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Abstract

We consider in this article an evolutionary monotone follower problem in [0,1].
State processes under consideration are controlled diffusion processesyx(t) = y"U)<
solutions of dyx{t) = g(yx(t),t) dt + a(yx(t),t) dw, + dv, with yx{0) = x e [0,1],
where the control processes v, are increasing, positive, and adapted. The cost
functional is of integral type, with certain explicit cost of control action including
the cost of jumps. We shall present some analytic results of the value function,
mainly its characterisation, by standard dynamic programming arguments.

1. Introduction

This article deals with the evolutionary version of a monotone follower prob-
lem considered in Sun [6]. Monotone follower problems originally arose from
the control of spaceships (cf. Bather and Chernoff [1], [2]), where the con-
trol variable represented the cumulative amount of fuel used up to a certain
time. Great progress has been made since 1980 (cf. Benes, Shepp, and Wit-
senhausen [3]). One is referred to [6] and the references therein for detailed
background and relevant results.

We shall study a class of time-dependent monotone follower problems in
the bounded interval [0, 1] over a finite horizon T. The state processes under
investigation are given by yx(t) = yx(t), solutions of

dyx{t) = g(yx(t),t)dt + a{yx(t),t)dwt + dv,
yx(0) = xe[0,l]
v,, increasing adapted control processes with VQ = 0.
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98 M. Sun [2]

Our aim is to minimise

UTA7" rxAT

f(yx(t),t)dt + <fi(yx(t),t)dvc(t)
Jo Z(yx(T))l{T>T)

1
over all such controls v,, where / is holding cost, 4> is cost of control, y is
exit cost, <J is terminal cost, and x is the first exit time of yx(t) from [0,1].

Note that the last integral in the cost functional represents a class of explicit
cost of jumps at time s. As in [6], our value function can be characterised as
the maximum solution to a variational inequality, which is the main result
of this article.

In Section 2, we give the precise formulation of the problem and state
basic assumptions we need to develop the main result. Section 3 concerns
the derivation of the main result.

Since the ideas of approach will be similar to those used in [6], some details
will be skipped for brevity of presentation. However, let us point out that the
new feature of our derivation here lies in the fact that the a priori estimates of
dtu

e, dxu
e, dxu

e, and (l/e){-dxu
e - <j>}+ are obtained in a manner different

from that in [6]. As before, ue is the value function when the admissible
controls are taken from a subclass of regularised ones. Details for deriving
these estimates will be provided.

Finally, let us mention that in Chow et al. [4] a related singular control
problem in the whole space Rl with a finite horizon was investigated by
means of the linearity and convexity arguments. However, we do not use any
of these properties. Instead, we shall use a P.D.E. technique to derive our
estimates with fairly strong regularity assumptions.

2. Statement of problem and basic assumptions

Let a bounded time interval [0, T] and a measurable space (£2, F) be given.
Let {F,},€[otT) be an increasing right continuous family of (completed) sub
(T-algebras of F. We consider for a triple (P, w(-),v(-)) the one-dimensional
controlled diffusion process given by

dyx{t) = g(yx(t),t)dt + a(yx{t),t)dw, +dvt, yx(0) = x e [0,1], (2.1)

where P is a probability measure on (&,F), {w(t): 0 < t < T} a standard
Wiener process in Rl with respect to (&,{Ft},P) and {v(t): 0 < t < T} a
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[3] Evolutionary monotone follower 99

progressively measurable random process from [0, T] into [0,oo), right con-
tinuous, having left limits and nondecreasing with v(0) = 0, which will be
denoted by v() e V.

Let G = (0,1) x (0, T). Let us use the following definition of distance in
R2 (cf. e.g. Friedman [5], Chapter 3)

where P = (x,t) and Q(x',t'). The concept of Holder continuity will be
defined below with respect to this distance.

We adopt the following notations:

^ ^ ^ ( r>0 )

|M|r = \U\O + Hr(u), R2+f = \u\r +WMr + l«l«l, + H , ,

where dyu (or simply uy) denotes the partial derivative of u with respect to
y. d2u or uyy will denote the second partial derivative of u with respect to
y, and similarly for uxy, etc.

