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1. Introduction and background. It is well known that for finite dimensional
algebras, "bounded representation type" implies "finite representation type"; this is the
assertion of the First Brauer-Thrall Conjecture (hereafter referred to as Brauer-Thrall I),
proved by Roiter [26] (see also [23]). More precisely, it states that if R is a finite
dimensional algebra over a field k, such that there is a finite upper bound on the
k -dimensions of the finite dimensional indecomposable right R -modules, then up to
isomorphism R has only finitely many (finite dimensional) indecomposable right modules.
The hypothesis and conclusion are of course left-right symmetric in this situation, because
of the duality between finite dimensional left and right R-modules, given by Hom^(-, k).
Furthermore, it follows from finite representation type that all indecomposable R-
modules are finite dimensional [25].

For an arbitrary fc-algebra R, the assumption of a finite upper bound on the
k-dimensions of the finite dimensional indecomposable (right) /?-modules should perhaps
be termed "bounded finite dimensional representation type". It is natural to ask whether
this assumption leads to finite representation type for the finite dimensional (right)
/?-modules, but without any restriction on R counterexamples are abundant. For instance,
if R is the ring of all eventually constant sequences of elements from k, then one easily
sees that all finite dimensional i?-modules are semisimple (whence all finite dimensional
indecomposable 7?-modules are simple), and that all simple /?-modules are one-
dimensional over k, whereas R has infinitely many isomorphism types of simple modules.

On the other hand, our main results show that if R is either finitely generated as a
^-algebra (Section 2), or noetherian as a ring (Section 3), then bounded finite dimensional
representation type does indeed imply that R has only finitely many isomorphism types of
finite dimensional indecomposable modules. In order to gain information on infinite
dimensional representations, we also investigate analogous boundedness conditions in
terms of composition series length instead of vector space dimension (Section 4). For a
large class of noetherian rings R, including those that satisfy a polynomial identity, it turns
out that the existence of a finite upper bound on the lengths of the finite-length
indecomposable (right) /?-modules implies that R has only finitely many isomorphism
types of finite-length indecomposable modules.

This research was motivated by discussions with R. Farnsteiner, who pointed out to
us that any nonzero finite dimensional Lie algebra over a field has finite dimensional
indecomposable representations of arbitrarily large dimension and asked whether such a
conclusion can be obtained from ring-theoretic results alone. The Lie algebra result just
stated is due to Zassenhaus in positive characteristic [32, Theorem 7; 33, p. 2, lines 14-17];
in characteristic zero it is an easy consequence of standard representation theory.
Zassenhaus actually proved a stronger existence result for indecomposable representa-
tions of a finite dimensional Lie algebra g over a field of positive characteristic. He
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showed that if M is any maximal ideal of the center of the enveloping algebra U(g), then
there exist indecomposable finite dimensional representations of g, with arbitrarily large
dimension, all composition factors of which are annihilated by maximal ideals of U(g)
that contract to M [ibid].

One ring-theoretic result along these lines, guaranteeing a somewhat weaker
finiteness property of the representation type, is already known. This is a theorem of
Farkas [8], stating that if R is a finitely generated algebra over a field k, such that all finite
dimensional right 7?-modules are semisimple, then R has only finitely many isomorphism
types of n -dimensional right modules for each positive integer n. The hypothesis that all
finite dimensional right R -modules are semisimple may be rephrased as the assumption
that all finite dimensional right 7?-modules have Loewy length at most 1. This led us to
investigate how severely it restricts the representation type of R to assume a finite upper
bound just on the Loewy lengths of the finite dimensional indecomposable right
/^-modules. It turns out that such a bound places restrictions in particular on the
representation type of the semisimple 7?-modules. In fact, we obtain a generalization of
Farkas's theorem, namely that the existence of a finite upper bound on the Loewy lengths
of the finite dimensional indecomposable right /?-modules implies that R has only finitely
many isomorphism types of n-dimensional semisimple right modules for each positive
integer n. This theorem holds for noetherian ^-algebras as well as for finitely generated
/c-algebras.

DEFINITIONS. The socle series (sometimes called the lower Loewy series) for a module
A is the series of submodules

SOC°(y4) = 0 < SOC1^) = SOC(A) S SOC2(>1) < . . . ,

where SOC'+1(/4)/SOC'(J4) is the socle of A/soc'(A). In case sod" (A) = A for some m, the
least such m is called the Loewy length of A. In other cases the Loewy length of A is
customarily not defined.

When we refer to the length of a module, we mean its composition series length.
Note that if A is a module over a ring R such that R modulo the Jacobson radical

J(R) is semisimple (completely reducible), then the Loewy length of A (if defined) equals
the least power of J(R) that annihilates A. We observe that if A is a module and d is a
positive integer such that all cyclic submodules of A have Loewy length that is bounded
by d, then A has Loewy length and the Loewy length of A is at most d. (One has only to
note that each cyclic submodule B of A satisfies B = socd(B) s socd(A).)

