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ON METRIC REGULARITY IN METRIC SPACES

SERGE GAUTIER AND KARINE PICHARD

We prove metric regularity results for both single-valued maps and set-valued maps
defined between metric spaces.

1. INTRODUCTION

Since Graves' theorem (see [8]), many papers have been devoted to inversion the-
orems, open mapping principles and metric regularity problems. We are especially in-
terested in metric regularity. Some results are obtained for single-valued maps (among
others [5, 17]) and others for set-valued maps (among others [3, 5, 9, 11, 12, 13, 14,
15, 16, 17] and references therein). However, in most cases, they are obtained for maps
defined beetwen two vector spaces and the linear structure seems to play a key role al-
though the notion of metric regularity is a concept which does not a priori require a
linear structure. A natural question is how to extend these results in metric spaces. In
[6, 7], some inverse mapping theorems are stated in this case. In [4, 10], metric regularity
results are proved using a notion of slope.

The aim of this paper is to state metric regularity results for both single-valued and
set-valued maps defined between metric spaces using the approach of mutational calculus,
as in [2]. Each metric space is endowed with a mutational structure which allows a kind
of differential calculus (see [1, 2, 18, 19]). To get metric regularity results, it is necessary
to make some assumptions on the target space of the function. The assumption made by
Aubin in [2] in order to obtain a metric regularity result in the mutational case seems to
be strong. In particular, we exhibit a simple mutational space for which it is not satisfied.
The goal of this paper is, among other things, to weaken this hypothesis. The set-valued
case is also studied.

In Part 2, we recall some notions we shall use throughout the paper. In Part 3, we
prove a metric regularity result for a single-valued map. In Part 4, we consider the case
of a set-valued map.
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2. PRELIMINARIES

Let us consider two metric spaces, X and Y, whose distances are respectively denoted
by dx and dy and open balls by Bx and By. If there is no possible confusion, we simply
write d and B. If A is a subset of X, the distance dx(x, A) from x to A is defined as
follows: dx(x,A) — ln{{dx(x,a) : a e A}.

The mutational calculus is a theory of differential calculus in metric spaces due to
J.P. Aubin ([1]). The basic idea is to endow a metric space with a net of "directions".

We recall from [2] the following notion (a slightly different notion is considered in

[1]):
DEFINITION 2.1: A continuous application u : X x [0,1] -> X is said to be a

transition if

(i) \tx e X,u(x,0) = x

(ii) Vx € X,Vt € [0, If, lim (dx(u(x,t + h),u(u(x,t),h)) )/h = 0
A - » O + V ' ' / '

(hi) a(u) = max(0,sup lim (dx(u(x,h),u(y,h)) - dx(x,y))/(hdx(x,y)))
x^y h—•0"'" ^ / /

< +OO

(iv) f5(u) = sup lim sup f dx (u(x, h),x)\/h < +00.

The space of all the transitions is denoted by U. We now endow U with the following
distance:

d&{u, v) = sup lim sup — ^—7-̂  — - .

Let V be a nonempty subset of U. (X, V) is a mutational space if V is a closed subset
of U and if I? contains the neutral transition 1, defined by l(x, h) = x, Vx € X, V/i 6 [0,1].

EXAMPLE 2.2. It is possible to construct a mutational space on the space of the com-
pact sets of Mn (endowed with the Hausdorff distance). Let M be a non negative real.
We denote by XM the space of the compact sets of W which are included in MBR- and
by XMC the points of XM that are convex. Let C be in XMC- We define a transition by
the following way: uc : XM x [0,1] -> XM, {A, h) (->• e~hA + (1 - e~h)C. Any transition
is generated by a convex set. Set T>xM = {uc • C 6 XMc}- Then, (XM,T>XM) is a
mutational space. We refer to [19, 18] for details.

DEFINITION 2.3: Let (X, Vx) and (Y, Vy) be two mutational spaces and / : X
—¥ Y. We say that / is mutable in x in the direction u € Vx, if there exists v € Vy such
that

U m dY(f(u(x,h)),v(f(x),h)) = Q

/i-»o+ h
o

This is denoted by v € f{x)u. We say that / is strictly mutable at x in the direction u

if there exists v such that

l i m dy(f{u(X',h)),v(f(x'lh)) _

"" r h
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REMARK 2.4. If / is a function into XM, endowed with the space of transitions con-

structed in Example 2.2, the mutational derivative is unique so that you can simply write:

v = f(x)u (see [18]).

