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R I C S U M ^ . — On prdsenze une revue critique des theories et des observations du comportement d'une antenne dans un 
plasma qui sont importantes en radioastronomie. On insiste plus particulierement sur les antennes ilectriquement 
courtes. On envisage 3 cas ; plasma froid sans champ magnitique, plasma chaud avec champ magnitique et plasma 
chaud sans champ magnitique. On discute de nouveaux risultats sur le cas d'un plasma froid sans champ maqni-
tique qui sont en bon accord, mime dans les details avec la thiorie au voisinage du cutoff de la propagation de Vonde 
magnitoionique extraordinaire. 

ABSTRACT. — A critical review is given of the theory and experimental observations of antenna impedance behaviour 
in a plasma, as related to radio astronomy. The emphasis is on electrically small antennas. Three simplified 
cases of plasma are considered, namely, cold plasma without magnetic field, cold plasma with magnetic field and 
warm plasma without magnetic field. Newly reduced experimental results are reported for the case of cold plasma 
without magnetic field, showing detailed agreement with theory in the neighbourhood of a cutoff in the propagation of 
the extraordinary magnetoionic wave. 

PesioMe. — IlpeflCTaBjieH KPHTHHCCKHH o63op Teopnfi H Ha6jnofleHHfi noBeaeHHH aHTeHHbi B n j i a 3 M e , KOTopue 
HMeioT 6 o j i b i n o e 3 H a n e H H e AHA pajmoacTpoHOMHH. G OCO6OH HacTOHTejibHocTbio — a j i e K T p H H e c K H KOPOTKHX 
aHTeHH. PaccMOTpeHbi 3 cjiyqan : x o j i o f l H a a n j i a 3 M a 6 e 3 M a r H H T H o r o nojin, x o j i O f l H a n n.na3Ma c M a r a H -
THLIM nojieM H ropHHan n j i a 3 M a 6e3 MarHHTHoro IIOJIH. HoBbie p e 3 y j i b T a T b i , KOTopbie Haxof lHTCH B x o p o u i e M 
corjiacHH name B noflpoSHOCTHx c TeopHen OKOJIO noporoBoro pacnpocTpaHeHHH HeoGbiKHOBeHHoft M a r H H -
TOHOHHOH BOJIHM, o6cy>KfleHbi Ha cjiyqae XOJIOAHOH n j i a 3 M b i 6 e 3 M a r H H T H o r o nojiH. 

1. INTRODUCTION. 

Most radio astronomy measurements from space 
vehicles have been made or are planned at altitudes 
where observations may be affected by the ionized 
layers of the earth's outer atmosphere. Under­
standing of the behaviour of antenna impedance in 
a plasma is essential for correct interpretation of 
many such observations. The purpose of this 
paper is to review critically the current status of 
the relevant theory and related observations. 

Frequent reference will be made to the equiva­
lent circuit of figure 1. The antenna impedance 
Z A is represented by series resistance R A and reac­
tance X A ; in general both are functions of fre­
quency. In the following it will be assumed the 
antenna is lossless, so R A is purely radiation resis­
tance. If it is receiving a signal, this may be 
represented by an equivalent generator with the 
open-circuit voltage of the antenna, V A . When 

(*) Work supported by N A S A on contract Nasw-64 and grant 
NSG 181. 

the antenna is terminated by a load impedance Z L , 
the voltage V L at the antenna terminals is related 
to V A by the relative impedances Z A and Z L . Z L 
includes such quantities as shunt capacity inhe­
rent in the antenna mounting structure. V L is the 
quantity directly measured in practice, but it is 
desired to find V A . If Z L is sufficiently large com­
pared with Z A , V L may be practically equal to 
V A ; otherwise knowledge of Z A is necessary to 
deduce V A . 

In a plasma, the impedance is a function of 
plasma frequency and static magnetic field. It 
will be convenient to introduce them by the para­
meters X = (plasma frequency/wave frequency)2 

and Y = (gyro frequency/wave frequency). The 
collisionless case only will be considered here. It 
is adequate for most problems in the topside 
ionosphere, and most of the results may be exten­
ded without difficulty to include collisions. The 
behavior of R A and X A as functions of X and Y 
has been the subject of considerable theoretical 
analysis. 

When observing noise signals, it is convenient to 
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FIG. 1. — Equivalent circuit of terminated antenna. 

=» RA -f / X A is the antenna impedance; Z L is the ter­
minating impedance. 

refer to antenna temperature, TA, which is related 
to the mean square value of V A in a bandwitji B 
by 

(1.1) V | = 4 K T A R A B. 