We show in Sections 2 and 3 that if R is either finitely generated as a ft-algebra or
noetherian as a ring, then the existence of a finite bound on the Loewy lengths
[respectively, lengths] of finite dimensional indecomposable (right) /?-modules implies
that there are only finitely many isomorphism types of semisimple [respectively, arbitrary]
n-dimensional R-modules for each positive integer n.

DEFINITION. A ring R is said to have finite representation type provided R is right
artinian and there are only finitely many isomorphism types of finitely generated
indecomposable right R-modules. This condition was shown to be left-right symmetric by
Eisenbud and Griffith [7, Theorem 1.2].

Ringel and Tachikawa proved that if R has finite representation type, then all
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/^-modules are direct sums of finitely generated modules [25, Corollary 4.4]. In particular,
it follows that all indecomposable i?-modules are finitely generated.

The classical version of Brauer-Thrall I was generalized to artinian rings by
Auslander, who proved that if R is a right artinian ring and there is a finite upper bound
on the lengths of all finitely generated indecomposable right /?-modules, then R has finite
representation type ([1, Theorem 3.1; Theorem 4.4]; see also [23, pp. 109,124]).

In Section 4 we show, for example, that if R is a noetherian ring satisfying the second
layer condition and if there is a bound on the Loewy lengths of all finitely generated
indecomposable right /?-modules with co-artinian annihilators, then R is isomorphic to the
direct product of an artinian ring and a noetherian ring having no nonzero modules with
co-artinian annihilators. If there is a bound on the lengths of all finitely generated
indecomposable right /?-modules with co-artinian annihilators, then the artinian factor has
finite representation type. We note that this result fails if R does not satisfy the second
layer condition. We actually prove results of greater generality involving modules whose
annihilators come from a specified set of co-artinian ideals.

There is an alternative approach to some of our key technical results concerning
Pi-rings using idempotent ideals and a result of Small and Robson. We discuss this briefly
in Section 5.

2. Bounded finite dimensional representation type for affine algebras. Throughout
this section, let k denote a field. Recall that an affine algebra over k is any finitely
generated fc-algebra. When discussing fc-algebras and their modules, we reserve the
adjective "finite dimensional" to mean finite dimensional as a vector space over k. We
remark that the functors Hom*(-,/c) provide dimension-preserving dualities between the
categories of finite dimensional right and left modules over any fc-algebra R. Thus for
example a bound on the Loewy lengths, the lengths, or the dimensions of the finite
dimensional indecomposable right ./?-modules will also be a bound for the corresponding
left /?-modules. Likewise, the number of isomorphism types of finite dimensional
indecomposable /?-modules is the same on the left as on the right, and all finite
dimensional right fl-modules are semisimple if and only if this is true on the left.

We start by investigating affine A>algebras for which there is a finite upper bound on
the Loewy lengths of the finite dimensional indecomposable right modules. This is the
same as placing a bound on the Loewy lengths of arbitrary finite dimensional right
modules, since the Loewy length of a finite direct sum of modules is just the maximum of
the Loewy lengths of the summands. Moreover, it would suffice to place a bound on the
Loewy lengths of finite dimensional uniform cyclic modules, since any finite dimensional
module can be embedded in a finite direct sum of finite dimensional uniform modules,
and since the Loewy length of any module equals the supremum of the Loewy lengths of
its cyclic submodules.

The proof of the following proposition is an adaptation of Farkas's proof in [8] to a
more general situation.

PROPOSITION 2.1. Let R be an affine k-algebra, and assume that the Loewy lengths of
all finite dimensional right R-modules are bounded by a positive integer d. If R satisfies a
polynomial identity, then R is finite dimensional over k.
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Proof. We first prove the proposition for semiprime algebras R. Since R satisfies the
ACC on semiprime ideals [28, Theorem 4.5.7; 18, 13.10.7], we may assume by noetherian
induction that R is infinite dimensional but every semiprime factor ring of R is finite
dimensional. The ACC implies that R has only finitely many minimal primes, so the
induction hypothesis easily yields that R is prime. As all proper prime factor rings of R
are artinian, R has Krull dimension at most 1. If R were artinian, then ?̂ would be finite
dimensional over k by [29, Theorem 28; 18, Theorem 13.10.3]. Thus R has Krull
dimension exactly 1. It follows from [29, Theorem 35 and proof] that R is noetherian.

