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MATHEMATICAL PROBLEMS IN TRANSONIC FLOW 

BY 

CATHLEEN SYNGE MORAWETZ 

ABSTRACT. We present an outline of the problem of irrotational com­
pressible flow past an airfoil at speeds that lie somewhere between those of 
the supersonic flight of the Concorde and the subsonic flight of commercial 
airlines. The problem is simplified and the important role of modifying the 
equations with physics terms is examined. 

The subject of my talk is transonic flow. But before I can talk about transonics I must 
talk about flight in general. There are two ways of staying off the ground -— by rocket 
propulsion (the Buck Rogers mode) or by using the forces that permit gliding or for that 
matter sailing. Every form of man's flight is some compromise between these two 
extremes. 

The one that most mathematicians begin their learning on is incompressible, steady 
(no time dependence), irrotational, flow governed by (i) Conservation of mass with q 
the velocity, (what goes in comes out) div q = 0, (ii) Irrotationality, curl q = 0. The 
pressure is given by Bernoulli's law, p = p(\q\). 

These equations are equivalent to the Cauchy-Riemann equations and so lots of 
problems can be solved. But there is an anomaly — there is no drag and for that matter 
often no lift i.e. no net force on the object which for our purposes and from here on 
is a cross section of a wing. By taking a nonsymmetric cross section that has a cusp at 
the end and requiring that the flow has a finite velocity we obtain a flow with lift but 
still no drag. 

Very slight modifications are necessary to take compressibility into account. The 
equations become: (i) Conservation of mass, div pq = 0, (ii) Irrotationality, curl q = 
0. Density p = p(\q\) is given by Bernoulli's law. Pressure is a function of density and 
hence speed. The boundary layer can be treated separately and the flow can be regarded 
as flow at zero viscosity past an infinite "airfoil" with a boundary layer inside (see 
Figure 1). We get a very good description of the flow at low speeds and a fairly accurate 
measure of drag and lift, pretty well confirmed in wind tunnels. 

Let me remind you that we keep the airfoil stationary. Thus its actual speed is the 
speed <7oo at oo. 
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Figure I 

Cusped nonsymmetric airfoil with boundary layer. 

The system of equations reduces to 

(1) (c2 - u2)$xx - 2uv$xx + (c2 - v2)<$>,y - 0 

with q — V(f>; c = c(\q\) is the local speed of sound. 
By setting v = 0 (always possible at a point) we see that the equation is elliptic (like 

the Laplacian) or hyperbolic (like the wave equation) depending on whether c2 > q1 

(subsonic) or c2 < q2 (supersonic). 
If u and v are very small c is nearly constant and we have the Laplacian and 

incompressible flow. The property that determines that things are nice and soluble is 
that over a range of speeds at oo the equation is elliptic everywhere. Problems arise 
however as that speed increases and supersonic zones appear. The equation is of mixed 
type and the smoothness associated with elliptic problems disappears. The airfoil 
problem I am describing is not the only case where mixed equations arise but it is not 
exactly your everyday equation like the Laplacian or the wave equation, it is what is 
called quasilinear and where the flow is supersonic it can be expected to have shocks. 
Nonlinear mixed equations also arise in elasticity and in geometry. 

ELLIPTIC CASE. The first studies on equation ( 1 ) were made by perturbing about the 
zero speed problem, that is the Laplacian case, but the big step forward for the subsonic 
case came with the whole theory of nonlinear elliptic equations in two space variables. 
This was developed in the forties and early fifties and many contributions went back 
and forth from analysis to the two big applications — subsonic fluid dynamics and 
minimal surfaces. 

But even as long ago as the mid-thirties, engineers, in particular Busemann [2], 
following some wind tunnel studies, were raising questions about the supersonic case. 
A bit was known from simple examples and from one dimensional gas dynamics about 
the completely supersonic case (the "Concorde" case, flight is more rocket-like). At 
that time wind tunnels were very inaccurate; computations were impossible — not 
enough power or memory so no one really knew what happened when the flow went 
supersonic. 
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Wind tunnel pictures show very clearly how unsteady the flows are but these pictures 
nevertheless give us some idea of what the underlying steady flow is like and where the 
shocks are. 