TA is the quantity ultimately desired. It repre­
sents an average radio brightness temperature for 
the region of sky observed. Given V A , knowledge 
of R A is necessary to obtain TA. 

An alternative approach for a short electric dipole 
is to express V A in terms of the effective length h 
and the component of the incident electric field, 
Eton, which is tangential to the dipole, 

(1.2) Y% = *• EL-
For an elementary loop antenna, or magnetic 

dipole, the appropriate formulation is in terms of 
an effective area A« and the component of magne­
tic induction, B norm, which is normal to the plane 
of the loop (i. e. tangential to the magnetic dipole), 

(1.3) V | = o > 2 A 2 , B | o m . 

Assuming the effective length or area is known, 
it is then necessary to relate the measured fields to 
the sky brightness. This has been discussed by 
H U G I L L [ 1 ] and by B U D D B N and HTTGILL [2 ] . The 

formal equivalence of the theory involved in this 
topic with that involved in R A behavior in a plasma 
may be demonstrated. Either approach is valid 
in interpreting and discussing data. The impe­
dance approach will be used hereafter. 

Much of the discussion will deal with electrically 
small antennas, that is, those with all dimensions 
much less than any wavelength of interest. The 
emphasis will be on electric dipoles, though some 
reference to magnetic dipoles will be made. One 
advantage of antennas which are electrically small 

both in free space and in the plasma is that, to 
good approximation, the current distribution is the 
same in both cases. For a short electric dipole 
the current distribution is approximately " trian­
gular " i. e. tapering linearly from the centre to 
the ends. For an electrically small loop, the cur­
rent distribution is uniform. Many calculations 
are based on the assumption that the current dis­
tribution is unaffected by the plasma. If this is 
not true for any reason, the theoretical value of R A 
will be wrong. If this theoretical value is used to 
derive TA, then the calculated T A will be wrong. 
This cannot be overcome by the approach of ( 1 . 2 ) 
or ( 1 . 3 ) since the effective length or area will be 
different from their values for the free-space cur­
rent distribution, so the incident fields cannot be 
deduced correctly. 

For a short electric dipole, X A is usually much 
greater than RA. Consequently, though X A may 
be susceptible to direct measurement in practice, 
R A often is not. 

In the steps outlined above for deriving TA, 
knowledge of X A alone is often adequate for dedu­
cing V A from V L , but R A must be introduced to 
derive TA via ( 1 . 1 ) . Thus while an accurate 
theory for X A in the plasma is not essential, one is 
essential for RA. However, in addition to these 
requirements for analysis of data, there are other 
reasons for desiring reasonable theories both for 
X A and R A . In order to make the above theore­
tical corrections, knowledge of the parameters X 
and Y is needed. The geomagnetic field is known 
well enough to give Y adequately in most cases, 
but X must usually be derived from suitable mea­
surements. Observations of X A and R A behavior 
may in fact give this information. Another reason 
for wishing to predict the behavior of X A and R A 
is to ensure that the operating ranges of observing 
instruments are correctly adjusted. Thus theories 
of both R A and X A in a plasma are desirable for 
reasons of data analysis, plasma diagnostics and 
equipment design. 

It should be pointed out that the separation of 
the problems of R A and X A in a plasma results in 
considerable theoretical simplification. However, 
this is only justifiable for an electrically small 
antenna. The justification in this case may be 
seen by considering the fields of a Hertzian dipole. 
As shown in most texts, these fields contain terms 
proportional to r—8, r—2 and r—1. The near field 
r—* terms provide the dominant term in the impe­
dance. They occur only in the electric field and, 
apart from the harmonic time variation, they are 
identical to the field of a static dipole. They 

I 

I C * D f 
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account for the dominantly capacitive behavior of 
a short dipole in free space. This justifies a quasi-
static approach to calculating the reactance of a 
short electric dipole in free space, either by solving 
Laplace's equation subject to the boundary condi­
tions that the antenna surfaces are equipotentials 
(thus deriving the charge distribution on the 
antenna surface), or by solving Poisson's equation 
assuming a reasonable charge distribution. These 
methods have been applied in suitably modified 
form to antennas in plasmas. They are inherently 
incapable of generating the terms corresponding to 
the r—1 fields in free space and are only valid pro­
vided the antenna is electrically small in the 
plasma. It is these latter fields which account for 
the radiated power and for R A , SO an alternative 
approach is necessary to derive R A . 