It is clear that the choice of the net of transitions is crucial. Indeed if it is poor, you
can not hope to get good results. In the following definition, we introduce a notion of
richness of a mutational space.

DEFINITION 2.5: Let (X, Vx) be a mutational space. It is said to be rich at x if
the following condition is satisfied: there exists a function k : [0,1] -4 [0,1] increasing,
equal to 0 at 0, there exists n > 0 such that, for any y, z in B(x,n), there exists u in
Vx satisfying:

dx(u(y,h),z)^(l-k(h))dx(y,z),

for all h in [0,1].

EXAMPLE 2.6.

(1) Consider the case where X is a normed vector space; a mutational space
is simply constructed by using the following natural transitions: u(x, h)
— x + hu, where u belongs to X. This mutational space is rich at any point
x: consider k(h) = h and u(t, h) = t + h(z — y).

(2) The space {XMc,T^xMC) ls " c n a t a n v point. In this case, it is sufficient
to consider the function k(h) = 1 - e~h and u(t, h) = e~ht + (1 - e~h)z.

Let us now recall a last definition.

DEFINITION 2.7:

(i) A function / : X -> Y is said to be metrically regular at x0 if there exist
K > 0, R > 0 and r> 0 such that

for any (x,y) in Bx(x0,r) x BY(f(x0),R).

(ii) A set-valued map F : X ^ Y is said to be metrically regular at a point
(rco, j/o) of its graph if there exist K > 0, R > 0 and r > 0 such that

for any x in Bx(x0, r), for any y in BY(y0, R).

3. T H E SINGLE-VALUED CASE

In this part, we consider the case of a single-valued map. Let us first recall a result

of Aubin (see [2]).
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THEOREM 3 . 1 . Let (X, Vx) and (Y, VY) be two mutational spaces and f : X

—¥ Y. We assume that:

(i) For any y, z in Y there exists u in VY such that:

l i m dY(u(z, h), y)-(l- h)dY(z, y) _ Q

h-»o+ h

and /3(u) ^ dY(y,z).

(ii) There exists c > 0, j > 0 such that f is strictly mutable on the ball B(x0,7)
o

and the mutations f(x) are surjective, and for every x in B(x0,7), for any
o

w in VY there exists v in Vx such that w € f(x)v and f3(v) < 0(w).

Then, there exists I > 0 such that for any y in int(B(/(xo), (7/c))) , there exists a

solution x to the equation f(x) — y satisfying dx{x,x0) ^ ldy(y,f(x0))-

R E M A R K 3.2. It is quite easy to see that the assumption (i) is not satisfied for

the mutational space (XMC^XMC): Let Z and Y be two points of XMC- For the

equality to be satisfied, we necessary have u(X,h) — e~hX + (1 - e~h)Y. Then,

h~ldH(u(X,h),X) = h~l(l — e~h)dH{X,Y), this shows that the second condition is

not satisfied. When looking more precisely, we realise that the required inequality in

(i) is in fact an equality, this explains why this assumption is difficult to satisfy: Us-

ing the triangular inequality and the first condition of (i), we have h~1dY(u(z, h),z)

^ dY(z,y) + e(h) with lim e(h) — 0. Consequently, liminf h~ldY{u(z, h),z) ^ dY(z,y).
/i->0+ /i-»0+

Using the inequality of (i), we deduce that fi(u) = dY(z,y).
Let us now state the main result of this part.
THEOREM 3 . 3 . Let (X, Vx) and (Y, VY) be two mutational spaces, X being

complete. Let f : X —> Y be a continuous function. Let a be in X. We suppose that
(Y,T>Y) is rich at /(a). We assume that:

(hi) 3c> 0 3/3 > 0 Vx G Bx{a,0), Vv € VY, 3u € Vx : v € f(x)u, and

dx(u(x,h),x)^cdY(f(x),v(f(x),h)),

for all h in [0,1]

(h2) Ve > 0 3a > 0 3r? > 0 Vi e Bx(a, a) Vu S Vx Vv € f(x)u:

dY(f(u(x,h)),v(f(x),h)") ^

for all h in [0,77].

(b.3) 3e > 0:

2ec
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where c is defined by (hi), 77 by (h2), and k by the assumption of richness
of(Y,VY).

Then, f is metrically regular at a.

PROOF: Let a, ft, 77, e be the constants defined by the assumptions (hi), (h2), (h3)
and \i defined by Definition 2.5. Set 7 = 2ec+ 1 - k(r])(l +ec). Observe that 0 < 7 < 1.
Set

_ . /(l-7)min(q,ft) fj.\
it = min I ; r—, — 1.