First let me point out that elliptic implies smoothness and hyperbolic implies that 
singularities propagate. Recall that in one variable utt - u^ = 0, u = f(x - t) + 
g(x + t), so singularities run on the curves x — t = constant, x + t = constant. 
Nonlinear hyperbolic also implies the possibility in fact the probability that shocks will 
propagate and interact. 

Examining the experiments carefully one finds that shocks occur at moderate speeds 
in such a way as to close off the supersonic region. At higher speeds this shock moves 
off to the tail. Finally, if the speed at °° is supersonic there is a bow shock and a tail 
shock. At all times the supersonic region is marked by the fact that one sees time 
dependent singularities jumping around in them. 

We now ask (1) What is the mathematical theory behind these phenomena? i.e. what 
do we know about the boundary value problem satisfied by the flow? (2) What pheno­
mena are important to engineers? What they want to know is the size of the force 
retarding the object, i.e. the drag. 

DRAG/$>cf£ 
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Figure 2 
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We all know that the Concorde is expensive to fly and carries few passengers and 
a lot of fuel. This means the energy needed to overcome the drag caused by the bow 
shock is very high. So we should all fly slowly in a region where there is only boundary 
layer or modest shock drag. But how slowly do we have to fly? 

In Figure 2 we have a graph of drag versus Mach number (ratio of speed to sound 
speed) for a typical airfoil. When and why does the drag increase? The answer: when 
shocks appear. Why? Because across a shock lots of things are conserved but there is 
a gain of entropy and that leads to drag. Shocks cannot appear in an elliptic problem 
but do appear as we have seen in mixed, that is to say, transonic problems. Could we 
get rid of them? How do we get an airfoil that does not have a shock at some ambient 
cruising speed? One way is to make it stay subsonic. The only way to do that, as you 
increase the speed at o°, is to let the wing become thinner and thinner. That is no good 
for flying passengers but it does reveal that it is possible. The right way to do it was 
discovered experimentally by Whitcomb and mathematically by Paul Garabedian [1]. 
Garabedian and Korn's earlier design was tested first by Kacprzynski in Canada, [7]. 

Lighthill [8] had shown that there were special cases where separation of variables 
could be used theoretically to find airfoils. To each subsonic speed at infinity there was 
one airfoil with a supersonic region and no shock. Garabedian abandoned Lighthill's 
series method and made use of new computational power to find airfoils by a very 
beautiful mathematical technique. However it is not beloved in the machine shop 
because it is somewhat mysterious and involves extending the flow analytically into 
complex space and working with a hyperbolic system. 

The idea is to treat x, y as complex variables so that there are four real variables and 
then the equations become complex hyperbolic equations. Written in characteristic 
form these are 

ve + \+Xj- = 0 , 

y^ + X_^ = 0, 

u$. — \_Vç = 0, 

"T, - k+Vt, = 0 , 

UV ± cVq2-c2 

£, 7] are characteristic variables. Luckily, for computations one can reduce the problem 
to three real variables. 

In the complex £, TJ plane (Figure 3 is a real projection) we have a Goursat problem. 
We can difference the equations using the mesh indicated in the figure and obtain 

u(P) ~ u{Q) - X_(g) (v(P) - v(Q)) = 0 

u(P) - u(R) - \+(R) (v(P) - v(R)) = 0 

https://doi.org/10.4153/CMB-1986-023-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-023-3


1986] TRANSONIC FLOW 133 

Figure 3. The Goursat Problem. 

What data should we use? Long experience shows that by appropriate choice of data 
on the characteristic boundaries one can tune this scheme not only to avoid singularities 
in the real space and produce airfoils but to produce airfoils with maximal lift and many 
other important features. 

We now have an airfoil. But long before it was designed it was clear that it would 
be special, that changes in its cruising speed would almost certainly lead to shocks. 

The nicest thing about the corresponding theorem, [11], was that it really answered, 
mathematically, a puzzle for engineers. 

Let us go back to our boundary value problem, in the symmetric case. <\> satisfies a 
p.d.e., d$/dn = 0 on a given boundary d2) and V$ —» a given vector at oo. The question 
we have to ask now is whether this problem is well posed and to study it, we must 
perturb the problem. We then discover: 

THEOREM. The perturbation problem for the b.v.p. for <\> is improperly posed for 
variations in d2) if V<() remains continuous. 