Let / be a semiprime ideal of R: we will show that Id = Id+\ Plainly we may assume
/T^O, in which case R/I is finite dimensional. It follows that R/Id+i is finite dimensional
(since R is noetherian) with Jacobson radical I/Id+1. Since the Loewy length of the
module RUd+l is at most d, this implies that (/?//d+1)/d = 0, and so I" = Id+\

Let n be the Pi-degree of R and let P be a maximal ideal of R such that RIP has
Pi-degree n (such a P exists since ?̂ is semiprimitive - use, e.g., [18, Lemma 13.7.2]). If we
let X = Z(R)\P, then by [29, Theorem 19; 18, Proposition 13.7.5], RX~* has Jacobson
radical PX~\ Since Pd = Pd+\ we see that (PX'l)d = (PX~')d+i. By Nakayama's
Lemma we have PX'1 = 0, and as X consists of regular elements, this shows that P = 0.
Since R is not artinian, this is impossible. This contradiction proves the proposition in the
semiprime case.

Now suppose that R is not semiprime and let N be the prime radical of R. By the
above R/N is finite dimensional. By [4, p. 14, Proposition 2.8], N is finitely generated as a
right /?-module. It now follows that each power N1 is finitely generated as a right
7?-module, and so each module N'~l/N' is finite dimensional. Thus each factor R/Nl is
finite dimensional. By [2, Theorem 2.3], N is nilpotent, and the result follows. •

A slight generalization of the weaker version of Zassenhaus's result follows; for a
generalization of the stronger form, see Corollary 4.5.

COROLLARY 2.2. Suppose that g is a nonzero finite dimensional Lie algebra over k,
and that char k > 0. Then g has finite dimensional indecomposable representations with
arbitrarily large Loewy length, and hence with arbitrarily large k-dimension.

Proof. Since £/(g) is an infinite dimensional affine Pi-algebra, Proposition 2.1 implies
that there cannot be a bound on the Loewy lengths. •

The first conclusion of Corollary 2.2 of course fails for semisimple Lie algebras in
characteristic 0, because of Weyl's Theorem, which states that in this case all nonzero
finite dimensional representations have Loewy length 1.

Corollary 2.2 can also be derived from a result of Hochschild [10, Theorem 2], which
states that if / is the augmentation ideal of the center Z of U(g) (that is, / = Z D g£/(g)),

then O £/(g)/n = 0. Since l/(g) is finitely generated as a Z-module [12], U(g)/U(g)I" is
n = l

finite dimensional over k for each n, and so it follows from Hochschild's result that
^(g) > V(gV > £/(g)/2 > • • • • N o w I must annihilate each irreducible U(g)/U(g)I"-
module, from which we see that U(g)/U(g)I" has Loewy length at least n. Therefore some
indecomposable direct summand of U(g)/U(g)I" must have Loewy length at least n.

The group-theoretic analog of Corollary 2.2 is the following (cf. [22, Theorem 5.3.7;
Corollary 5.3.10]). Let G be an infinite, finitely generated group. If either G is
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abelian-by-finite, or k has characteristic p>0 and G is p-abelian-by-finite, then G has
finite dimensional indecomposable representations with arbitrarily large Loewy length.

To apply Proposition 2.1 to arbitrary affine A>algebras, we follow the reduction used
by Farkas [8]; namely, we factor out the intersection of the annihilators of all the modules
of a given finite dimension, which results in a Pi-algebra.

PROPOSITION 2.3. Let R be an affine k-algebra.
(a) / / the Loewy lengths of all finite dimensional right R-modules are bounded by a

positive integer d, then R has only finitely many isomorphism types of n-dimensional
semisimple right (or left) modules for each n eN.

(b) / / the lengths of all finite dimensional indecomposable right R-modules are
bounded by a positive integer d, then R has only finitely many isomorphism types of
n-dimensional right (or left) modules for each n e N.

Proof. Define a set d of right R-modules in each of the two parts as follows:

(a) si = {AR | A is simple and dim* A ^ «};

(b) si = {AR | A is indecomposable and dim*. A ^ n}\

and let I = (~]{annR(A)\A e si}. For each A e si, the ring R/annR(A) embeds in the
matrix ring Mt(k) for / = dim* A^n. Consequently, R/I satisfies the identities of n x n
matrices and so is a Pi-algebra.

Moreover, in both cases the Loewy lengths of all finite dimensional (7?//)-modules
are bounded by d. Thus by Proposition 2.1, R/I is finite dimensional. In part (a), R/I is
semisimple artinian, while in part (b), Brauer-Thrall I implies that R/I has finite
representation type. (Note that the existence of a bound on the lengths of the finite
dimensional indecomposable right (/?//)-modules implies that the k-dimensions of these
modules are also bounded.) In either case, we see that si contains only finitely many
isomorphism types, and the desired conclusion follows. •

COROLLARY 2.4. (Farkas) Let R be an affine k-algebra, and assume that all finite
dimensional right R-modules are semisimple. Then R has only finitely many isomorphism
types of n-dimensional right (or left) modules for each n e N. •

THEOREM 2.5. Let R be an affine k-algebra, and assume that the k-dimensions of all
finite dimensional indecomposable right R-modules are bounded by a positive integer d.
Then R has only finitely many isomorphism types of finite dimensional indecomposable
right (or left) modules. In fact, there is an idempotent ideal I c/? (not necessarily proper)
with finite codimension such that I annihilates all finite dimensional right or left R-modules
and R/I has finite representation type.

