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ABSTRACT: We review recent work on gravitational instabilities in circumstellar 
disks and discuss implications for the possibility of forming binary companions within 
these disks. Linear stability analysis indicates that self-gravitating modes with az-
imuthal wavenumber m = 1 will grow strongly in star/disk systems with the physical 
properties observed in astrophysical systems. Smooth particle hydrodynamic simula­
tions indicate that these self-gravitating instabilities (with m = 1 and higher) will grow 
into the nonlinear regime. In many cases, a spiral arm will collapse into a gravitationally 
bound "knot" of gas; these knots typically contain 1% of the mass of the disk and travel 
on elliptical orbits about the central star. 

1. INTRODUCTION 

Over the course of the last decade, a new and reasonably successful paradigm 
of the star formation process has emerged (see, e.g., Shu et al. 1987; Lada & 
Shu 1990). The main shortcoming of the current theory is its failure to properly 
account for the formation of binaries: most stars are observed to live in binary 
systems (e.g., Abt 1983), but the current theory deals directly with only the 
formation of single stars. However, both theory and observations now indicate 
strongly the presence of disks associated with young stellar objects (cf. the re­
views of Appenzeller & Mundt 1989; Bertout 1989; Shu et al. 1987), although 
the exact properties of such disks remain controversial. The available evidence 
(see, e.g., Adams et al. 1989a; Adams et al. 1988) indicates that these disks may 
produce significant luminosity (£rj ~ 2/» ~ 1 L®) and have moderate masses 

: i {MD ~ M, ~ 1 M®). For systems with MD ~ M«, the idea of forming a bi-
11 nary companion within the disk provides an intriguing possibility. In this study, 
| we consider the growth of global gravitational instabilities in star/disk systems; 

the hope is that these instabilities can grow into the nonlinear regime and form 
stellar objects within the disk. We have studied the behavior of m = 1 modes 

J both numerically (Adams et al. 1989b; hereafter ARS) and analytically (Shu et 
al. 1990; hereafter STAR). We find good agreement between the two approaches. 
We have also studied the nonlinear growth of these instabilities through numer­
ical simulations using smooth particle hydrodynamics (Benz & Adams 1992). 
In this present discussion, we summarize our current understanding of these 
instabilities. 

s 
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2. L I N E A R STABILITY ANALYSIS OF M = l M O D E S 

2.1. The Initial (Unperturbed) State 

Since the overall goal of the linear study is to determine the growing normal 
modes of a star/disk system, we begin by specifying the basic unperturbed state. 
The physical system consists of a star and an accompanying gaseous disk. The 
growth of sprial modes is mainly determined by three elements: self-gravity, 
pressure, and differential rotation. The gravitational forces are determined by 
the potential of the star and by the disk's surface density distribution oo(r), 
which we take to be a simple power-law in radius r from the central star (the 
disk is also assumed to be infinitesimally thin and in centrifugal equilibrium). 
The pressure is determined by the temperature distribution, or equivalently, the 
distribution of sound speed in the disk; we take the sound speed a(r) to be a 
power-law in radius. The rotation curve ft(r) in the disk is then determined 
self-consistently from the potential of the star, the potential of the disk, and 
the pressure gradients. Since the potential well of the star dominates that of the 
disk everywhere except near the disk's outer edge, the rotation curve is nearly 
Keplerian throughout most of the disk's radial extent. (For thin gaseous disks, 
the pressure gradients are small compared to the gravitational forces and do not 
significantly affect the rotation curve). Finally, we must specify the radial extent 
of the disk; since observations indicate that 'typical' disk sizes are approximately 
100 AU (e.g., Edwards et al. 1987), we consider disk sizes RD up to 104 times 
the radius R, of the star (only the ratio RD/R* enters into the calculations). 