In the following sections, various approximations 
to antenna impedance in plasma will be examined. 
The behavior in a cold plasma without magnetic 
field, discussed first, is of value mainly in indica­
ting trends which occur when a magnetic field is 
present, discussed second. The latter case is the 
one which has proved most important so far in 
analyzing observations. Finally, possible effects 
of " electroacoustic " fields, which can occur in a 
warm plasma due to pressure associated with ther­
mal motions, are discussed. This subject is still 
somewhat speculative, but could turn out to be 
very significant. Ideally, the effects of a static 
magnetic field should be considered, but this 
would superpose complexity on speculation. 

2. COLD PLASMA W I T H O U T M A G N E T I C FIELD. 

The plasma behaves as a pure dielectric with 
refractive index n = (1 — X ) 1 / 2 . For a small 
electric dipole it is readily shown that R A = URA0 

and X A = n—2 X A 0 . This X A behavior is correc­
tly represented at all frequencies by an equivalent 
circuit in which the free space capacity C 0 is 
unchanged but is shunted by an inductance with a 
value which produces a parallel resonance at the 
plasma frequency. For a small magnetic dipole 
R A = nz R A 0 , but X A is unaffected by the plasma 
since the antenna is essentially an inductance. 

As the local plasma frequency is increased, the 
mean square open circuit voltage V | of a magnetic 
dipole will therefore fall more rapidly than that of 
an electric dipole by a factor n2. However, as far 
as the signal V£ at the receiver input terminals is 
concerned, the changing X A may act unfavorably 
against the electric dipole. As the plasma fre­
quency approaches the wave frequency, X A beco­

mes very large. Unless it is possible to compensate 
for this by circuit changes, the ratio VfyV| will 
eventually vary in proportion to n*. Then V£ will 
be proportional to n5 which is a factor n2 poorer 
than the magnetic dipole. This is usually only 
important for plasma frequencies very close to the 
wave frequency. 

When the plasma frequency exceeds the wave 
frequency, propagating waves are not supported by 
the plasma. The radiation resistance of any 
antenna therefore disappears. The reactance of 
the electric dipole changes sign and is positive. 

3. COLD PLASMA W I T H M A G N E T I C FIELD. 

The plasma acts as an anisotropic dielectric. It 
is doubly refracting with refractive indices given 
by the Appleton-Hartree formula. The behavior 
of the indices has been discussed by, for example, 
RATCLIFFE [3]. Labels I and II will be applied to 
the two characteristics waves. Label I will apply 
to that characteristic wave which is independent of 
the strength of the magnetic field when propaga­
ting perpendicularly to it ; this is widely called the 
ordinary wave. 

It is useful to refer to the X — Y 2 plane (fig. 2) 
which is divided according to the properties of the 
Appleton-Hartree formula. Both characteristic 
waves can propagate in regions 1, 3, 6 and 7. In 
regions 2 and 8 only wave I can propagate and in 
region 4 only wave II can propagate. Neither 
wave can propagate in region 5 so radiation resis­
tance is zero and the impedance of any antenna is 
purely reactive. 

In the cases of wave II in region 3 and wave I 
in regions 7 and 8, the refractive index becomes 
infinite for certain directions relative to the magne­
tic field. The corresponding phase and group velo­
cities are zero and the wavelength also is zero. 
These facts give rise to theoretical difficulties 
which do not yet appear to have been overcome. 
For example, since the wavelength for certain direc­
tions is zero, a real antenna cannot be regarded as 
electrically small (nor even as thin). In compu­
ting the fields at distances great compared with the 
antenna dimensions, the phase differences between 
contributions from different parts of the antenna 
cannot be neglected. This simplification, which 
may be valid outside regions 3, 7 and 8, is implicit 
if results derived for a point, or delta function, 
source are applied to a real antenna. Further­
more, the simple current distribution of an antenna 
which is electrically small in free space may be 
expected to change when the antenna is in regions 
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3, 7 and 8. As well as complicating impedance 
theory, this will change the effective length of the 
antenna. Even though this is the result of the 
singularity in the refractive index of one charac­
teristic wave, it also introduces difficulties in inter­
preting observations of the other. Thus, while 
extraterrestrial radio signals in characteristic wave 
I may be observed in region 3 of the topside 
ionosphere, the unknown antenna current distri­
bution caused by the properties of wave II prevents 
the interpretation of the observations either in 
terms of radiation resistance or effective length. 