First, what is the perturbation equation? A trick, due to Guderley, will get it easily. 
Suppose we have a system of conservation laws in two variables 

R2 R2 

(f(u))x = 0 

then 

fuux = 0 or h(u)xu = 0 
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Next if V(|) = u reduces/, = 0 we can introduce the Legendre potential, $(w) — 
wx — <|)(JC). Then <i>u — x and we obtain a second order equation for <ï>(w). 

On the other hand by perturbing the potential by 8<ï> we find 8<ï> + <ÏV8« = 
bwx - b<\) and hence 

8 $ = - 8<|> 

Thus the perturbation 8(() in <|) satisfies the same equation as 8$ which is the same 
equation as for $ in the "w" variables. In our case this is 

K(a)$ee + $CTa = 0, 

where 6 is the flow angle, and cr depends only on speed. 
This is an equation of mixed type because for supersonic flow K < 0 and for subsonic 

K > 0. Of course it makes no sense if you cannot map from the x, y plane into the 
(0, a) plane but in fact you can for a Garabedian airfoil. 

Figure 4. The Counting Problem. 
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The best known of mixed type equations is the Tricomi equation 

y®* + % = 0. 

However, it is easier to work with the Lavrentiev-Bitsadze equation 

± <D„ + <D>7 = 0, y ^ 0 

V4> continuous. 

We try a "counting" argument on this problem with the domain and data of Figure 
4. One can write a homogeneous linear relation connecting <ï> and d$*/dy on v = 0 
using the boundary data for y > 0 only and another from the boundary data for y < 0 
omitting the arc between the characteristics where d<$>/dn — f. Thus one would expect 
only the solution 0 = const, in the domain that excludes the region between the 
indicated characteristics. But continuing the Goursat problem we get d$>/dn = f = 0 
in that domain too. So the problem appears overdetermined. 

The reader can see how this counting argument extends to the profile problem. In 
fact, it can be completely proved that the null space for the linearized problem is finite 
dimensional, which shows that the problem is ill-posed. 

Now we have roughly shown that we can construct a supercritical wing as these 
airfoils are now called but we have to stick to one cruising speed. The drag as a function 
of cruising speed is shown in Figure 2. A profile flying with Mach numbers .750 and 
.752 have very different distributions of speed in the neighborhood of shock formation, 
see Figure 5. Here CD is a function of velocity and M = .752 yields a distinct shock 
while M = .750 is smooth. 

How do we find the flow away from design conditions and what theorems are 
appropriate? We must allow weak solutions: these are solutions satisfying, with 
X G Co, 

/ Vxmpq\dx\ = 0, 

JVX'q\dx\ = 0 

If the solution is smooth then we get back our old equations. 
To get boundary conditions we have to let x have support that includes the boundary 

and require a third condition: 

/ x P Tn ds = 0, on the boundary. 

We also need another condition that comes from the underlying thermodynamical 
condition that entropy increases. This becomes in our context: shocks are compressible. 

Now we have a reasonable proposition: 
3 ! q of bounded variation satisfying the boundary value problem and the entropy 

condition weakly. 
This theorem which was weakly formulated, very weakly, back in the fifties is still 

an open problem. 
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Figure 5. Velocity distribution at two very slightly different Mach numbers for a 
Korn-Garabedian airfoil. Computations by A. Jameson. 
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Let us think of purely supersonic flow past a thin airfoil. Goodman [5] has shown, 
using the techniques of Glimm and Lax [4] for nonlinear one dimensional gas dynam­
ics, that there exists a weak solution to this problem. The technique is tricky and 
involves a rather extraordinary numerical method which has not been tried on the 
transonic problem. 

What has been tried very successfully numerically is "up wind differencing" which 
introduces what is called "artificial viscosity". Let us look at a very simple equation due 
to V. Karmann: 

Murman and Cole, [13], cracked the problem of solving nonlinear equations of 
mixed type numerically by solving this one. We shall simply consider 

(til = 0 
It has the solution §2

X — u2 = k and hence the weak solutions are <\>x = ± vk. The 
solution which is "compressive" i.e. satisfies the entropy condition is the one that takes 
$x from positive to negative values. So the desired solution u that is not a constant is 
a decreasing step function. 