We say that u is uniformly Holder continuous with exponent r in G if
Rr{u) < oo. By the local Holder continuity of u in G, we mean the uniform
Holder continuity of w on small compact subdomains. Then we introduce
the following function spaces:

C2+r(G) = {ue C(G): d,u,dxu and d2u exist in G, and \u\1+r < oo}

Ci+r(G) = {ue C(G): d,u,dxu e C{G) and they are uniformly Holder

continuous with exponent r in G).

We adopt the following assumptions (0 < r < 1).

g and a are in Ci+r(G) such that d2g and d2a are locally ^ 2)
Holder continuous with exponent r in G.

o{x) > a0 > 0, for some constant a0. (2.3)

4> > 0, f e C1+f (G) such that d24> and d2f are locally Holder <2 4)

continuous with exponent r in G.

We also introduce the following compatibility conditions:

There exists a C2+r(G) extension V of ¥(0, •), ¥( 1, •), and f (•) to G.
(2.5.a)

^'(z) + 0 ( z , r ) > O , forz = 0 a n d l . (2.5.b)

4"(z, T) - a\z, T)/2C(z) - g(z, TK'(z) = / ( z , T) for z = 0 and 1.
(2.5.C)
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We want to minimise the following expected cost

UTA7" riAT

f(yx(s),s)ds + <f>(yx(s),s)dvc(s)
Jo

y*(s)

where
T = rx = inf{0 < s < oo: yx(s) e {0,1}}.

3. Characterisation of optimal cost

As usual, we are going to minimise the following expected running cost

a fxAT

f(y(s),s)ds + J 4>(y(s),s)dvc(s-t)

/ <t>{2,s)dz), (3.1)
-'y^-i )

where

x = zx<t = inf{r < s < oo: y(s) G {0,1}},

y(-)=yj?,»(-) satisfying
dy{s) = g(y{s),s)ds + o(y(s),s) dw{s - t) + dv{s - t) (3.2)

y(t)=xe[0,l].

We denote
u(x,t) = inf{JXtt(v):veV}. (3.3)

Our main results are given in Theorem 3.2 which characterises u(x,t) as
the maximum solution to variational inequality (3.12). In order to prove the
theorem, we need to study a penalised version of the original problem, as we
did in [6]. Let us define a penalised version of V by (e > 0)

Ve = {vG V:0<vs< l/e, 0<s< T } . (3.4)

We then set
ue(x,t) = inf{JXil(v): v e Ve}. (3.5)

The main results concerning ue are given as follows.
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THEOREM 3.1. We assume (2.2)-(2.5). Then the optimal expected cost uE

given in (3.5) is the unique solution of({z}+ standing for the positive part of

- d,ue - {o2l2)dy - gdxu
s + (l/e){-dxu

e - <f>}+ = f, in (0,1) x [0, T),

ue(x, T) = t(x), Vx G [0,1], u° € C2+r(G). (3.6)

Moreover, \\ue\\c(G) w bounded in e.

PROOF. First of all, we prove the existence of a solution to (3.6). Standard
results in P.D.E. (e.g., [5, Theorem 3.7]) imply that the problem (for Holder
continuous h with h(z, T) = f(z,T) for z = 0 and 1)

- d,u - (a2/2)d^u - gdxu = h, in (0,1) x [0, T),

«(0,0 = ¥(0,0, «(l ,0 = ¥ ( l , 0 , W€[0 , r ) , (3.7)
u(x,T) = e{x), Vx€[0,l],
ueC2+r(G),

has one and only one solution, which is given explicitly by

* *h(yXtl(s),s)ds \= EU*

where yx,i{')1S g i y e n by (3.2) with v(-) = 0, and x = xx<l is the corresponding
first exit time. Moreover, we have (cf. [5, Theorem 3.6])

\u\1+r < C(W\2+r + W\r)
 w i t h c independent of h.

Then the standard argument of fixed point shows the existence.
We can show the uniqueness of solution by the stochastic interpretation,

which is similar to that given in [6].
The second part comes from the stochastic interpretation, too. Thus the

proof is complete.