2.2. Modes with Azimuthal Wavenumber m = 1 
Our study concentrates on modes with azimuthal wave number m = 1, since 
these modes can be global in extent and may also be the most difficult modes 
to suppress in unstable gaseous disks. Modes with m — 1 correspond to elliptic 
streamlines (i.e. eccentric particle orbits), a special characteristic of Keplerian 
potentials. Thus, for a disk with an exact Keplerian rotation curve and no 
interactions between particles, m = 1 disturbances correspond to purely kine­
matic modes of the system; for realistic disks (with pressure), a relatively 'small' 
amount of self-gravity is required to 'hold the mode together' and sustain its 
growth. 

One unique and important aspect of m = 1 modes is that the center of 
mass of the perturbation in the disk does not lie at the geometrical center of 
the system; hence, the frame of reference centered on the star is not an inertia! 
reference frame. The star is actually in orbit about the center of mass (i.e. the 
star is accelerating) and creates an effective forcing potential — the "indirect 
potential". Our results show that this indirect potential is essential for the 
growth and maintainence of spiral modes with azimuthal wavenumber m = 1. In 
fact, the interaction of this indirect potential with the outer Lindblad resonance 
in the disk can be the dominant amplification mechanism for these modes (see 
ARS and STAR). 

2.3. Wave Physics and Spiral Instabilities in Gaseous Disks 

In the simplest description of spiral instabilities, self-excited disturbances (spiral 
modes) can grow through the feedback and amplification of spiral density waves. 
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In this section, we review the theory of spiral density waves. In the following 
sections, we describe the feedback cycle and the amplification mechanism for 
spiral modes with m = 1. 

In the asymptotic (WKBJ) limit, the dispersion relation for spiral density 
waves in a gaseous disk has the form 

k2a2 - 2irGa0\k\ + K2 = (u> - mfi)2, 

where k is the radial wavenumber, K is the epicyclic freqeuncy, and where u 
is the complex eigenvalue of the system (see, e.g., Lin & Lau 1979). Since 
the gravitational term is proportional to \k\, this dispersion relation has four 
branches, 

k = ±(k0±h), 
where 

fc0=^, *! = ^ ° [ 1 - Q2(l - u2)]^2, and v = (a, - mfi)/«. 

Here, the quantity Q determines the stability of the system to axisymmetric 
disturbances (Q > 1 =$• axisymmetric stability) and is defined by (Toomre 1964): 

xGao 

The overall sign of k determines whether the waves are leading (\k\ > 0) or 
trailing (\k\ < 0); the inner sign determines whether the waves are short [k <x 
(&o + &i)j or long [k oc (fco — ki)]. 

The quantity v is a dimensionless frequency of the spiral density waves. The 
radius in the disk where v = 0 (i.e. where Sf(w) = mfi) is known as the corotation 
resonance (CR); the energy and angular momentum of the perturbation (and 
the action) are positive outside the corotation radius and negative inside. Notice 
that for Q > 1, the wavenumber k\ becomes imaginary for radii sufficiently close 
to the CR, i.e. a classical turning point exists for the density waves. The resulting 
"forbidden" region surrounding the CR is known as the "Q-barrier". Notice also 
that for long waves, fc-»0at any radius where \u\ = 1. The radius in the disk 
where v = +1 is known as the outer Lindblad resonance (OLR) and plays an 
important role in the physics of m = 1 modes. 

2.4. Feedback Loop: The Four-Wave Cycle 
We now present the feedback cycle for m = 1 modes in gaseous disks (from 
STAR). One unique aspect of this feedback cycle is that all four types of waves 
are utilized (see Figure 1): 

1. Begin (somewhat arbitrarily) with the excitation of a long trailing (LT) 
spiral density wave at the outer Lindblad resonance (OLR) by the indirect 
term. The LT wave propagates inward (its group velocity is negative) until 
it encounters the outer edge of the Q-barrier. 

