damage. We have investigated the 
protective effect of mild hypothermia using this model. 

METHODS 

Male Sprague-Dawley rats, weighing between 180 and 250 
grams, were killed by a blow to the head quickly followed by 
cervical dislocation. Both epitrochlearis muscles were rapidly 
dissected, with as little trauma as possible. Muscles were 
discarded if there was obvious trauma or hemorrhage into the 
muscle. The intact muscle was then suspended in a small pyrex 
tube between two stainless steel clips in 3 ml Krebs-Ringer 
solution, pH = 7.4, which was oxygenated with a 95% 0215% 
C0 2 mixture. This system was immersed in a water bath at a 
temperature of 37, 35, 33 or 27°C. 
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One end of the muscle was suspended from a strain gauge 
connected to a strip chart recorder. The muscle was maintained 
under 400 mg of tension for the duration of the experiment. 
Maximal muscle twitch was evoked by a stimulus (50V for 10 
msec) applied through one of the stainless steel clips. Maximal 
twitch was obtained immediately after suspension in the Krebs-
Ringer solution. Fifteen minutes later the muscle was again 
maximally stimulated and the incubating medium was 
exchanged and discarded. Thirty minutes later (time point "0" 
on Figures 1-4), the muscle was again maximally stimulated, 
and the incubating medium was exchanged and saved for base­
line PGE2 and lactate levels. Muscles were discarded at this 
point if contractile force was less than 8 grams, greater than 8 
grams but less than 50% of the opposite muscle from the same 
rat, or if there was a drop in contractile force of greater than 10 
percent. For the remainder of the experiment a maximum con­
traction was obtained and incubating medium was exchanged 
and saved every 30 minutes for a total duration of 180 minutes. 
One portion of medium was immediately frozen in liquid nitrogen 
and stored at -70°C for PGE2 analysis; another portion was 
stored at -20°C for lactate analysis. Control muscles were 
discarded if they failed to maintain 75% of their maximum con­
tractile force at the 120 minute time point. At the end of the 
experiment muscles were removed from the apparatus and 
quickly blotted to remove excess water. The muscles were then 
immediately clamped between aluminum tongs, which had been 
precooled in liquid nitrogen, then immersed in liquid nitrogen. 
Muscles were stored at -70°C. 

Treated muscles were handled identically to control muscles 
except that DNP (40 uM) was added to the incubating medium 
for thirty minutes after the baseline medium sample was 
obtained. At least 6 muscles were included in each treatment 
group at all temperatures. DNP (200 uM) was added to the 
incubating medium of 6 muscles at 27°C only. 

Biochemical studies: The medium was assayed for lactate by 
standard spectrophotometric methods and the results are 
expressed as nmol/mg wet muscle weight/30 minutes.21 PGE2 

analysis was performed by radioimmunoassay following the 
protocol supplied by ICN Biochemicals with the following 
slight modifications. Initial incubation of standards (12.5-300 
pg) and test samples was carried out in the presence of antibodies 
at 4°C for 2 hours. 3HPGE2 (8500 cpm/tube) was added to the 
mixture and further incubation was carried out overnight at 4°C. 
Results are expressed as pg PGE2/mg wet muscle weight/30 
minutes. 

Statistical analyses: Results are expressed as mean ± standard 
error of the mean (SEM). Statistical significance was deter­
mined using the Mann-Whitney nonparametric two sample test 
(Number Cruncher Statistical System software program, 
Kaysville, Utah, 1990). 

RESULTS 

Control Muscle Over the 3 hour duration of the experiment 
at 37°C there was a linear decline in maximum twitch tension 
from 99% to 77% of maximum (Figure 1). Lactate release 
remained unchanged over the same time period (Figure 2). 
There was a small increment in the release of PGE2 into the 
medium during the first 120 minutes of the experiment, which 
levelled off during the last 60 minutes (Figure 3). When the 

