
Adv. Appl. Probe 18, 279-282 (1986)
Printed in N. Ireland

© Applied Probability Trust 1986

A NOTE ON THE mGHER MOMENTS OF THE RANDOM
VARIABLE T ASSOCIATED WITH THE NUMBER OF RETURNS
OF A SIMPLE RANDOM WALK

WALTER KATZENBEISSER* and
WOLFGANG PANNY, * Wirtschaftsuniversitiit Wien

Let Xk , k =1, 2, . . . . be independent and identically distributed random variables
with

P{Xk = I} = P{Xk = -I} =~.

Consider the simple random walk
n

Sn= L Xi, n = 1, 2, ... ,2n, with So = 0 and ~n = 0,
k=1

i.e. a simple random walk starting at 0 and leading to 0 after 2n steps. To this random
walk the random variable

T = [number of visits to the origin],

is associated. This paper primarily deals with the asymptotic behaviour of the moments
of T. This investigation can be motivated by the following applications: (i) McGilchrist
and Woodyer (1975) used T for a distribution-free CUSUM procedure. (ii) Katzenbeisser
and Hackl (1985) examined the applicability of T as test statistic, where the
Kolmogorov-Smimov two-sample test was considered as an alternative. The distribu­
tion of T may be given by (cf. e.g. Dwass (1967)):

P{T> t} = 2t(~-=-/)(~) -1, t = 1, 2, . · · , n.

The moments of T can be derived by summation by parts:

E{TS} =i «t + l)S _ f)2t(2n-=- t)(2n)-1.
t=O n t n

For s = 1, 2 'closed-form' expressions are given by Katzenbeisser and Hackl (1985):

E{T} = 21Jt(~n) -1,

(
2 )-1E{T2

} = 4n + 2 - 21Jt nn .

For higher moments, however, there seems to be no easy way to obtain closed-form
expressions. The asymptotic behaviour of the moments of T is given by the following
result.
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(1)

Theorem. Let n~ 00, then we have:

E{T} = v'Jln! + lv'Jln-~ + O(n-1),

E{T2} = 4n - v'Jln! + 2 + O(n-~).

For S ~ 3, the following general formula applies:

E{T"} = rC;2) (4n)'12 - G)rC; 1)(4n)(S-1)12
+ ;4 (3s3- &2 + 21s - 1O)rG)(4n)(S-2)12 + O(n(S-3)12).

Proof. By Stirling's approximation one obtains after some manipulations

2t-2n(2n - t) _ t 2 [1 1 (12 24t
2

4t
4

) ]

n - t - (2n - t)n - 48(2n - t) - 2n - t + (2n - t)2

xexp{ -2(2~2_t)}+o(n-2), as n_ oo•

This formula holds for all t. Moreover, it is well known (cf. Feller (1968), p. 180) that

(2nn- t)2'-2n becomes exponentially small for t ii:,n'":", e > 0, as n- 00. Expanding the

powers of (1 - t/(2n» occurring in (1) yields

2t-2n(2n - t) = 1 [1 +.!- +.!. (-1 +7t
2

_ ~)]
n - t Y;;; 4n 8n 4n 12n2

x exp { - 2(2~2_ t)} + O(n-2
) ,

where t = O(n 1l2+
E

) , E sufficiently small. Hence,

(2 )(2 )-1 [ 1 (7 2 4)] { 2}2t n - t nIt t t t 0 -3/2= +-+- --- ex - + nn - t n 4n 32n n 3n2 p 2(2n - t) ( ).

Since

one obtains

(2)

2t(2n - t)(2n)-1 = [1 +.!- (1-f) +_1 (~~_~~+!~)]
n - t n 4n 2n 16n 2 n 3 n2 8 n3

x exp { - ~:J + O(n-~),
where again, t = O(n 1l2

+
E

) .

It will be convenient to write
E{TS

} = 1+ Sse

Expanding (t + 1)S - f according to the binomial theorem one gets

s. = 2: (S) 2: t~t(2n - t)(2n)-1.
O:iA:iis-1 A 1:it:in n - t n
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(4)

The last expression suggests the use of the functions

(3) rA(n) =L t
Aexp { - ~} A= 0, 1, . · · ,

t~1 n

which were introduced in Katzenbeisser and Panny (1984), p. 268. By means of these
functions S, can be rewritten as

«= L (~) [rA+ 4
1

(rA+1 - 2
1

rA+ 3)
O:iA~s-1 I\, n n

+ 1:n 2 GTH2 - ~ T)'+4 + 8~2 TH6) ] + O(n(S-3)12),

as n~ 00. For the sake of brevity the arguments 4n of the rA-functions are omitted in
(4). To prove the error term a 'look ahead' argument is used. Following the method
applied in the derivation of (2) the accuracy of the approximation could be improved by
using more terms in the underlying expansion. Proceeding this way the O(n-~)-term in
(2) can be refined to

1 (-t 25t
3

71t
5

17t
7 t9 ) { t

Z}

(5) n1. 16 + 128n - 768nz + 1536n3- 3072n4 exp - 4n + O(n-
Z).

Apart from the O-term this produces an error of O(n(S-3)/Z), since the order of
magnitude of the rA(n)-functions is O(n(A+1)/Z). This is most conveniently obtained by
estimating the right-hand side of ~) by means of the r-function.

The contribution of the Otn" )-term is only O(n(S-4)12+£). This is easily seen by
recalling that for t > n1/Z+£ the error in (2) actually becomes exponentially small.
Consequently, its contribution may be neglected for E sufficiently small. The error
produced by extending the range of summation to infinity by use of the rA-functions is
only O(n -m) for all m ~ 0 and covered by the given O-term.

In Katzenbeisser and Panny (1984) asymptotic series for the rA-functions, n~ 00, are
given (cf. Lemma 2, p. 269). They were derived by means of the so called r-function
approach (cf. de Bruijn et a1. (1972». Making use of them we get the desired result.

For the variance (oZ) and skewness (y) of T one obtains, for example,

a2= (4 - 1'&)n - ~n! + l(8 - 1'&) + O(n-!),

_ 21'&!(1'& - 3) 3(16 - 51'&) -1 1'&t(191'&Z - 651'& + 16) -1 O( _~)
Y- (4 - 1'&)~ - (4 - 1'&)~ n 2 + 4(4 _ 1'&)~ n + n .

By the same method the theorem could be extended to achieve an error term as small
as we please. The following table summarizes computational results, where exact (ex.)
and approximate (app.) values are compared.

J.l a Z
'Y

n ex. app. ex. app. ex. app.

10 5·6755 5·6751 4·11 4·19 0·1683 0·1738
20 7·9763 7·9762 10·40 10·46 0·3167 0·3184
30 9·7487 9·7486 17·21 17·26 0·3788 0·3797
40 11·2451 11·2450 24·30 24·34 0·4148 0·4153
50 12·5645 12·5645 31·57 31·60 0·4389 0·4393

100 17·7467 17·7467 69·31 69·33 0·4975 0·4976
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To conclude, we should like to mention further that the distribution of T/(2vn,) tends
to a standard Weibull distribution with parameter 2, as n~ 00 (Johnson and Kotz
(1970), p. 250). This is easily seen from Equation (2).
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