2. At the Q-barrier, the LT wave refracts into a short trailing (ST) spiral 
density wave that propagates back outward, through the OLR to the outer 
disk edge. 
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FIGURE 1. Four wave cycle 

3. The ST waves that propagate to the outer disk edge reflect there to be­
come short leading (SL) waves. The SL waves then propagate back to 
the interior, through the OLR, until they encounter the outer edge of the 
Q-barrier, where they refract into long leading (LL) spiral density waves 
that propagate back toward the OLR. 

4. At the OLR, the LL waves reflect to become LT waves. If the reflected 
LT wave possesses the correct phase relative to the LT wave launched 
from OLR by the indirect term in step 1 above, then we have constructive 
reinforcement of the entire wave cycle, and the basis for the establishment 
of a resonant wave cavity. 

Using a WKBJ analysis, we have derived a quantum condition on the basis 
of the above four-wave cycle. This quantum condition accurately predicts the 
pattern speeds (i.e. the real part of the eigenfrequencies) for these modes; for 
strongly growing modes, the analytical and numerical results agree to within ~1 
percent (see STAR). 
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2.5. SLING Amplification 
In this section, we describe the amplification mechanism for eccentric modes. 
The analysis indicates that the dominant mechanism for amplification arises 
from the indirect potential, which provides an effective forcing term. The indi­
rect term varies slowly with radius in the disk; since a slowly varying force can 
only couple to oscillatory disturbances at the disk edges or at the Lindblad reso­
nances, the main coupling occurs at the outer Lindblad resonance for the modes 
considered here. Thus, this amplification mechanism differs substantially from 
the previously studied mechanisms, which utilize the process of super-reflection 
across the corotation resonance (super-reflection can still occur in these disks 
and is included in the numerical treatment, but it does not dominate the am­
plification). In our analytic treatment, we determine the growth rates for the 
modes under the assumption that all of the amplification arises from this cou­
pling of the indirect term to the outer Lindblad resonance in the disk (and that 
the indirect term arises mostly near the outer disk edge). In other words, we 
conceptually regard the indirect potential as an external forcing term acting on 
the disk and calculate the torque exerted on the disk at the OLR. Since the 
long-range coupling of the star to the outer disk provides the essential forcing, 
this new instability mechanism is called SLING: Stimulation by the Long-range 
Interaction of Newtonian Gravity. 

The combined numerical and analytical treatments indicate the dependence 
of the growth rates (i.e. the imaginary part of the eigenfrequencies) on the pa­
rameters of the problem. Most importantly, a finite threshold exists for the 
SLING amplification mechanism. When all other properties of the star/disk 
system are held fixed, this effect corresponds to a threshold in the ratio of disk 
mass MD to the total mass Af, + MD- We find that the growth rates are largest 
for the case of equal masses MD = M» and decrease rapidly with decreasing 
relative disk mass. In the optimal case, MD = M„ the grow rates can be com­
parable to the orbital frequency at the outer disk edge, i.e. the modes can grow 
on nearly a dynamical timescale. On the other hand, the presence of the finite 
threshold implies a critical value of the relative disk mass, i.e. the maximum 
value of MD]{M* + MD) that is stable to m = 1 disturbances; for the simplest 
case of a perfectly Keplerian disk and Q(RD) = 1> this critical ratio has the 
value MD/(M, + MD) = 3/47T. 

3. N O N L I N E A R S P H SIMULATIONS OF DISK 
INSTABILITIES 

In order to study the nonlinear behavior of the gravitational instabilities which 
are suggested by the linear analysis, we have performed smooth particle hy-
drodynamic (SPH) calculations of the behavior of these instabilities in nearly 
Keplerian disks (Benz & Adams 1992). Previous studies have performed TV-
body simulations of similar star/disk systems (e.g., Tomely et al. 1991) and 
have obtained qualitatively similar results. 