V 4 c ( 2 - Jfe(»| ) ) ' 4 /
The function / is continuous at a: there exists £ such that for all x in Bx(a, C), f(x)
belongs to BY(f(a),R). Set r = min(C, (a/2), {P/2)). Let x be in Bx(a,r) and y be in
BY{}'(a), R). We have:

We are going to construct a sequence (xn, yn)n£N such that

(i) Vn = f(xn)

(ii) xn e Bx(a,m\n(a,P))
(iii) dY(yn,y)^7ndY(yJ(x))

(iv) dx(in+i,a:n)^(2-A(»?))c7Bdy(y,/(a:))
(v) yneBY(f{a),tJ,).

The sequence begins with (xo, yo) = (z, f{%))- Assume that we have already constructed
(xi,yi) for i = l, ...,n. We now construct (xn+1,yn+1). The space (Y, VY) is rich at f(a),
then there exists t; in VY such that:

(1) dY(v(yn,r]),y) ^ (l - k(r]))dY(y,yn).

Let us now apply the assumption (hi) to xn, 77 and t;: there exists u in 2>̂  such that
o

v € f(x)u and

(2) c/x(u(xn,77),a;n) ^ cdY(f(xn),v(f(xn),rj)).

We then use (h2):
(3) dY[f(u{xn,ri)),v(f{xn),r))) ^ £dx(u(xn,r)),xn).

We set xn+i — u{xn,rj) and yn+1 = /(xn+i). Using the triangular inequality and (1), we
get

(4) dY(yn,v(yn,v)) < {2-k(r]))dY{yn,y).

On the other hand, using (2) and (3), we get

dY(yn+uv(yn,v)) < ecdY(yn,v{yn,r))).
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We then obtain:

dy(yn+i,v(yn,T))) ^£c(2-k{ri))dY(yn,y).

From the previous inequality and the estimate (1), we deduce:

dy(yn+uy) < dY(yn+i,v(yn,r])) +dY(v(yn,T]),yn) < jdY(yn,y).

This yields to

We also have:
dY(yn+i,f(a)) ^ dY(yn+i,y) + dY(y, f(a)) < fi.

From (2) and (4), we first get dx(xn+i,xn) ^ c(2 - k(rj))dY(yn,y) and then, with the
help of (iii),

dx(xn+uxn) ^ {2-k{n))c1
ndY(f{x),y).

We have
dx(xn+ua) ^ (2-k(r,))c^-dY(f(x),y)+dx{x,a)

and then

This leads to
dx(xn+i,a)

In consequence, (xn+i>2/n+i) satisfies the five required conditions. From inequality (iii)
(and the fact that 0 < j < 1), it is easy to see that the sequence (yn)neN converges to y.
On the other hand, a simple verification leads to

dx(xn+p, xn) < 7" (2 - k(r,))cdY (f(x), y) i = X

The sequence (xn)n6N is a Cauchy sequence in a complete metric space, so it converges
to a point x of X. This point satisfies y = f(x). We also have:

dX(xn,x) «S (2 - \ ^

Therefore,

dx(x,x) ^ (2 - k(r,))cj^

The result follows with K = ((2 - k{r]))cj/{l-j).
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REMARK 3.4. If Y is a normed vector space, (h3) can be dropped. Choose e > 0 such
that ec < 1. It is possible to take n < (1/2) so that (ec + l)r] < 1. Set j = (ec + 1)77 and

R _ (! ~ 7) min(a, /?)
2cr?

The proof is similar at the proof of Theorem 3.3.

REMARK 3.5. We can avoid (h3) if we strengthen the notion of richness of (Y,VY),
by considering the following notion. The space (Y,Vy) is said to be super-rich at x if
the following condition is satisfied, there exists a function k : [0,1] -* [0,1] increasing,
equal to 0 at 0, there exists /J, such that, for any y, z in By(x,n), there exists u in Vy
satisfying:

dY(u{y,h),z) < (1 - k(h))dY(y,z) and dY(u(y,h),y) < k{h)dY{y,z)

for all h in [0,l](In particular, we have dy(u(y,h),z) — (l - k(h))dy(y,z) and
dy(u(y,h),y) = k(h)dy(y,z)). In this case, we choose e > 0 such that ec < 1. Set
7 = 1 — (̂77) -f- k(r))ec. The proof is similar at the proof of Theorem 3.3. This assumption
is not comparable to the assumption (i) of Theorem 3.1 but the space {XMc,VxMC) is
super-rich at any point.