Figure 1: Contractile force in DNP (40pM) treated muscles at 37, 35, 
33 and 27°C. Control muscles at 37°C are included for comparison. 
Values are means for DNP treated muscles, and means ± SEM for con­
trol muscles. At the end of the DNP treatment period (30 minutes time 
point), there is a significant preservation of force in DNP treated mus­
cles at 35, 33 and 27°C when compared to DNP stimulated muscles at 
37°C (*p < 0.0003, Mann-Whitney two sample test). 
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Figure 2: Lactate release from control (solid bars) and DNP (40pM) 
treated (hatched bars) muscles at 37°C. Values are means ± SEM. 
Values at the 30 minute time point are not reported due to interference 
of lactate analysis by DNP in the medium. *Significant difference (p < 
0.0001) between control and DNP treated muscles (Mann-Whitney two 
sample test). 

temperature of the experiment was decreased, the only difference 
was a slight progressive decrease in the amount of PGE2 

released (Figure 4). 
DNP (40u.M) stimulated muscle At 37°C, muscle exposed 

to 40pM DNP rapidly loses the ability to contract (twitch 
tension at 30 minutes is 3% of maximum value) (Figure 1). 
There is a very slight recovery by 150 minutes to 11% maximum 
value. Lactate release, as expected, is markedly accentuated by 
DNP stimulation (Figure 2). The concentration of lactate in the 
medium reaches 10.5 ± 0.6 nmol/mg muscle after 60 minutes 

Volume 21, No. 2 — May 1994 121 

https://doi.org/10.1017/S0317167100049039 Published online by Cambridge University Press

https://doi.org/10.1017/S0317167100049039


THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES 

Figure 3: PGE2 release from control and DNP (40piM) treated muscles 
over 180 minutes at 37°C. Values are means ± SEM. Significant differ­
ence between control and DNP treated muscles: *p = 0.009, **p = 
0.005, ***p = 0.004 (Mann-Whitney two sample lest). 
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Figure 4: PCE2 release from control (solid bars) and DNP (40pM) 
treated (hatched bars) muscles at the 120 minute time point at 27, 33, 
35 and 37°C. The late rise in PGE2 release from DNP stimulated mus­
cle is abolished at temperatures < 35°C. Values are means ± SEM. 
*Significant difference (p = 0.005) between control and DNP treated 
muscles at 37°C (Mann-Whitney two sample test). 

(control = 3.1 ± 0.2 nmol/mg muscle) and then declines. PGE2 

release is identical to the control muscle for the first 60 minutes 
(Figure 3). Thereafter DNP stimulation results in an increase in 
PGE2 release so that at 120 minutes the level of PGE2 in the 
medium is 46.3 ± 3.6 pg/mg muscle, (controls = 28.7 ± 6.6 
pg/mg muscle, p = 0.005). 

DNP (40uM) stimulated muscle at 35, 33 and 27°C 
Reduction of the temperature is associated with a progressive 
preservation of the contractile ability of the DNP treated muscle 
(Figure 1). At 30 minutes, the force generated in response to 
supramaximal stimulation is 23% of maximum value at 35°C, 
25% at 33°C and 58% at 27°C. Lactate release is only slightly 
reduced by decreasing the temperature: peak lactate release at 
60 minutes is 10.5 ± 0.6 at 37°C, 8.6 ± 0.8 at 35°C, 6.9 ± 0.9 at 

33°C, and 6.5 ± 0.5 at 27°C. However, the DNP stimulated 
PGE2 release is abolished at temperatures of 35°C and below 
(Figure 4). 

DNP (200uM) stimulated muscle at 27°C To determine 
whether the effect of hypothermia might be due to some impair­
ment of the access of DNP to the tissues or to some lack of 
metabolic effect, the experiment was repeated using 200uM 
concentration of DNP at 27°C. Lactate rose to 13.7 ± 0.9, indi­
cating a marked metabolic effect. PGE2 levels were identical to 
untreated 27°C controls at all time points. 

DISCUSSION 

Any manipulation having a protective effect, permitting a 
damaged cell to be rescued, may be important in trying to 
develop treatment for ischemic and degenerative neurological 
diseases. The use of hypothermia dates back several decades, 
but the temperatures used, which were as low as 27 to 30°C, 
were impractical as treatment in patients. Only recently has it 
been appreciated that a very minor reduction in temperature 
may provide a marked protective effect in experimental 
neuronal damage. The mechanism for this is unknown. The 
present report is the first demonstration that this effect of mild 
hypothermia is also present in muscle and may provide an 
impetus for further studies. 