3.1. The Initial System 
In an ideal case, we would like our initial, unperturbed systems to be as close 
as possible to real star/disk systems found in star forming regions (recall that 
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the linear stability analysis of the previous section adheres to this goal as closely 
as possible). In the present case of nonlinear simulations, however, we cannot 
reproduce the required dynamic range in radial extent, i.e. RD/R» ~ 104. For 
the simulations described here, we are limited to the somewhat smaller range of 
RD/RIU = 60. However, because the gravitational potential of the central "star" 
is softened to avoid divergences, the range of radii for which the dynamics is not 
perturbed by numerical effects reduces to Ro/Rin = 30. The inner radius Ri„ of 
the simulation does not correspond to the stellar radius, but rather to an inner 
cutoff radius at which we can apply a suitable inner boundary condition (see 
below). 

For the remainder of the system parameters, we can adopt values which 
are in accordance with those expected in real astrophysical systems. In this 
study, we consider the ratios of the disk mass to the stellar mass to lie in the 
range 1/2 < Mo/Mt < 1. The initial temperature distribution of the gas 
in the disk is taken to be a power-law in radial distance; we generally adopt 
the power-law form T ~ r - 1 ' 2 appropriate for the so-called "fiat-spectrum" 
sources. Although little is known about the surface density distributions in real 
astrophysical disks, we adopt a power-law form a ~ r~3'2 in accordance with 
theoretical considerations (e.g., Cassen & Moosman 1981) and in agreement with 
the linear calculations (ARS, STAR). 

3.2. The Simulations 

The numerical simulations were performed using the smooth particle hydrody­
namics code written by W. Benz. All of the simulations run so far have used 
the two dimensional version of the code. Since space is limited in this present 
volume, we refer the reader to previously published descriptions of the code 
characteristics (Benz 1990; see also Benz et al. 1990). For the simulations of 
star/disk systems considered here, the number of particles N was taken to be in 
the range N — 6000 - 20,000 (these values of N, which were determined by the 
available computing resources, adequately resolved disks with the ratio of outer 
to inner radii of 30). All of the present simulations use an isothermal equation 
of state, i.e. p = a p, where the sound speed a is a constant. From a physical 
point of view, this assumption implies that the disk is able to radiate all energy 
dissipated in shocks or adiabatic compression. 

For the inner boundary condition, we allowed the central star to "swallow" 
all particles coming within a fixed distance (here arbitrarily chosen to be Ru/bO). 
This ansatz avoided extreme overcrowding in the very central regions of the 
system and hence avoided an excessively small time step. As the particles are 
eaten, the mass of the central star is increased correspondingly and the star is 
displaced to conserve momentum. During the course of a typical simulation, a 
few percent of the disk mass is eaten in this manner. 

The linear stability analysis (ARS, STAR) suggests that modal growth is 
relatively insensitive to the inner boundary condition, but rather sensitive to 
the outer boundary condition (the effects of the outer boundary are quantified 
in Ostriker et al. 1992). In particular, the outgoing ST waves must be able 
to reflect off of the outer edge. For the SPH simulations, we adopted a "free" 
outer boundary condition, i.e. the particles on the outer edge are free to wander 
according to the gravitational and pressure forces exerted on them by the rest 
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of the system. 
Finally, we specify the initial perturbations of the disk. Since we are con­

strained (by computing resources) to studying only the first few orbits of the 
outer disk edge (the hence the first ~100 - 200 orbits of the inner edge), we 
start the simulations with 1% amplitude perturbations in density with azimuthal 
wavenumber m = 1. The results of these simulations are described in the fol­
lowing section. 