Proof. Let / be the intersection of the annihilators of all finite dimensional
indecomposable right ^-modules. As in the proof of Proposition 2.3(b), R/I is finite
dimensional and has finite representation type. Moreover, / annihilates all finite
dimensional right tf-modules. It follows from [4, p. 14, Proposition 2.8] that R/I2 is also
finite dimensional, and so it is annihilated by /. Hence, / = I2.
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The duality discussed at the beginning of this section shows that / annihilates all finite
dimensional left R -modules as well, completing the proof. D

Under the hypotheses of Theorem 2.5, we cannot conclude that R itself is finite
dimensional. For example, the Weyl algebra A1(C) = C{x,y}/(yx-xy-1) is an affine
C-algebra with no nonzero finite dimensional modules. A more interesting example is
provided by the "usual idealizer" inside AX(C), namely the ring R = C + yA}(C). This ring
is an affine noetherian C-algebra [24, Proposition 2], the ideal I = yA^(C) is the unique
proper nonzero ideal of R, all finite dimensional R -modules are annihilated by /, and thus
all finite dimensional indecomposable /?-modules are one-dimensional. This example also
shows that the ideal / in Theorem 2.5 need not be a direct summand of R.

We remark that Roseblade [27, Theorem A] has shown that if k is an algebraic
extension of a finite field and G is a polycyclic-by-finite group, then all simple modules
over the group algebra k[G] are finite dimensional. The algebra k[G] is affine and
noetherian; furthermore, we may choose G such that k[G] does not satisfy a polynomial
identity and so that there are simple modules of arbitrarily large finite dimension (for
example, choose G to be a non-abelian poly-Z group). Irving [11] has given an example of
an affine non-noetherian algebra over an arbitrary field k such that all simple modules are
finite dimensional and there are simple modules of arbitrarily large finite dimension. We
are unaware of an affine noetherian example of this type over a field of characteristic
zero. Using the main result of [2] and the concept of Pi-degree, it is not hard to see that if
R is an affine algebra over an algebraically closed field, then R satisfies a polynomial
identity if and only if J(R) is nilpotent and there is a finite bound on the dimensions of the
simple right R-modules.

3. Bounded finite dimensional representation type for noetherian algebras. We
continue to assume in this section that k denotes a field. The results of Section 2 all have
analogs for noetherian &-algebras, but we have to allow for noetherian Pi-algebras over k
that have no nonzero modules which are finite dimensional over k. For example, any
infinite dimensional field extension of k has these properties.

PROPOSITION 3.1. Let R be a noetherian k-algebra, and assume that the Loewy lengths
of all finite dimensional right R-modules are bounded by a positive integer d. If R satisfies a
polynomial identity, then there is a direct product decomposition R - /?, X R2 such that Rt

is a finite dimensional k-algebra while R2 is a noetherian k-algebra having no nonzero right
or left modules of finite k-dimension. •

We shall derive Proposition 3.1 from more general results in the following section. As
consequences, we immediately obtain the following results using the methods of Section
2.

PROPOSITION 3.2. Let R be a noetherian k-algebra.
(a) / / the Loewy lengths of all finite dimensional right R-modules are bounded by a

positive integer d, then R has only finitely many isomorphism types of n-dimensional
semisimple right (or left) modules for each n eN.
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(b) / / the lengths of all finite dimensional indecomposable right R-modules are
bounded by a positive integer d, then R has only finitely many isomorphism types of
n-dimensional right (or left) modules for each n s N. •

COROLLARY 3.3. Let R be a noetherian k-algebra, and assume that all finite
dimensional right R-modules are semisimple. Then R has only finitely many isomorphism
types of n-dimensional right (or left) modules for each n eN. D

THEOREM 3.4. Let R be a noetherian k-algebra, and assume that the k-dimensions of
all finite dimensional indecomposable right R-modules are bounded by a positive integer d.
Then R has only finitely many isomorphism types of finite dimensional indecomposable
right (or left) modules. In fact, there is an idempotent ideal I s i ? (not necessarily proper)
with finite codimension such that I annihilates all finite dimensional right or left R-modules
and R/l has finite representation type. •

4. Bounded finite-length representation type for noetherian rings. The existence of
noetherian non-artinian V-rings (i.e., rings all of whose simple modules are injective)
shows that a bound on the lengths of finite-length indecomposable modules over a
noetherian ring will not in general imply that the ring is artinian. There exist simple
noetherian V-rings with only one isomorphism type of simple modules [5, Theorem 1.4],
and there also exist simple noetherian V-rings with infinitely many isomorphism types of
simple modules [21, Example (a)]. The latter example shows that a finite bound on the
Loewy lengths of the finite-length modules over a noetherian ring (or even a bound on
the lengths of the indecomposable finite-length modules) does not always imply that there
are only finitely many isomorphism types of finite-length indecomposable modules.