There may be a more fundamental objection to 
most theoretical work that has been done on this 
topic. In calculating the fields of an antenna 
excited by a time-harmonic source, it is common to 
assume steady-state sinusoidal time variation of 
all field quantities. It may be in fact that such 
a steady state does not exist, but that energy must 
be supplied continuously to growing fields. This 
effect is well-known for an inhomogeneous plas-
m a Wf [*]• Before discussing an antenna in a 
homogeneous plasma, consider that if an exciting 
source is applied to a purely reactive impedance, 
then during the initial transient the impedance 
absorbs a certain amount of energy. This energy 
is retained, even though in the subsequent steady 
state the net flow of energy to the impedance is 
zero. If now the antenna is in a plasma which has 
zero group velocity for certain directions, it is pos­
sible that infinite time is required to supply all the 
energy that would be required to achieve a steady 
state, even though this energy is supplied to the 
near field which one expects to be essentially reac­
tive. This behavior might be described as an 
" extended transient ", and may result in an appa­
rently resistive impedance even though reactive 
fields are being built up. 

This suggested behavior should not be confused 
with some of the results of the works cited below 
which are all for true steady-state conditions 
While there is some theoretical interest in this 
peculiar behavior, the collisionless Appleton-Har-
tree approximation is not adequate to describe a 
real plasma. If any loss, however small, is present, 
or if the kinetic pressure and compressibility of the 
plasma is taken into account [6], the infinities are 
suppressed. Moreover, the Appleton-Hartree for­
mula is based on small-signal theory and is inade­
quate to represent a real plasma in regions of strong 
fields, associated with the singularities in the 
refractive index [7] . 

Outside regions 3 , 7 and 8, use of the collisionless 
Appleton-Hartree approximation appears to give 

reasonably adequate theories for electrically small 
antennas. These theories have proved valuable 
for interpreting radio astronomy observations 
made in the topside ionosphere. 

3 .1 . Radiation resistance. 

K O G E L N I K [8 ] has given an expression for radia­
tion resistance of an elementary electric dipole. 
KOGELNLK and M O T Z [9] have given a correspon­
ding expression for a small magnetic dipole. 
These expressions are in the form of intractable 
integrals. They have been examined by W E I L 

and W A L S H [10 ] , [ 1 1 ] who give extensive numerical 
results. The radiation resistance may be broken 
into two additive components Ri and Rn. Each 
is associated purely with the corresponding charac­
teristic wave. Thus Ri vanishes in regions 4 and 
5 of figure 2, while Rn vanishes in regions 2, 5 and 
8. Each has its own effective temperature asso­
ciated with i t ; in general these temperatures are 
independent. 

Relative to its free space value the total radia­
tion resistance for either an electric or a magnetic 
dipole may be written 

(3.1) R A / R A O = M + N cos 2 <|i, 

where is the angle between the magnetic field 
and the dipole while M and N are functions of X 
and Y . Expressions similar to (3 .1 ) may be writ­
ten separately for Ri and Rn. In free space, M is, 
of course, unity and N , which measures the depen­
dence of R A on orientation of the dipole, is zero. 

One of the most interesting results of the nume­
rical studies is the behavior of R A for an electric 
dipole near the boundary between regions 1 and 
2. Suppose a path is traced out on figure 2 star­
ting near the origin in region 1 and crossing into 
region 2. It is found that M decreases slowly at 
first while N remains very small and may in fact 
be negative. As the boundary X = 1 — Y is 
approached, M begins to decrease very rapidly 
and N begins to increase very rapidly. On crossing 
the boundary there are discontinuities in these 
rates of change to low values in region 2. These 
low rates of change continue to the boundary of 
region 3 where the theory ceases to be valid. The 
behavior on crossing the boundary from region I 
to 2 is associated with the disappearance of Rn. 
This behavior has proved to be a useful experimen­
tal indicator of the condition X = 1 — Y , and 
hence permitted accurate determination of elec­
tron density in the topside ionosphere. While Rn 
also disappears in region 2 for a magnetic dipole, 
the behavior at the boundary is not so abrupt. 
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The rates of change of M and N are continuous 
across the boundary, thus the magnetic dipole is 
not so useful an indicator of the condition 
X = 1 — Y . 

The work of W A L S H , H A D D O C K and SCHULTE [ 1 2 ] 
provides good experimental verification of much 
of this theory. They observed cosmic noise in the 
topside ionosphere with a short electric dipole on 
a spinning rocket. The average signal received 
during a spin cycle was shown to be in accord with 
the predictions of Kogelnik's theory over a consi­
derable range of altitude including regions 1 and 
2 at 1.225 Mc. In particular, quantitative agree­
ment of the average signal with prediction was 
reported during the crossing of the boundary 
X = 1 — Y . However, while spin-modulation 
effects were noted during the boundary crossing 
they were not investigated quantitatively. 