So far we have not seen any significant difference between the stationary
problem studied in [6] and its evolutionary version considered in this article.
As pointed out in the introduction, the crucial difference lies in the estab-
lishment of estimates of d,ue, dxu

e, d*ue and (l/e){-dxu
e - <£}+. In the

stationary case, the penalised Hamilton-Jacobi-Bellman equation is actually
an ordinary differential equation, while in the present case, we have to deal
with partial differential equations. We need to overcome this technical diffi-
culty in order to adopt the standard technique used in [6] to characterise u.
In what follows, we discuss these estimates in several lemmas.
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102 M. Sun [6]

We need to introduce the following assumption first:
There exists w e C2-l(G) n C >'((?) such that

-d,w - (a2/2)d2w - gaxw < f, and - dxw -<j><0, in (0,1) x [0, T),

ti/(0,0 = m 0 , w{\,t) = V{\,t), Vte[0,T), (3.8)

LEMMA 3.1. The condition (3.8) will be satisfied if one of the following holds.

r), (a)
- a,¥(0, t) - (<72/2K"(x) - ^'(Jf) < fix, 0;

PROOF, (a) Consider

w = T(0,0 + (¥ (1 ,0 - ¥(0, t))xp + Z(x) - «F(0,

for p » 1. The boundary and initial conditions are seen to be satisfied. One
can also check:

-dxw = -dxt -/>(¥(!>0 -¥(O,O)Jfp-
- d,w - (a2/2)d2w - gdxw

= -d,V{0, t) - [dMi, t) - dtv(0, t)]x"
- 02/2{p(p -

,0 - {a2mC{x) - g£'(x) - x"-2{[a2pip -

'{x) - gt"{x).
The last inequality holds as long as p » 1. Thus we can get (3.8) from (a),

(b) Consider

w = ¥(0,0 + (¥(1,0 - ¥(0,0)* + i(x) - ¥(0, T).
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Then similar arguments prove the desired result.

REMARK 3.1 The sufficient conditions (a) and (b) for (3.8) to hold are very
special. We do not intend to get any more general sufficient conditions.

LEMMA 3.2. For the optimal cost ue, \\dxu
e\\c(G) < C (independent ofe).

PROOF. Let us consider a regularised version of (3.6)

- d,ue-s - a2d2ue-s/2 - gdxu
e>s + hs{-dxu

E-s - tf>)/e = f,

i n ( 0 , l ) x [ 0 , r ) ,

ue>s(x,T) = Z(x)Vxe[0,l], (3.9)

ue-s e C2+r(G) such that d^ue-s,d}it*, d2
tu

e-s, and d?xlu
E'd

are all locally Holder continuous with exponent r in G,

where
[0, *E(-oo,0],

(t-dsin(t/S))/2, te(0,dn],

t-Sn/2 t €{Sn, oo).

Let us observe that

hs e C2, hd -> { } + uniformly in R1 as 8 - • 0,

0 < hs(t) < {t}+, h's{t)>0.

The existence of a solution to (3.9) is guaranteed, e.g., by [5, Theorems 3.7
and 3.10]. In fact, the C2+r regularity readily follows from [5, Theorem 3.7]
as in the proof of Theorem 3.1. Let / = / - hs(-dxu

e-s - <j>)/e. Then dxf
is locally Holder continuous in G. Hence, [5, Theorem 3.10] implies that
d^ue's and 3j,«£'<5 are locally Holder continuous in G. Consequently, d^f is
locally Holder continuous in G. Using [5, Theorem 3.10] once again, we get
that d*ue>s and d%xtu

e's are locally Holder continuous in G. Now it follows
from (3.9) that d,ue's, given by

-a2d2
xu

e's/2 - gdxii*'s + hs(-dxu
e's - <f>)/e - f,

has the partial derivative with respect to t, and d}uz'5 is locally Holder con-
tinuous. Thus, we have proved Holder continuity of d?ue's, d^ue'd, d^xlu

e's,
d2

tu
e-s and d2ue-s. _

We also see that (cf. [5, P. 81]) ue's -+ ue in C2+o(G*), for any closed subset
G* of G. Thus we need only show the boundedness of dxu

e-s uniformly in
(S,e,x,t).
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104 M. Sun [g]

(a) estimation of dxu
E-s on {0,1} x [0, T\.