Let us now detail what is happening in the particular case of a set-valued map. Let
F : X =5 R" be a set-valued map, with nonempty convex compact values; we denote
by / : X -> XMc the single-valued map, denned by .F(x) = f(x). If / is mutable

o

in x in the direction u, we denote by F(x)u the unique convex compact set such that

°f(x)u = e~hf{x) + (1 - e-h)F{x)u.
THEOREM 3 . 6 . Let (X, V) be a mutational space, X being complete. We con-

sider a set-valued map F : X =J K" with nonempty, convex, compact values. We suppose
that F is continuous with respect to the Hausdorff distance, denoted by du- Let a be in
X. Assume that:

(hi) 3c> 0 30 > 0 3M > 0 Vz € Bx(a,0), VD € BXMC{F{a), M), 3u € VX :

F(x)u = D and

dx(u(x, h), x) ^ c(l - e-h)dH(F(x), D),

for all h in [0,1].

(h2) Ve > 0 3a > 0 3r/ > 0 Vx € Bx(a,a) Vu 6 Vx such that F(x)u
eBXMC(F(a),M):

dH (F(U{X, h)), e-hF(x) + (1 - e-h)F(x)u) ^ edx(u(x, h),x),

for all h in [0,r]].
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Then, there exists r > 0, R> 0, K > 0 such that

dx(x,F-\y))<KdH{y,F{x)),

for all x in Bx(a, r), for all y such that d(y, F(a)) ^ R.

PROOF: We consider the mutational space XMC introduced in Example 2.2. The
single-valued map / satisfies the assumptions of Thereom 3.3. Consequently, there exist
R > 0, r > 0, K > 0, such that

for any x in Bx(a, r), for any A in BXMC{F{a), R). As f is continuous, we can choose r
such that dH(f{x),f{a)) ^ (-R/3). Let x be in Bx(a,r) and y be such that dH(y,F(a))
^ (R/3). We consider the set A = co(F(x) U {y}) where co represents the closed convex
hull. We have (1H(F(X),A) = dw(y,F(x)). Hence, from the triangular inequality, we
get

dH(F(a),A)^dH(F(a),F(x))+dH(y,F(a))+dH(F(a),F(x)),

this leads to dH{F(a), A) ^ R. We then obtain that dx(x, f~l(A)) < KdH(y, F(x)). We
have f~1(A) C F~l(y). Indeed, if x' belongs to f~l(A), we have f(x') = A; y belongs to
A, then y £ F~l(x') and then x' belongs to F~1(y). We conclude that

dx{x,F~\y) ^ dx(x,r\A)) < KdH(y,F(x)),

which concludes the proof. D

This result depends only on the point a and not on a point (a, 6) of the graph of F.
In the following part, we intend to localise the statement of Theorem 3.6.

4. THE SET-VALUED CASE

In [3], a notion of differentiability (extended in [11]) is introduced for a set-valued
map F : X =^ Y, where X, Y are normed vector spaces. In this section, we adapt this
notion in the case where X is only a metric space in order to obtain a metric regularity
result.

Let (X, V) be a mutational space and Y be a normed vector space, X being complete
(d is the distance on X and ||.|| the norm on Y).

DEFINITION 4.1: We consider a set-valued map F : X ^ Y. We say that L is an
approximation of F at a point (a, b) of F if for any e > 0, there exists r > 0 such that:

L(u(x, h)) r\BYC F(u(x, h))-z- ed(u(x, h), x)BY,

for all x in Bx(a, r), for all z in By{b,r) n F(x), for all u in V and for all h satisfying

d(u{x,h),x) <r.
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THEOREM 4 . 2 . We suppose that X is complete. We consider a set-valued map

F : X =3 Y, with closed graph. Let (a, b) be in F. Assume that:

(hi) L is an approximation of F at (a,b).

(h2) 3a > 0 3c> 0, Vz £ aB, Vz £ B*(a, r )3ueP3/ i> 0:

z e L(u(x,h)) and d[u{x, h),x) ^ c||z||.

Then, there exist R > 0, K > 0 such that for aJi ?/ € BY{b, R), there exixts x in Bx(a,r)
satisfying

y £ F(x) and d(x,a) < K\\y - b\\.