It can now be reported that further investiga­
tions show the predictions of the theory agree accu­
rately with the observed changes of phase and 
amplitude of spin-modulation during the boun­
dary crossing. In region 1, prior to the boundary 
crossing, modulation of was observed with 
constant amplitude and phase. The depth of 
modulation was ± 1 5 % of the average value at 
1.225 Mc, and was apparently due to variation of 
antenna temperature over the spin cycle. There 
were marked changes in the phase and less marked 
changes in the amplitude of modulation in the 
period around the border-crossing. These were 
presumed due to the onset of spin-modulation of 
R A as the coefficient N in ( 3 . 1 ) increased. Using 
the model ionosphere derived previously and the 
known geometry of the vehicle motion relative to 
the locril geomagnetic field, the resulting theore­
tical variation of R A has now been calculated. 
Assuming the modulation of T A to remain constant 
over the period of interest, and taking account of 
the measured X A , the predicted modulation of 
V | may therefore be determined. It has been 
found to be in detailed agreement in amplitude 
and phase with the observations over a period of 
2 0 0 s (corresponding to an altitude range 
of nearly 5 0 0 km) including the boundary 
crossing. 

Finally, it may be remarked that K O G E L N I K ' S 

formula gives infinite values for Rn in region 3 and 
for Ri in regions 7 and 8 of figure 2 . These are 
associated with the singularities in the refractive 
indices of the corresponding characteristic waves. 
However, for the reasons mentioned previously, 
the theory is of dubious validity in these 
regions. 

3 .2 . Reactance. 

K A I S E R [13 ] derived an approximate expression 
for the reactance of a biconical antenna. He expli­
citly assumed the antenna was so short that the 
radiation resistance could be ignored and its input 
impedance evaluated by treating it as a capacity 
with an anisotropic dielectric. In addition, he 
employed a certain mathematical procedure with 
an accuracy difficult to assess. P Y A T I and 
W E I L [14] have obtained an exact mathematical 
solution to the same physically simplified problem. 
Their result is expressed in elliptic integrals. B A L -
MAIN [15 ] , [16] has obtained an approximate solu­
tion for the case of a cylindrical antenna. He 
examines the fields in much greater detail than the 
other authors. 

All these authors obtain quasi-static solutions. 
K A I S E R [ 1 3 ] and P Y A T I and W E I L [ 14 ] solve what 
may be regarded as a modified Laplace's equation, 
subject to the boundary conditions that the bico­
nical surfaces are equipotentials with a potential 
difference equal to the applied voltage. P Y A T I 

and W E I L find that K A I S E R ' S solution is mathema­
tically exact for a bicone aligned with the static 
magnetic field. However, for a bicone perpendi­
cular to the magnetic field, K A I S E R may be appre­
ciably in error ; this error is typically of the order 
of 2 0 % . B A L M A I N [15 ] , [16 ] solves a modified 
Poisson's equation, assuming a suitable charge dis­
tribution. He primarily studies uniform charge 
distribution on each half of the antenna, correspon­
ding to a triangular current distribution, but also 
considers other distributions. 

1 x - 2 

FIG. 2. — The X — Y ' 2 plane. 

These solutions all have the same basic cha­
racteristics, and differ only by relatively small 
factors. Referring to figure 2, the reactance 
X A = X A 0 / ( 1 — X ) on the line Y = 0, as would 
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be expected. Also, X A = OO on the lines 
X = 1 — Y 2 and X = 1, and X A = 0 on the line 
Y = 1. In regions 1, 2 and 6, X A is negative 
(capacitive), and in regions 4 and 5 it is positive 
(inductive). 

The fields studied have r - 3 dependence for 
sufficiently large values of r, so may reasonably be 
called near fields. However, in regions 3, 7 and 8, 
B A L M A I N [15] , [16] finds singular behavior of the 
fields. He shows that it is only beyond a transla­
tion region that r - 8 behavior occurs, and the dis­
tance of this transition region is inversely propor­
tional to collision frequency. For the collisionless 
case, the " near field " therefore extends to infinite 
distance. This behavior is related to the fact that 
in regions 3 , 7 and 8 in the collisionless case, the 
impedance associated with these field components 
is found to be complex ; it contains a resistive as 
well as reactive component. This latter effect is 
found also by K A I S E R [ 13 ] and by P Y A T I and 
W E I L [14] . For the reasons discussed earlier, the 
results of these theoretical studies are of doubtful 
physical significance. 