To simplify the notation, let us write u — ue's. Consider u satisfying

- dtu - a2d2ii/2 - gdxu = f, in (0,1) x [0, T),

w(0,t) = V{O,t), fl(l,0 = ̂ ( l , 0 V / e [ 0 , r ) , (3.10)
U{x,T)=S(x) Vx€[0,l] , ueC2+r(G).

T h e n w e h a v e w(x,t) < u(x,t) < u(x,t), w h e r e w{-,) is g iven b y (3 .8 ) .
H e n c e w e ge t t h e r e q u i r e d e s t i m a t e s i n c e w(-,-) a n d «( - , - ) a r e i n d e p e n d e n t
of (S,e).

(b) estimation of dxu
e's in G:

Let <S>(x, t) = ft <f>(y,t) dy. Then setting w = u + <J>, we get

-d,w-(T2d^w/2-gdxw+hs(-dxw)/e = f-g(t>-dt<t>-a2dx(t>l2 - / . (3.11)

Set v = ex'(w2 + 1) with A > 0 to be fixed later (w2 standing for wxwx).
Then

v, = kex'{wl + 1) + 2ex'wxwxt,

vx = 2ex'wxwxvx = 2ewxwxx,

Consider next

Lv = -v, - (a2/2)vxx - gvx - (l/e)h's(-wx)vx

= -leXt{w2
x + 1) - 2ex'wxwxl - a2eXt{w2

xx + wxwxxx)

- 2gex'wxwxx - (2/e)h's(-wx)e
x'wxwxx

= 2ex'wx[-wxt - {o2/2)wxxx - gwxx - (l/e)h'sw(-wx)wxx]

-Xex'(w2 + I) - o2ex'wxx

= 2ex'wx(fx + aaxwxx + gxwx) - XeXt{w2
x + 1) - a2eXlw2

xx

< -Xex'(w2+ l)/2

< -Xv/2,
when A is large enough. Then the classical maximum principle implies that

max v(x,t)= max < max v(x,T), max v(0,t), max v(l,f) V
(x,,)eG \0<x<l 0</<r 0<t<T ')

< max

max[(dxu(0,t) + <t>(O,t))2 + 1],

maxj(axu( 1,0 + 0(1,0)2 + 11} eX

0<t<T

< C(independent of S and e),

which completes the proof of the lemma.
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LEMMA 3.3. For the optimal penalised expected cost ue, \\dtu
e\\c(G) < C

{independent ofe).

PROOF. AS in the proof of Lemma 3.2, it suffices to show that ||dfWe'<J||c(G) <
C, uniformly in {S,e). Recalling in view of (3.8) and (3.10) that w(x,t) <
u(x,t) < u(x, t), we get a uniform estimate of d,u\t=T.

To get the interior estimate of dtu, let us consider v = eXt{w2 + kwx + 1),
where w is the same as that in (3.11). Then

v, = keXt{w} + kwx + 1) + 2eXt(w,Wtt + kwxwxt),

vx = 2ex'(w,wxt + kwxwxx),

vxx = 2ex'(wxt + wtwxx, + kwlx + kwxwxxx).