Clinically and experimentally, hypothermia is of proven benefit 
in protecting skeletal muscle against cell damage. It was recog­
nized as early as 1939 that hypothermia significantly prolongs 
the amount of time a ligated limb can tolerate ischemia.22 

When reconstructive procedures of the hand or wrist are per­
formed under bloodless conditions using a tourniquet, cooling 
of the limb before application of the tourniquet reduces myo­
globin release from the ligated limb.23 It also prolongs the time 
of safe ischemia beyond the commonly accepted 2 hour time 
limit without evidence of histological or electron microscopic 
damage.24 Metabolic deterioration of traumatically amputated 
limbs can be minimized by transporting the limb on ice or in an 
ice bath, thereby preserving the viability of the limb for reat­
tachment.25 These observations have been supported by magnetic 
resonance spectroscopy which shows that cooling the limb 
preserves intracellular pH, slows depletion of muscle phospho-
creatine and ATP and slows the accumulation of inorganic phos­
phate.26 

In experimental crush injury of muscle the severity of the 
resulting edema is reduced by a moderate degree of hypothermia 
(27-30°C).27 Hypothermia also reduces the infarct size28 and 
creatine kinase, lactate dehydrogenase and potassium release in 
muscle subjected to ischemia under experimental conditions.29 

Even when hypothermia is instituted after prolonged ischemia, 
interstitial muscle pH is maintained and post-reperfusion edema 
is reduced, although there is little effect on infarct size.30 

Hypothermia reduces cellular metabolism, oxygen consumption 
and lactate production, and preserves pH, but the precise mech­
anism by which it protects against cell damage remains 
unknown. 

In contrast to the previous work in muscle, studies of 
ischemic neuronal damage have demonstrated the beneficial 
effect of a very mild degree of hypothermia. Experimentally, 
carotid ligation in mammals at 37°C produces neuronal death in 
the hippocampus.1214 Intracellular pH drops rapidly and 
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markedly," ATP, phosphocreatine, glucose and glycogen levels 
fall, lactate rises and edema develops."-32 Sutherland and 
colleagues have reported that reducing the brain temperature 
from 38 to 35°C abolishes this type of neuronal injury.9 This 
effect was demonstrated histopathologically and using magnetic 
resonance spectroscopy. Others have also documented this striking 
protective response clinically, biochemically and pathologi-
c a | | y 10-15.31.32 

The mechanisms mediating the protective effects of 
hypothermia in ischemic brain are not explained. In muscle, 
ischemia-reperfusion injury is associated with damage to the 
membrane by free radicals33 and a similar mechanism may play 
a part in ischemic neuronal damage. A small but rapid rise in 
phospholipase A2 activity occurs in the brain following cerebral 
ischemia34 which is associated with a rise in the expected 
products of this enzyme, namely thromboxanes, leukotrienes 
and prostaglandins, at the site of injury. This occurs especially 
during the reperfusion period, and can be inhibited by pretreat-
ment with indomethacin.3538 Moderate hypothermia (30-31°C) 
reduces leukotriene production at 10 minutes reperfusion, 
accompanied by reduced post-ischemic edema at 2 hours reper­
fusion.39 The fact that a significant part of the change occurs 
during the reperfusion period is of interest. More importantly, it 
implies that there may be a window following the ischemic 
insult during which protective therapy may be instituted. 