In order to obtain positive results, we restrict ourselves to modules with co-artinian
annihilators, and we apply ideas from the localization theory of noetherian rings (cf.
[15,9] for more details on the following definitions and a proof of the first lemma).

DEFINITION. Let P and Q be prime ideals in a noetherian ring R. There exists a link
from P to Q, denoted P~*Q, if and only if there exists an ideal A lying between P f)Q
and PQ such that the (R / P, R / Q)-bimodu\e (PP\Q)/A is nonzero and torsionfree on
each side. For co-artinian maximal ideals P and Q, the definition simplifies considerably:
namely, P ~»Q if and only if P n Q ¥=• PQ.

Links between co-artinian maximal ideals arise from non-split extensions of the
corresponding simple modules, as the following easy lemma shows.

LEMMA 4.1. Let P and Q be co-artinian maximal ideals in a noetherian ring R, and let
A and B be simple right R-modules such that AP = 0 and BQ = 0. Then P»**Q if and only
if there exists a non -split extension 0-»fi-»C-»;4-»0. •

DEFINITIONS. Let M be a nonempty set of co-artinian maximal ideals in a noetherian
ring R.
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(a) The set M is right {left) link-closed provided M is closed under incoming
(outgoing) links.

(b) The set M is right (left) link-finite provided that for each P e M, there are at most
finitely many prime ideals of R linked to (from) P.

(c) The set M satisfies the right second layer condition provided that for each P E M,
if we let E be the injective hull E((RIP)R), then there is no prime ideal strictly smaller
than P that is an assassinator prime of E/annE(P).

(d) An i?-module A is classically M-primary provided each element of A is
annihilated by some product of ideals from M.

Several comments about the preceding definitions are in order.
(i) Conditions (b) and (c) hold automatically in case R is a Pi-ring [19, Theorem 7;

20, Theorem 7; 15, Theorem A.2.4], in case R is the enveloping algebra of a solvable finite
dimensional Lie algebra [14, p. 61; 15, Theorems A.3.2, A.3.9], or in case R is the group
algebra of a polycyclic-by-finite group [3, Theorem 6.4; 13, Proposition 10; 14, Theorem
4.5; 15, Theorems A.4.6, A.4.7].

(ii) Among noetherian rings in general, only one example is known where condition
(c) holds and condition (b) fails [31, Theorem 4.4].

(iii) Conditions (a) and (b) are really conditions on co-artinian maximal ideals, since
any prime ideal linked to or from a co-artinian prime must itself be co-artinian. This
follows from Lenagan's Theorem [17, Proposition; 18, Theorem 4.1.6], that says that a
noetherian bimodule which is artinian on one side must also be artinian on the other.

(iv) Lenagan's Theorem also shows that the set of all co-artinian maximal ideals in R
is right and left link-closed. Clearly if R is an algebra over a field, then the set of all
maximal ideals of R with finite codimension is right and left link-closed.

(v) Conditions (a)-(c) pass easily to factor rings. In particular, if M is a set of
maximal ideals satisfying any of these conditions and / is an ideal' of R, then the collection
M = {PI11 P e M and P 2 / } is a set of maximal ideals of R/I satisfying the same
condition(s). To see this for (a) and (b), note that it follows immediately from the
definition of a link that if P and Q are prime ideals of R containing / for which
PII^Q/I, then P^*Q. Concerning (c), note that for any prime ideal P of R containing
/, the (i?//)-module injective hull of RIP equals the annihilator of / in the 7?-module
injective hull of RIP.

In the next three results, it suffices to bound the Loewy lengths of uniform cyclic
modules satisfying the given condition. (See the remarks before Proposition 2.1.)

THEOREM 4.2. Let R be a noetherian ring, and let M be a right link-closed, right
link-finite set of co-artinian maximal ideals of R, satisfying the right second layer condition.
Assume that the Loewy lengths of all classically M-primary right R-modules are bounded
by a positive integer d.