How do we get it numerically? Well, numerically we replace the derivative by a 
difference and we would ordinarily try to be as accurate as possible and center the 
difference but then we would not get the step function. Instead we step back a moment, 
alter our equation and add a viscous term in the "supersonic region" i.e. (u2)x - v(u2)xx 

= 0, v > 0, for u > 0 and {u\ = 0 for u < 0. For u > 0 then u2 = k + Me*/v and 
for u < 0, u = constant. Then either u is identically a negative constant or u = vk 
at x = — oo. In the latter case M < 0 and u decreases smoothly until it vanishes. Then 
it jumps to a negative value and u = — vk for larger values of x. This yields the right 
weak solution in the limit. 

Now we can interpret this equation as a difference scheme of lower accuracy where 
v is of the order of the mesh size and to first order accuracy in mesh size we still have 

(tô, = 0 
and §x goes from positive to negative as required by the entropy condition. This was 
the idea of Murman and Cole. Switch to an inaccurate scheme when the equation is 
hyperbolic but get the entropy condition correctly. This idea was carried over by 
Jameson to the potential equation. Once we think of the problem in this way we can 
also switch around and use finite elements or variable mesh sizes. 

The compressive condition has to affect a particle, and so upwind differencing means 
backwards on the particle path. This corresponds to the viscous equation 

div pV(() + V(v div pVc|>)-V(l> = 0 

but in practice there are many possibilities for introducing artificial viscosity. 
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Now what does this tell us about approaching our theorem. We should try a limiting 
process with an artificial viscosity. One possibility is to "retard" Bernouilli's law: 

div pVc() - 0 

d$/dn = 0 on profile 

V(|) -» qœ at oo 

v Vp-V(|) - |V<j>|2 - S2(p), v > 0 . 

In the last equation if v = 0 Bernouilli's law holds by definition. Since we have 
increased the order of the system we have to add another boundary condition; say, p 
—> its correct value upstream where <)>—> — oo. 

To make this problem manageable we consider the wing to be a small smooth bump 
on a wall and place everything in a box with some appropriate boundary conditions. 

This appears solvable for every v. Of course adding v smooths out the solution and 
the solution is found as the fixed point of a mapping using say the Schauder theorem. 
But there does not appear to be any control on the max | V(j>|. So we modify the problem. 
Things are being complicated by the fact that a gas can cavitate according to Ber­
nouilli's law. We look at a free boundary problem, existence still unproven, which 
prevents the speed from exceeding the maximum cavitation speed of Bernouilli's law 
on the boundary of the domain. 

Now we can control the speed in the interior and show that several estimates can be 
made. 

|Vc|>| < max Bernouilli speed 

/ |log q - log S\2 dx dv < Kv 

vjf\V\V<$>\\2dxdy<K 

This puts us close to the theory of compensated compactness due to Murat, [12]. This 
permits passage to the limit v = 0 for certain hyperbolic problems, see Tartar [14], Di 
Perna [3]. 

If we assume that at each point for all v the speed is bounded away from stagnation 
and cavitation the estimates can be improved and the theory of compensated com­
pactness can be extended to this case, see Morawetz [11]. 

What more can be done on the computational line? There are schemes today for 
solving Euler's equations. This was begun in the sixties by Magnus and Yoshihara [9] 
but failed because of its computer power needs. (Thousands of iterations were in­
volved.) The idea was to solve the time dependent problem and wait for the steady state 
to emerge. This scheme in fact has been accelerated by a variety of techniques. Here 
we are carried into the whole area of hyperbolic nonlinear equations because the 
presence of time makes the equations everywhere hyperbolic. Hopefully bigger and 
better computers will open up such new three dimensional time dependent problems. 
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Perhaps the idea of proving the corresponding theorems will prove unfeasible but it will 
certainly take a lot of time. 

I have been barely able to touch on the simpler problems. There are even some 
simple-to-state open problems. For example: what would be a correct perturbation 
problem? Perhaps in fact better evidence from the computer and the wind tunnel can 
help us formulate not only good problems but solvable ones. Already questions of 
uniqueness have been raised. 

Let me end by saying that this is a field where the exchange of ideas between 
engineering or physics and mathematics is very good. Let it continue so. 
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