There appears to be little precise experimental 
verification of these theoretical predictions. B A L ­

M A I N [15] , [16] has made laboratory measurements 
under conditions of fairly high collision frequency. 
He finds fairly good qualitative agreement with the 
predictions of his theory. W A L S H , H A D D O C K and 
SCHULTE [ 12 ] made measurements in the topside 
ionosphere under conditions of very low collision 
frequency. They found good agreement with a 
slightly modified version of K A I S E R ' S formula in 
regions 1 and 2 of figure 2. 

4. W A R M PLASMA W I T H O U T M A G N E T I C FIELD. 

When electron pressure due to thermal motions 
is taken into account, then longitudinal compres-
sional waves may exist. The excitation of these 
by an antenna immersed in the plasma has been 
the subject of much discussion, but no realistic 
theory seems to exist. 

In a series of three papers, C O H E N [ 1 7 ] , [18] , [ 1 9 ] 
has discussed the fields and waves that can exist in 
a plasma and their relation to exciting sources. 
He treats a homogeneous, neutral plasma as a 
continuous fluid with no superposed magnetic field, 
and examines the linearized macroscopic equations 
governing small perturbations. The fields may 
be divided into two uncoupled groups which Cohen 
refers to as the electromagnetic (EM) and the 
plasma (P) components. The EM component 
includes all of the magnetic field and no charge 

accumulation and may be excited by both cur­
rents and charges. It is just the field that would 
exist if the plasma were cold. As far as the EM 
field is concerned, the plasma behaves exactly as a 
dielectric medium with dielectric constant 1 — X . 
The P component has no magnetic field and all the 
charge accumulation. It may be excited by 
charges but not by currents. At great distances 
from the source, it becomes a longitudinal (electro-
acoustic) plasma wave with the dispersion relation 
of B O H M and GROSS [ 20 ] . The P field does not 
exist in a cold plasma. If the plasma is inhomo-
geneous, as for example at a boundary, then cou­
pling between the two types of field may occur. 
If the r. m. s. thermal velocity of electrons is v0, 
then the wavelength of plane P waves of frequency 
/ i s = v0jf(l — X ) 1 / 2 . In the topside ionos­
phere, v0 is typically 2 0 0 km/s so X p = 2 0 
.(1 — X ) - 1 / 2 cm at / = 1 Mc. Thus, the antennas 
used for many applications in space radio astro­
nomy have diameters < Xp but lengths > 
Xp, even though they are short compared with an 
electromagnetic wavelength. 

COHEN [19] approximated a linear dipole by a 
filament of current in a homogeneous plasma. He 
calculated the radiation resistance Rp due to 
energy radiated in P waves by integrating the 
power crossing a sphere of very large radius. 
Unfortunately, he chose a current distribution 
which was certainly incorrect. If P waves are 
launched by an antenna, they will presumably 
affect the current distribution. The calculation 
of the correct distribution is difficult. However, 
assuming as a first approximation the simple trian­
gular current distribution of a dipole electrically 
short in free space, COHEN'S procedure may be 
carried out to obtain the result, for an antenna of 
total length L > Xp, 

(4.1) R P = 6 0 ^ ° — o h m . 

X0 is the free space electromagnetic wavelength 
for the frequency of interest. This resistance is 
very large compared with the electromagnetic 
radiation resistance in many cases and increases 
rapidly as X approaches unity. The problem of 
loading by P waves is thus of great practical signi­
ficance. 

B A L M A I N [ 1 5 ] has attempted to take into account 
the influence of antenna diameter by considering 
the current to be distributed on a hollow, thin 
cylindrical surface in a homogeneous plasma. He 
uses the " reaction concept ", calculating in essen­
ce the complex work done by the current distri-
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bution on the P component of electric field at the 
antenna surface. This technique also gives an 
expression for the reactance X*> associated with 
the P field. For total length L > XP and an 
assumed triangular current distribution, B A L -
MAIN'S expression for Rj> reduces to ( 4 . 1 ) multi­
plied by a factor J2, (kv a). Here a is the radius of 
the cylinder, IcP = 2njlVi and the usual notation 
for the Bessel function of the first kind is used. 
For many cases of interest in the topside iono­
sphere, this correction factor is not greatly diffe­
rent from unity. The expression for X*, is equal 
to (4 .1) multiplied by a factor — J 0 (kv a) N 0 (h a), 
the usual notation for the Bessel function of the 
second kind being used. This is a very sensitive 
function of radius, being zero at a = 0 . 1 4 2 X?, 
positive (inductive) for smaller values of a, and 
rising to oo as a goes to zero. 