Consider, as before,

Lv = - teXl(w? + kwl + !) ~ 2ex'(w,w,t + kwxwxt)

- o2ex'(wlt + w,wxx, + kwxx + kwxwxxx)

- 2gex'(w,wxl + kwxwxx) - {2/e)h's{-wx)e
x'(wtwx, + kwxwxx)

= - XeXt(wj + kw2
x + \)- o2eXt(w2

xt + kw2
xx)

+ 2ex'wt[-wu - (o2/2)wxxt - gwxt - (l/e)h's(-wx)wxt]

+ 2keXtwx[-wx, - (o2/2)wxxx - gwxx - {l/e)h's(-wx)wxx]

= - Xex'(wf + kwx + 1) - a2ex'(wxl + kwxx)

+ 2ex'wt[ft + aa,wxx + g,wx] + 2kex'wx(fx + ooxwxx + gxwx)

< -

as long as A(> 0) and k{> 0) are sufficiently large. Consequently, the maxi-
mum principle implies that

max v{x,t)= max \ max v{x,T), max v{Q,t), max v{\,\
(x,t)€G lO<x<l 0<t<T 0<t<T

< max ( max [{d,u{x, T) + dt<&{x, T))2 + kw2
x{x, T) + 1],

(0<x<\
m t t | ( W O , t) + 0,0(0,0)2 + kw2

x{0,0 + 1],

< C (independent of 5 and e),

from which we easily get the desired estimate.

LEMMA 3.4. For the optimal penalised expected cost ue,

(l/e){-dxu
e(x,t) - 4>{x,t)}+ < C {independent ofx,t,e).
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106 M. Sun [10]

PROOF. (3.8) and (3.10) imply that

w(x,t) < ue(x,t) < u(x,t).

Hence, -dxu
e{0, t) - <f>(0, t) < 0.

Let v = -dxu
e - 4>. Then (3.6) implies that

o2/2dxv + l/e{v}+ = f + dtu
e - o2/2dx<f> + gdxu

e = f.

Let v(x') = maxo<x<i v(x,t) for any fixed t e [0, T). If v(x') < 0, then
(l/e){v}+ < 0 for all x. If v{x') > 0, then x" e (0,1]. Consequently,
dxv{x',t) > 0, and for all x

< f(x',t) < max{f(x,t): x} < oo.

Here we have used the results in Lemmas 3.2 and 3.3. So we get the desired
inequality.

REMARK 3.2. An easy consequence of Lemmas 3.2-3.4 is the uniform bound-
edness of dxu

e, which was established by studying an auxiliary deterministic
control problem in the stationary case (cf. [6]).

Let Lxfi(G) be a subclass of functions in CUO(G), defined by

Ll'°(G) = {u e Cl'°(G): dxu and u are Lipschitz-continuous

(in the usual sense) w.r.t. x and t, respectively}.

We are now able to prove the main theorem in this article.

THEOREM 3.2. Under all the assumptions made so far, u(x,t) -
lime->oue(x,t) exists, which is in Llfi(G). Moreover, the limiting function
«(-, •) is the value function with respect to V and is the maximum solution of
the following variational inequality

- d,u - a2d2u/2 - gdxu < f, and -dxu-<f><0, a.e. in (0,1) x [0, T),

(-d,u - a2d2u/2 - gdxu - f){-dxu - <f>) = 0, a.e. in (0,1) x [0, T),

ov/e[o,r), (3.12)

PROOF. In view of a priori estimates ofdtu
e, dxu

e, d2ue, and {-dxME-</>}+/3,
and the monotonicity of ue in e, we should be able to take the limit in (3.6)
as e —* 0 to get (3.12) for some u in Llfi(G). By the stochastic interpretation
of ue, we easily see that u(x,t) > inf{JXtt(v): v e V}. On the other hand,
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[11] Evolutionary monotone follower 107

for any v &V, let us apply a generalised Ito's formula to the semi-martingale
u(y(s),s) with y{s) = yx,t(s) and x given by (3.2) in order to get

( rzAT

u{x,t) = El ^ [-8,u - {o2l2)d2
xu - gdxu](y(s),s) ds + u{y{xKT),xKT)

/

z\T
-dxu(y(s),s)dvc(s-t)

- E My(s),s)-u(y(s-),s)]]
t<s<rAT

zAT

r
/ <t>(y(s),s)dvc(s-t)+ J2 / <Kz,s)dz).J J

Consequently, u(x,t) < inf{Jxt(v): v e V}. Thus, we have proved that
u(x,t) = iof{Jx,t(v):veV}.

The maximality of u(x,t) as a solution to (3.12) follows from the argu-
ments above.
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