(a) All the prime ideals in M are minimal primes, and so M is finite.
(b) The ideal J = (~]M satisfies Jd =Jd+\ and all classically M-primary right or left

R-modules are annihilated by Jd.
(c) The ring R/Jd is artinian and all classically M-primary left R-modules have Loewy

length at most d.
(d) / / M is also left link-closed, then Jd is a ring direct summand of R, and so

R = (R/Jd) X R2 for some ring R2.
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Proof, (a) Assume that P e Ji is not minimal and let Q be a prime ideal of R
properly contained in P. Set Ji' = {P' e Ji\Q ^ P'}. By comment (v) above, the image of
Ji' in R/Q is right link-closed, right link-finite, and satisfies the right second layer
condition, and clearly d is a bound on the Loewy lengths of the classically .if-primary
right (i?/(2)-modules. Thus the hypotheses remain in force if we pass to R/Q and replace
Ji by {P'/Q | P' e Ji'}.

Hence we may assume that R is prime but not artinian. Let P e Ji, let S be a simple
right (/?/P)-module, and let E be the injective hull of 5 over R. Since Ji is right
link-closed and satisfies the right second layer condition, it is a standard consequence of
Jategaonkar's Main Lemma (see [15, Corollary 9.1.3; 9, Theorem 11.6]) that the factors
sod E/sod'1 E are direct sums of simple modules whose annihilators are in Ji; the
link-finiteness of Ji implies that only finitely many such annihilators can occur for each i.
Consequently, each soc' E is annihilated by a finite product of primes from Ji and so is
unfaithful (0 & Ji). It is also the case that E is the union of its socle series ([15, Corollary
9.1.3]), and so E is classically ./^-primary. Thus the hypotheses imply that E has Loewy
length at most d, and so E = socrf E. However over a prime right noetherian ring any
nonzero injective module is faithful (cf. [9, Lemma 12.9]). This contradiction proves the
minimality of the elements of Ji

(b) and (c) Let J = (~) Ji The right /?-module R/Jd+X is classically ^-primary, and so
its Loewy length is at most d. It follows from this that Jd=Jd+l, and hence that any
finitely generated right or left 7?-module that is annihilated by a product of elements of Ji
is annihilated by Jd. Thus d is also a bound on the Loewy lengths of such left /?-modules.

(d) We first show that HomR{Jd, E(A)) = 0 for any classically ^-primary right
/?-module A. It suffices to consider the case that A is a simple right (/?/P)-module for
some P e Ji; hence, it follows as in part (a) that E(A) is classically ^-primary. Now if
HomR(/'', £(y4))^0, then we can replace E(A) with a finitely generated submodule, and
we can then replace that submodule with a simple factor B; hence we would have
HomR(Jd, B) T^ 0 for a classically ./^-primary simple right 7?-module B. Such a module B
must be annihilated by some Q e Ji, and this implies that JdQ <Jd, contrary to (b). Thus
the claim follows.

Now let K = r-ann(/d). If Jd + K ¥= R, then there is a maximal ideal P which contains
Jd + K and hence both J and K. As P contains / , we must have P e Ji. Since Jd is a
noetherian bimodule, R/K embeds as a right R-module in a finite direct sum of copies of
Jd. By the last paragraph, we must have HomR(R/K, E(A)) = 0 for all classically
.^-primary right R-modules A. Thus we must have HomR(R/K, R/P) = 0, contradicting
the fact that K c P. Hence, R=Jd + K.

Set K' =JdC\K. Since JdK = 0, we see that K, and hence also AT', is left artinian.
Thus by Lenagan's Theorem, K' is right artinian. Now by [9, Corollary 7.6], K' is
annihilated on the right by a product of primes Qt such that for each i, there is an ideal
link from a prime in Ji to Q(. Since Ji consists of minimal primes, it satisfies both the left
and right second layer conditions, and so by [15, Theorem 8.2.4], all the primes Qt are in
the left link closure of Ji, and hence in Ji. Thus either r-ann(/C') = R or some ideal in Ji
contains r-ann(tf') 2 K\ as in the last paragraph the latter possibility cannot occur. Thus
we have K' = 0, which proves that R=Jd®K. •

The idealizer example at the end of Section 2 shows that both (a) and (d) of Theorem
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4.2 can fail without the second layer condition. The necessity of the extra hypothesis in
Ik k\

(d) can already be seen in the algebra R = ( ), if M consists just of the prime P =

0 k
.. Note that in this example, all classically ^-primary R-modules are semisimple.

U K /
As one consequence of Theorem 4.2, we obtain the following analog of Proposition

2.1.

COROLLARY 4.3. Let R be a fully bounded noetherian ring. If the Loewy lengths of all
finite-length right R-modules are bounded by a positive integer d, then R is artinian.