The analyses of COHEN and B A L M A I N are highly 
idealized in that they assume a homogeneous 
plasma with a current distribution unsupported by 
metallic boundaries. C O H E N [ 19 ] recognizes that 
the presence of metal boundaries may alter the 
results appreciably. The most important conse­
quence is the appearance of inhomogeneities in the 
plasma around the antenna. This normally takes 
the well-known form of a sheath deficient of elec­
trons. The electron density may be almost zero 
close to the metallic wall, rising gradually to its 
unperturbed vaiue in the neutral plasma at a dis­
tance of several Debye lengths. The Debye length 
is typically 2 cm in the topside ionosphere, so the 
dimension of the region around the antenna which 
is appreciably perturbed may be comparable to 
Xp. The absence of electrons close to the metallic 
surface means that, as far as radio frequency 
effects are concerned, this region acts as a vacuum. 
The fields in this region are then essentially of the 
EM type. If P fields are to be produced in the 
homogeneous region outside the sheath, it is neces­
sary to calculate the coupling between these fields 
through the transition region of the sheath. It is 
not possible to identify two uncoupled groups of 
fields in this region. 

One approach to this problem [21] has attemp­
ted to take the sheath into consideration by trea­
ting it as a discontinuous, rigid boundary between 
an electron-free region and the unperturbed plasma. 
This is certainly an artificial model, and amounts to 
an arbitrary assumption of the amplitude of the P 
field outside the boundary. Thus, a quasi-elec­
trostatic approach is taken and the calculation 
implicitly proceeds as follows. The EM field both 
inside and outside the boundary has only an elec­

tric component. It is normal to both the metallic 
surface and the plasma boundary, and is the same 
as if the plasma were cold. It may be calculated 
in a straightforward manner, treating the plasma 
as a medium with dielectric constant 1 — X , assu­
ming that somehow a boundary is maintained 
which is discontinuous but not rigid, so that oscil­
lations of the electrons at the boundary may take 
place normal to the boundary and the necessary 
boundary conditions on the EM field may be satis­
fied. It is then assumed that the oscillations of 
these electrons due to the P field, which exist only 
in the plasma, are of equal amplitude but in anti­
phase to those of the EM field. Thus, the electrons 
at the boundary are permanently at rest, satisfying 
the assumption of rigidity, and no surface charge 
appears. The electrical boundary condition on 
the P field is automatically satisfied, as discussed 
later. There seems to be no physical basis for the 
assumption of equal amplitude EM and P oscilla­
tions of electrons at the boundary. 

W H A L E [ 22 ] has treated a linear antenna sur­
rounded by a cylindrical sheath which he assumes 
to have a discontinuous boundary. He does not 
explicitly assume a rigid boundary though he 
appears to suggest the amplitude of electron oscil­
lation due to the P field at the boundary is compa­
rable to that due to the EM field. He assumes all 
fields to be strictly radial so that the P field is an 
expanding cylindrical wave. His derivation of 
the amplitude of the P wave is somewhat obscure. 
He apparently assumes the P and EM fields inte­
ract continuously throughout the plasma, as oppo­
sed to the linear separation in a homogeneous 
plasma deduced by C O H E N [17] . (The important 
equations 1, 2 and 5 in W H A L E ' S appendix seem to 
be dimensionally incorrect and do not lead to his 
equation 6) . Nevertheless, the concept of an 
expanding cylindrical wave close to the antenna is 
interesting. It seems worthwhile to explore it 
further using COHEN'S separated equations. 

Consider an infinitely long filament of charge 
along the z-axis, with uniform charge per unit 
length (j = <7Q exp (— iot), that is, a volume charge 
density o8(x) 8(y). This distribution strictly can­
not exist, but it should lead to nearly correct 
results for the fields at sufficiently small radial 
distance from, and not too near the ends of, a 
thin dipole. The EM component of electric field 
at small radial distance r is then 

(4.2) E, = g[2tzz0 (1 — X) r]~\ 

i. e., the quasi-static field for a cold plasma. 
The perturbation n1 in the electron density asso-
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ciated with the P field satisfies the inhomogeneous 
wave equation, 

(4.3) ( V 2 + hi) n t = — ( O Y O P K ) §(*) % ) , 
where <*>p is the radian plasma frequency and 
— e the charge on the electron. Setting 
d/dz = a/dO = 0, the solution of this equation is 
an expanding cylindrical wave, expressed by a 
Hahkel function, 

(4.4) nx = i(a<*Hevl) HJJ> (kv r). 
The associated radial electric field is 

(4.5) E P = - ;(o-64/4e 0 k v v*) H (

1

1 ) ( k P r ) . 