PROOF: Let e > 0 be chosen such that ec < 1. Set R = min fa, (r/c), (r/c)(l

- ec), 1J. Set y in B(b, R). We are going to construct a sequence (xn, yn) satisfying the
following conditions:

(i) xneBx(a,r)

(ii) yn£F{xn)<lBY(y,a)

(iii) \\v-Vn\\<(ec)n\\v-b\\

(iv) d(aJn-i>zBK(ec)B-1c||l/-&ll-

Assume that the elements (xi,yi), i = l,...,n, have already been constructed. Let us
build (xn+i, yn+i). We first apply (h2) to z = y — yn and x = xn. There exist u £ V and
t > 0 such that y-yn € L(u{xn,t)) and d(u(xn,t),xn) ^ c||j/-yn||. Set xn+1 = u(xn,t).
We have

d(xn+1,xn)^c(£c)n||2/-6||.

We now apply (hi) to z — yn, xn and u. For all h such that d(u(x, h), x) < r, we have

L(u(xn, h)) n BY c F(u{xn, h)) -yn- ed(u(xn, h), xn)BY.

Now, d(u(xn,t),xn) ^ (ec)ne||y - 6[| and then d(u(xn,t),xn) ^ (ec)nr < r. So,

L(xn+i) n BY C ir(xn+1) - !/„ - ed(xn+llxn)By.

There exist yn+i in F(xn+1) and w in By such that

y-Vn = 2/n+l - J/n - ^^(^n+l, Xn)W-

We then obtain:
Hy-jfa+i IK Mn+1112/ — foil

and consequently ||y - J/n+i|| < <*• We have:

1 — ec
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this allows us to conclude that xn+i belongs to B(a,r). The sequence (yn)n€N converges
to y (condition (iii)). The sequence (zn)n€N is a Cauchy sequence; indeed,

d(xn+p,xn) s£ c\\y - b\\(ec)n .

In consequence, the sequence (zn)neN converges to a point x. As F has a closed graph,
y belongs to F(x) and we have:

d(x,a)^\\yb\\,
•I c C

this concludes the proof. D

COROLLARY 4 . 3 . Under the assumptions of the theorem, we have: for all(xi,yi)
in B((a,b),(r/2)), with yi in F{x{) for all y in BY(yi,(R/2)) there exixts x in
Bx(xu(r/2)) such that

yeF(x) andd(x,Xl) ^ K\\y - yi\\,

where R, K and r are the constants defined in Theorem 4.2.

PROOF: The assumptions of Theorem 4.2 are satisfied with {x\, y{) instead of (a, 6);
the radius on which the assumptions are satisfied is now r/2. Therefore, the estimate is
obtained on a smallest neighbourhood of y\. Q

LEMMA 4 . 4 . Let F be a set-valued map and (a, b) be a point of its graph. Assume
that the following condition is satisfied.

(5) Ve > 0 3r > 0 : x € B{a, r) => d(b, F(x)) < s.

Let v > 0. Then, there exists r such that for all (x,y) in B(a, r) x B(b, r) we have

d(y,F(x))=d(y,F(x)nB(b,v)).

PROOF: Let v > 0. We apply Condition (5) to t — v/A. There exists r such that
for x in B(a, r), we have d(b,F(x)) < u/4;, this implies that there exists z in F(x) such
that d(b, z) ^ i//4. Let y be in B(b, (v/4)). Let z not be in B{b, v). We have:

d(y, F(x)) < d(y, i) ^ d(y,b) + d(b, z),

this leads to d{y, F{x)) ^ v/2. We also have:

d(y,z)>d{z,b)-d{y,b)

and then

Hence,
d{y,z)2^ + ^>^ + d(y,F(x)).

This is true for any z £ B(b, v). The conclusion holds. D
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COROLLARY 4 . 5 . Under the assumptions of the Theorem 4.2 and Condition

(5), F is metrically regular at (a, 6).

PROOF: We apply Lemma 4.4 to v = min(r/2,R/4) and Corollary 4.3. Let

y be in BY(b,mm(R/4,r)) and x be in Bx(a,min(r/2,r)). Since the set F(x)

n BY(b, min(r/2, R/4)) is nonempty, let us choose j/i in this set. Observe that (x,yi)

belongs to B((a,b),r/2) and y belongs to BY{yi,R/2). We can apply Corollary 4.3.

There exists Xi in Bx(x,r/2) (then in Bx(a,r)) such that y belongs to F(xi) and

dx(x,Xi) ^ K\\y- j/i||. Therefore,

d{F-\y),x) ^ Kd(y,F(x)nB(b,min(r/2,R/4)))

According to Lemma 4.4, with v = min(r/2,i?/4), the result follows. D
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