Proof. All primitive ideals of R are co-artinian by [9, Proposition 8.4]. Hence, if M is
the set of maximal ideals of R, then (~)M = J(R), the finitely generated classically
^-primary /?-modules are precisely the R-modules of finite length, and M is right and left
link-closed by Lenagan's Theorem. Furthermore, M satisfies the right and left second
layer conditions by [15, Proposition 8.1.1], and M is link-finite by [15, Theorem 6.2.16].
Thus by Theorem 4.2, M is finite and J(R)d is a ring direct summand of R. Since J(R)
contains no nonzero idempotents, J(R)d = 0, and therefore we conclude that R is
artinian. •

COROLLARY 4.4. Let R be a noetherian ring which is module-finite over a subring C of
its center. Let M be a maximal ideal of C, and let M be the set of those maximal ideals of R
that contract to M. If the Loewy lengths of all classically M-primary right R-modules are
bounded by a positive integer d, then Md - Md+1 and MdR is a ring direct summand of R.

Proof. The hypotheses imply that R is a Pi-ring and that C is noetherian [6, Theorem
1]. Since the localization CM embeds in the localization RM, it follows from Nakayama's
Lemma that MR¥=R, and consequently the set M is nonempty. Moreover, M is finite
because it corresponds to the set of maximal ideals of the finite dimensional algebra
R/MR, and M is link-closed by [15, Theorem A.7.2; 9, Theorem 11.20]. Now Theorem 4.2
applies: if J = (~) M, then Jd =Jd+l and Jd is a ring direct summand of R. Clearly MR g / ,
and J/MR is the radical of R/MR, whence J/MR is nilpotent. It follows that
MdR = Md+lR =Jd\ in particular, MdR is a ring direct summand of R. Finally, a second
application of Nakayama's Lemma shows that Md = Md+i. D

We can now give the following generalization of the sharp form of Zassenhaus's
existence theorem for finite dimensional indecomposable representations of Lie algebras
in characteristic p.

COROLLARY 4.5. Suppose that g is a nonzero finite dimensional Lie algebra over k,
and that char k > 0. Let M be a maximal ideal of the center of t/(g), and let M be the set of
those maximal ideals of f/(g) that contract to M. Then g has finite dimensional
indecomposable classically M-primary representations with arbitrarily large Loewy length,
and hence with arbitrarily large k-dimension.

Proof. It is well-known that U(g) is noetherian, and in [12] it is shown that U(g) is
module-finite over its center. Since f/(g) is a domain and MdU(g) is a proper nonzero
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ideal for each positive integer d, the ideals MdU{tg) cannot be ring direct summands of
U(g). Thus by Corollary 4.4 there cannot be a bound on the Loewy lengths of the finite
dimensional classically .^-primary £/(g)-modules. •

Proof of Proposition 3.1. Let M be the set of maximal ideals of R of finite
codimension and note that M is right and left link-closed. Since R is a Pi-algebra, the
conclusion of Proposition 4.2(d) is valid. As the finite dimensional 7?-modules are
precisely the classically ./^-primary finitely generated /?-modules, this proves Proposition
3.1. •

We can now prove the analogous results with bounds on length and dimension
instead of Loewy length. Note that any right link-closed set of maximal ideals in a
noetherian Pi-ring satisfies the hypotheses in the first sentence of the next result.

THEOREM 4.6. Let R be a noetherian ring, and let M be a right link-closed set of
co-artinian maximal ideals of R, satisfying the right second layer condition. Suppose that
the lengths of all finitely generated indecomposable classically Ji-primary right R-modules
are bounded by a positive integer d.

(a) All the prime ideals in M are minimal primes, and so M is finite.
(b) The ideal J = (~]M satisfies Jd = Jd+x, and all classically M-primary right or left

R-modules are annihilated by Jd.
(c) The ring R/Jd is artinian and has finite representation type.
(d) / / M is also left link-closed, then Jd is a ring direct summand of R, and so

R = (RUd) X R2 for some ring R2.

Proof. All the hypotheses of Theorem 4.2 are satisfied, except possibly right
link-finiteness. Suppose that there are d distinct prime ideals Pu... , Pd in R which are all
linked to a prime Q in JL Since M is right link-closed, each Pt E M. NOW let Au... , Ad, B
be simple right R-modules such that AjP, = 0 for i = 1, . . . , d and BQ = 0. By Lemma 4.1,
there exist non-split extensions of B by each At, and so each At embeds in E(B)/B. Hence
E(B) has a submodule C such that C => B and C/B =A, ©. . . ®Ad. But then C is a
finitely generated indecomposable classically ./M-primary right 7?-module of length d +1,
contrary to our hypotheses. This shows that at most d -1 primes of R can be linked to
any one prime in JL Statements (a), (b), (d) now follow from Theorem 4.2. Observe that
R/Jd is artinian, and that the classically ^-primary /?-modules are precisely the
(R/Jd)-modu\es. Since there is a bound on the lengths of the finitely generated
indecomposable right (/?//rf)-modules, Auslander's generalization of Brauer-Thrall I
([1; 23, p. 124]) shows that R/Jd has finite representation type. Thus (c) is proved. D