Another area which has gained recent prominence is that of 
the role of excitotoxins in ischemic neuronal death. Excitotoxic 
amino acids such as glutamate are released in large quantities 
following cerebral ischemia, resulting in excessive stimulation 
of neurons and eventual cell death. It is postulated that this is 
due to the increased entry of calcium into the cell via calcium 
channels regulated by NMDA receptors. NMDA receptor antag­
onists, NMDA receptor desensitisation and manoeuvres to 
reduce the release of glutamate, have been shown to be effective 
in reducing infarct size and protecting neurons against cell 
death in animal models of cerebral ischemia.40"42 A possible link 
between these studies and those involving hypothermia is 
suggested by the finding that the effect of some NMDA blocking 
agents is due to their effect on lowering the animal's body 
temperature and not due to their action as NMDA receptor 
antagonists. When the brain temperature is maintained at 37°C 
NMDA blockade produces no protective effect.43 

Experimental models of muscle damage are not as well stan­
dardized either in vivo or in vitro. One in vitro model which has 
been used in several experiments is an isolated muscle exposed 
to DNP or calcium ionophore.19"20-44"47 The epitrochlearis muscle, 
a forelimb muscle, is particularly well-suited for these kinds of 
experiments as it is a thin ribbon of muscle that can be dissected 
end-to-end, and can be oxygenated by diffusion without the 
development of an hypoxic core.19 This model permits simulta­
neous measure of contractile function and biochemical changes. 

PGE2 release from the muscle is used as an indirect indicator 
of the extent of muscle damage.45 PGE2 is one of the end prod­
ucts of a series of reactions initiated by the action of phospholi­
pase A2, a calcium-dependent, rate-limiting enzyme, that 
releases arachidonic acid from membrane phospholipids. 
Arachidonic acid is the precursor to the leukotrienes, via the 
lipoxygenase pathway, and to the prostacyclins, thromboxanes 
and prostaglandins, via the cyclooxygenase pathway. PGE2 is 
not stored in the cell but under experimental conditions it is pro­
duced and released by skeletal muscle in response to a variety 

of stimuli including stretch, leukocytic pyrogen, 2,4-dinitrophenol 
(DNP), the calcium ionophore and arachidonic acid itself.45-48'50 

An increase in the efflux of PGE2 as well as creatine kinase has 
been shown to occur in experimental models of muscle damage 
as well as in human muscle disease.45-5' 

In the present model of muscle damage we use DNP stimula­
tion. DNP reduces ATP levels and uncouples mitochondrial 
phosphorylation.52 In many ways it simulates the stress of 
intense exercise. The blood supply to a contracting limb muscle 
which is working at near maximum load is insufficient to supply 
the energy demands of the muscle. This results in a relative 
metabolic ischemia characterized by decreasing levels of high 
energy phosphates combined with inefficient mitochondrial 
respiration. Previous studies have shown that, at low concentra­
tions, DNP stimulation mimics the biochemical effect of exercise 
in animals and in humans in health and disease.53 Exposure to 
higher concentrations of DNP causes morphological changes in 
the muscle indicative of severe mitochondrial damage.54 

At 37°C the use of DNP stimulation in the rat epitrochlearis 
muscle model results in an immediate fall in twitch tension 
followed 30-60 minutes later by an increased release of PGE,. 
We have shown that a reduction of 2°C completely abolishes the 
DNP-provoked PGE2 release, and preserves some contractile 
force in the immediate post-DNP treatment period. Greater 
reductions in temperature result in further preservation of con­
tractile ability. While there is no evidence for a cause and effect 
relationship between loss of contractility and PGE, release, 
PGE2 release may reflect irreversible muscle fiber damage. The 
delay between a significant fall in twitch tension (30 minutes, 
Figure 1), and a significant rise in PGE2 release (90 minutes, 
Figure 3), suggests that there may be a window of time (60 min­
utes in our model) when muscle fibers are injured, but salvage­
able, and a time when therapeutic interventions may be of 
benefit. Of interest, therefore, is that reducing the temperature 
protects the contractile ability most during this "window". 

In summary, reducing the temperature by 2°C has been 
shown by other workers to prevent ischemic neuronal death in 
brain. We now demonstrate that the same drop in temperature 
abolishes DNP-stimulated PGE2 release and preserves contractile 
function in muscle. Although brain and muscle are quite dissimilar 
tissues, this may suggest a common protective cellular mecha­
nism of hypothermia in muscle and brain. This /'/; vitro model, 
which can be adapted to human muscle, may prove useful for 
the further investigation of the basic mechanisms of cellular 
ischemia in skeletal muscle and the development of therapeutic 
strategies to reduce the rate of irreversible cellular injury. 
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