3.3. Nonlinear Results 
We find that gravitational instabilities can grow strongly in these systems, 
i.e. the growth rates are comparable to the dynamical timescale of the outer 
disk edge. For disks which are not too far from the condition of stability to ax-
isymmetric modes, spiral instabilities with azimuthal wavenumbers m = 1,2,3,4 
(and higher) are present. As stability is increased (i.e. as the Toomre Q values 
are raised or the mass ratio Mo/Mt is decreased), the relative strength of the 
m = 1 disturbance increases, although the growth rates of all modes decrease (as 
expected). Finally, and perhaps most importantly for this present discussion, 
we find that a spiral arm can often collapse to form a "knot" of bound gas when 
the equation of state of the disk is taken to be isothermal (see Figure 2). These 
collapsed "knots" typically have masses of ~0.01 MD and travel on elliptical 
orbits; in the discussion below, we speculate on the possible long term behavior 
of these objects. At this point, its necessary to add a note of caution. These 
knots can be formed as a result of our assumption of isothermal evolution of the 
disk. This assumption limits the local pressure support available. The density 
enhancements found in our unstable modes are sufficient for pushing small re­
gions over the local Jeans mass and thus triggering the collapse. This collapse 
would not occur for adiabatic evolution. Hence, our results bear any connection 
to real physical systems only to the extent that these systems can radiate away 
a large fraction of their energy. 

4. D I S C U S S I O N 

We have studied gravitational instabilities in gaseous disks using both numer­
ical and analytical methods. For the linear problem, we have determined the 
(complex) eigenvalues of the system; the numerical and analytical approaches 
are in good agreement. This analysis indicates that the basic modal mechanism 
involves the four-wave cycle (see Figure 1), which provides the feedback loop, 
and the SLING mechanism, which provides the amplification (see STAR). The 
linear results also indicate that a wide range of YSO disks will be unstable to 
the growth of eccentric (m = 1) distortions. When the disk mass is comparable 
to the stellar mass {MD ~ M,), these distortions can grow on nearly a dynami­
cal timescale. In addition, we find that these modes can grow when the disk is 
safely stable to axisymmetric disturbances (i.e. Q substantially greater than 1). 
However, we find that our results (e.g., the exact spectrum of unstable modes) 
are particularly sensitive to the treatment of the outer disk edge (Ostriker et 
al. 1992). 

We have studied the nonlinear evolution of gravitational instabilities using 
smooth particle hydrodynamic simulations. These studies indicate that self-
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FIGURE 2. Snapshot of an isothermal disk (MJJ = M, and Qmi„ = 1.75) after 
slightly more than one outer edge rotation. Notice the strong m — 1 mode and the 
formation of a dense knot. 

gravitating instabilities (with m = 1 and higher) will grow into the nonlinear 
regime. Under most circumstances, the disk edge does not soften enough that 
modal growth turns off. In particular, we find that the star continues to spiral 
away from the center of mass of the system throughout the simulation. In many 
cases, a spiral arm will collapse into a gravitationally bound "knot" of gas; these 
knots typically contain 1% of the mass of the disk and travel on elliptical orbits 
about the central star. 

The instabilities discussed in this work may have important astrophysical 
applications. In the earliest stage of star formation — the protostellar phase — 
the mass of the disk is likely to be comparable to that of the star (see Shu et 
al. 1987); m = 1 modes are thus likely to grow and may lead to mass accretion 
through the disk and the observed disk luminosities. Perturbations with m = 1 
prove especially interesting because they force the star to move from the center 
of mass and thereby transfer angular momentum to the stellar orbit. As shown 
in the nonlinear SPH simulations, this coupling can lead to the production of a 
"knot" of gravitationally bound gas which orbits the star. The most interesting 
unresolved question then becomes: Can these "knots" of gas evolve into inter­
esting astrophysical bodies, such as binary companions and/or giant planets, or 
do they become tidally ripped apart? Although future work is required to settle 
this issue, we speculate below on the possibilities. 