The radial velocity of oscillation of an electron is 

(4.6) v p = — (acoe/4s 0 m k v v\) ( k v r) , 

where m is the electron mass. The average radial 

rate of energy flow per unit area is - Re (mvl nxv*v). 

This quantity is readily shown to vary as r—1. 
Integrating this over the surface of a cylinder of 
unit height and radius r, the result is then indepen­
dent of r, and may be interpreted as the rate of loss 
of energy in P waves per unit length of the radia­
ting source. This quantity is 

It will now be assumed that this formula may 
be applied to a real current distribution of finite 
length, I = I 0 exp (— mt), I 0 being a function of z. 
By continuity, a2, = <o-2 (dl0/dz)2. Integrating 
( 4 . 7 ) along the length of the antenna yields the 
total radiated power in P waves ; setting this equal 
to ( 1 ^ / 2 ) R p , where Im is the value of I 0 at the driving 
point, yields the radiation resistance, 

(4.8) Rj> = 15X„ £ ohm. 

As a check on this equation, consider the case of a 
triangular current distribution, (dl0/<)z)2 = (2L»/L) 2 ; 
inserting this in ( 4 . 8 ) yields the result ( 4 . 1 ) . For a 
homogeneous plasma, it seems reasonable to apply 
( 4 . 8 ) provided I does not vary greatly over a dis­
tance Xp. R p is a function of the unknown cur­
rent distribution ; however, it may be shown that 
the current distribution leading to the minimum 
value of ( 4 .8 ) is in fact the simple triangular one. 
Thus ( 4 . 1 ) represents the minimum value of R P 

for any current distribution. 
If now the current filament is surrounded by a 

cylindrical sheath, the P field outside the sheath 

obeys the homogeneous wave equation obtained 
by setting the right side of ( 4 . 3 ) equal to zero. 
Again the solution is expressed in Hankel func­
tions, like ( 4 . 4 ) , ( 4 . 5 ) and ( 4 . 6 ) , but with an 
unknown amplitude factor determined by the con­
ditions of excitation. As a first attempt at deter­
mining this factor, it might be worthwhile to suppose 
that a discontinuous boundary be maintained 
somehow, but without the restriction of rigidity. 
The results in this case will therefore be discussed 
next. 

Inside the sheath, the EM component of the 
radial electric field is E 6 l = a/ (27ce 0 r ) ; outside the 
sheath it is E«2 = or/27re0 r ( l — X ) . A surface 
charge distribution pc = s 0 (E 2 — E x ) , due to 
motion of electrons in the boundary layer, accounts 
for the discontinuity in E. This is the normal 
behavior at the surface of a medium with dielec­
tric constant 1 — X . Suppose in addition a 
cylindrical P wave exists outside the sheath with 
radial electric field E p . Then the velocity of elec­
trons associated with this electric field and the per­
turbation volume charge density are defined. 
The associated surface charge density pp due to 
motion of electrons in the boundary layer may 
therefore be calculated, and is e 0 E p . That is to 
say, the surface charge density associated with the 
P wave is exactly that required to support a discon­
tinuity E p . The P wave is'' self-contained No 
relationship to the electric field inside the sheath is 
obtained. A P wave of any amplitude can exist 
and satisfy the electrical boundary conditions. 
The problem of finding the amplitude of an excited 
P wave is therefore indeterminate. 

The reason for this indeterminacy is that in 
addition to electrical boundary conditions, mecha­
nical ones must be satisfied. These are continuity 
of electron pressure and velocity. The assumed 
discontinuous sheath model is incapable of satis­
fying these. The problem can of course be made 
determinate, as mentioned previously, by the 
quite artificial assumption of a rigid boundary. 

It appears that in order to solve this problem, 
the continuous nature of the sheath must be taken 
into account. Simplified approaches must be trea­
ted with caution. Ideally a solution of the radio 
frequency fields should be obtained using full 
equations without linearization. A macroscopic, 
continuous fluid approach may in fact be inade­
quate, since the distribution of electron kinetic 
velocities in the sheath is anisotropic and non-
Maxwellian. 

It may well be that a sheath acts very efficiently 
to decouple an antenna from P waves. It is inte-
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resting to note an observation of R. F. effects in 
a laboratory plasma sheath by H A R P [ 23 ] . The 
plasma was excited by frequencies close to the 
plasma frequency and an electron beam probe 
technique of diagnosis was used. A P wave should 
have been readily detectable, but in fact no trace 

could be found, even when special efforts were 
made. There is a dearth of experimental work on 
P wave effects on antennas and more experimental 
work would be of great value. 

Manuscrit regu le 2 3 mars 1965. 
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