COROLLARY 4.7. Let R be a noetherian ring which is module-finite over a subring C of
its center. Let M be a maximal ideal of C, and let M be the set of those maximal ideals of R
that contract to M. If the lengths of all finitely generated indecomposable classically
M-primary right R-modules are bounded by a positive integer d, then Md = Md+i and
R/MdR has finite representation type. Moreover MdR is a ring direct summand of R. Ill

COROLLARY 4.8. Let R be a noetherian algebra over a field k, and let M be a right
link-closed set of finite-codimension maximal ideals of R. Suppose that the k-dimensions of
all finite dimensional indecomposable classically M-primary right R-modules are bounded
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by a positive integer d. Then there is an idempotent ideal I c R with finite codimension such
that I annihilates all classically M-primary right or left R-modules and R/I has finite
representation type. •

For the sake of completeness, we mention a result of J0ndrup [16, Theorem 1 and
Proposition 3]. If R is either a Pi-ring or a right noetherian ring in which all right
primitive ideals are co-artinian, and if R has only finitely many isomorphism types of
cyclic indecomposable right modules, then R must be right artinian.

5. Idempotent ideals. In this section we sketch an alternative approach to some of
the material in Sections 2 and 3, using idempotent ideals. This approach was pointed out
to us by L. W. Small.

We begin with a slight generalization of a result of Small and Robson.

PROPOSITION 5.1. If R is a PI-ring which either satisfies the ACC on ideals or is affine
as an algebra over a commutative noetherian ring, then R has only finitely many
idempotent ideals.

Proof. If R satisfies the ACC on ideals, this is just [30, Theorem 3]. If R is an affine
algebra over a commutative noetherian ring, the proof in [30, Theorem 4] that R has only
finitely many idempotent prime ideals can be extended to the general case using
[2, Theorem 2.3]. D

Recall that a filter of ideals in a ring R is a non-empty collection $> of ideals closed
under finite intersections, such that any ideal containing an ideal from 3> is also a member
of $.

PROPOSITION 5.2. Let 3> be a filter of co-artinian ideals of a ring R that is closed under
products, and suppose that $• contains only finitely many idempotent ideals. If there is a
bound d on the Loewy lengths of modules annihilated by ideals in 3>, then there is a
{unique) smallest ideal in 3>\ this ideal is idempotent.

Proof. If P is a semiprime ideal in J>, the bound on the Loewy lengths implies that
P" = P" for all n > d, and so Pd is idempotent. Since Pd ̂  Qd for distinct semiprime ideals
P, Q, there must be only finitely many semiprime ideals in $>. Since J> is closed under
intersections, there is a smallest semiprime ideal J E 3. For any / e 3>, the radical of R/I is
nilpotent and so / contains a power of a semiprime ideal from 3>. It follows that / 2 Jd,
and so Jd is the smallest ideal in $. D

REMARK 5.3. If R is a noetherian ring, the set of co-artinian ideals of R is a filter and
is closed under products. If R is a noetherian or affine algebra over a field, the set of
ideals of finite codimension of R is a filter and is closed under products. (To see this in the
affine case, use [4, p. 14, Proposition 2.8].)

We now use Propositions 5.1 and 5.2 to derive Proposition 2.1 and weakened
versions of Proposition 3.1 and Theorem 4.2. These suffice to give most of the applications
in Sections 2 and 3.

COROLLARY 5.4. Let R be an affine algebra over afield k, and assume that the Loewy
lengths of all finite dimensional right R-modules are bounded by a positive integer d. If R
satisfies a polynomial identity, then R is finite dimensional over k.
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Proof. By Propositions 5.1, 5.2 and Remark 5.3, R has a smallest ideal / of finite
codimension; and / is idempotent. Since R is an affine Pi-algebra, / is contained in every
primitive ideal of R, and so / £ /(/?). By [2, Theorem 2.3; abstract], J(R) is nilpotent, and
so / = 0. •

COROLLARY 5.5. Let R be a noetherian ring satisfying a polynomial identity.
(a) / / the Loewy lengths of all right R-modules with co-artinian annihilators are

bounded by a positive integer d, then there is an idempotent co-artinian ideal I which
annihilates all (right or left) R-modules with co-artinian annihilator.

(b) / / R is an algebra over a field and the Loewy lengths of all finite dimensional right
R-modules are bounded by a positive integer d, then there is an idempotent ideal I of finite
codimension that annihilates all finite dimensional (right or left) R-modules.

Proof. These results are immediate from Propositions 5.1, 5.2 and Remark 5.3. •

For either of the ideals / described in Corollary 5.5, R = /®r-ann(/) . The proof of
this fact seems to require extra work, such as that in the proof of Theorem 4.2.
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