The most likely scenario of binary formation within a disk occurs as follows. 
The work described above suggests that gravitational instabilities in the disk 
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become important when the disk mass becomes comparable to the stellar mass. 
In the current picture of star formation (as reviewed in Shu et al. 1987), star/disk 
systems are built up from the inside-out collapse of a molecular cloud core. The 
low angular momentum material falls first and hence a stellar object forms at 
the center of the collapse flow. Material with higher angular momentum falls 
in later and collects in a circumstellar disk. For typical initial conditions in 
molecular cloud cores, most of the material falls directly onto the disk rather 
than onto the star. In particular, the disk mass will become comparable to the 
stellar mass when the total mass of the central star/disk system is still quite 
small (e.g., 0.05 - 0.1 M@) compared to the final mass of the star (~ 1 MQ ). 
Now suppose that the gravitational instabilities described above occur at this 
very early stage of evolution. We then have a very small star (~ 0.05 MQ) 
with a very very small companion (~ 0.0005 M® ), with most of the material 
which will make up the final system yet to come down. Thus, provided that 
the companion can gain an appreciable share of the newly arriving material, the 
system can evolve into a typical binary system. 

The final issue that we must address is how this scenario for binary forma­
tion relates to other possible mechanisms and to the emerging paradigm of star 
formation. The capture scenario for binary formation is on a different footing 
and has its own pros and cons (see the review by C. Clarke in this volume). 
Fragmentation scenarios (see the chapters by A. Boss and I. Bonnell) are qual­
itatively the same, but differ in the size scale and timing of how a cloud core 
breaks up into two (or more) pieces. In this scenario of binary formation within 
a disk, we are considering the limiting case in which cloud material falls all the 
way into a central star/disk system and then breaks up into multiple parts. One 
important constraint on these theories is provided by observations of protostel-
lar candidates. The observed spectral energy distributions of these protostars 
are in good agreement with the current protostellar theory, which includes only 
a single star (see Adams et al. 1987). In addition, observed maps of the spatial 
distribution of emission in protostars (Ladd et al. 1991) typically show only a 
single condensation center and not two (on a size scale of ~2000 AU). As a 
result, observations suggest that the breakup of protostars into two components 
occurs at a relatively small size scale (< 1000 AU), whether the breakup occurs 
via fragmentation or through disk instabilities. 
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6. DISCUSSION 

LEINERT: Can your proposed mechanism be used to explain the formation 
of outer planets? 

A D A M S : The "knots" of gas that form have roughly the right mass and 
orbits to become giant planets. However, people who study giant planets claim 
that such planets cannot be formed through gravitational instability: all of the 
heavy elements are in the center of the planet and in a configuration which is 
more suggestive of buildup by aggregation. 

BOSS: In order for the clumps to grow to stellar size, you suggested that 
ongoing accretion of gas might be occurring. Do you think that the infalling gas 
will have any deleterious effect on the sharp edge of the disk needed for growth 
of the instability? 

A D A M S : No. The infall collapse solution naturally produces an angular 
momentum barrier and hence a well-defined outer disk edge. 

MARSCHALL: You have shown that this mechanism can form pairs of stars, 
but can it also produce systems of higher multiplicity? 

A D A M S : Maybe. Suppose that the instability described here occurs at a fairly 
small outer disk radius, say 0.1 AU. We then form a binary with approximately a 
0.1 AU separation. If the infall continues for a long time after that stage, a large 
circumbinary disk can result. If this disk is sufficiently massive, the instability 
can grow again (the binary pair now plays the role of the star to produce the 
indirect potential) and a binary companion can be produced in the outer disk. 
This thus gives a triple system. 

SIMON: Do I understand correctly that this mechanism will tend to make rela­
tively wide binaries (e.g., we believe the massive disks to have sizes of ~100 AU)? 

A D A M S : This mechanism can, in principle, form binaries with separations 
anywhere in the range from the stellar radius to 100 AU. The second bodies 
which form in the disk have orbital radii of roughly half the disk radius at the 
time the instability sets in. Since the disk can become unstable when its radius 
is anywhere in the range stated above (this result depends on initial conditions), 
a full range of binary separations can result. However, it will be hard to make 
binaries with separations much greater than ~100 AU. 
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