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Abstract. In this review, I will briefly discuss the hypotheses made in the treatment of modern
rotating stellar models and review the expected efficiency of mixing along the HR diagram. The
role of mixing in the localization of abundance anomalies will also be discussed. Finally, I will
show how mass loss and gravitational settling of helium may influence the evolution of rotating
stars, and how A stars can play a unique role in constraining our models.
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1. Introduction
Rotation plays an important role in determining stellar structure. It modifies surface

properties such as the temperature and the local gravity and might even influence mass
loss. Furthermore, it can lead to a significant amount of mixing due to meridional circula-
tion and various hydrodynamical instabilities. The initial angular momentum contained
in a star will thus be a third parameter guiding a star’s structure and evolution. It is now
widely recognized that a complete description of the evolution of the angular momentum
distribution within the star is required and that rotational mixing is linked to the internal
rotation profile.

The first modelization of this type was undertaken by Endal & Sofia (1976, 1978,
1981) and pursued by Pinsonneault et al. (1989). However, in these early investigations
meridional circulation was treated merely as a diffusive process.

The competition of meridional circulation and microscopic diffusion as competing pro-
cesses in the formation of Am/Fm stars was quantified for the first time by Michaud
(1982) and Charbonneau & Michaud (1991). But the postulated solid body rotation was
not derived from a self consistent calculation.

Here I will describe how meridional circulation can be described as a truly advective
process (§ 2) and present a modelization of anisotropic turbulent transport in stars (§ 3).
I will further describe the expected efficiency of mixing along the HR diagram (§ 4),
discuss the impact of various boundary conditions on this efficiency (§ 5) and comment
on the effect of mass loss on other physical processes (§ 6). I will conclude with the
examination of the constraints obtained from rotational mixing models of A and Am
stars (§ 7).

2. Meridional circulation in 1D
The evolution of the rotation state within a star subject to meridional circulation

should in principle be treated at least with a 2D model. However, one can take advantage
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of the fact that in stratified fluids turbulence is expected to be strongly anisotropic.
Assuming this is the case and that the horizontal turbulent viscosity νh is much larger
than the vertical turbulent viscosity νv (or more specifically νh/l2h � νv/l2v) allows one
to by-pass the difficulty. This approach was followed by Zahn (1992) to derive equations
guiding the evolution of rotating stars. He assumes that the horizontal turbulence is
efficient enough to enforce a shellular rotation state where Ω = Ω(r).

A first order expansion leads to an advection-diffusion equation for the transport of
angular momentum

ρ
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ρ being the density and νv the vertical component of the turbulent viscosity. The ampli-
tude of the vertical circulation velocity u(r, θ) = U(r) (P2(cos θ) + 1/5) is given by

U(r) =
L

mg

(
P

CP ρT

)
1

(∇ad −∇ + ∇µ)
[EΩ + Eµ] , (2.2)

where L is the luminosity, m the mass, P the pressure, CP the specific heat at constant
pressure, T the temperature, ∇ad = (∂ ln T/∂ ln P )ad, ∇ = d ln T/d lnP , and ∇µ =
d lnµ/d ln P : the adiabatic, radiative and mean molecular weight gradients, respectively
(Maeder & Zahn 1998). EΩ and Eµ, derived from first principles, depend on the rotation
profile (neglecting any horizontal fluctuations) and on the horizontal variations of the
mean molecular weight Λ, respectively (see Zahn 1992 and Maeder & Zahn 1998 for
details). Let us only remark that to first order EΩ ∝ Ω2R3

GM , which is a measure of the
star’s oblateness.

The presence of a strong horizontal turbulence Dh modifies the evolution of chemicals.
The combination of an advective meridional circulation with this horizontal turbulence
is equivalent to considering an effective vertical diffusion given by

Deff =
|rU(r)|2

30Dh
(2.3)

(Chaboyer & Zahn 1992). This equation expresses the fact that horizontal turbulence
erodes the advective process and thus reduces the efficiency of meridional circulation in
the transport of chemicals†. The concentration of a given element ci then obeys
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where ċi is the nuclear production/destruction rate and Uip is the microscopic diffusion
velocity of the element of interest with respect to protons. Dv is the vertical turbulent
diffusivity.

In this model, the rotation profile can reach a stationary state, in which the inward‡
advection of angular momentum by meridional circulation balances the outward turbulent
or viscous diffusion of momentum. This stationary state obeys

U(r) = −5νv

Ω
∂Ω
∂r

. (2.5)

† The advection of momentum is not affected since the horizontal average is performed on
r2Ω while turbulence homogenizes Ω. See Chaboyer & Zahn (1992) for details.

‡ It can be shown that the advected flux will be directed inward as long as differential rotation
is not too large. If differential rotation is large with the core rotating faster, the direction of
the circulation reverses and both turbulent viscosity and meridional circulation carry angular
momentum towards the surface.
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Calculations show that this equilibrium leads to a core rotating ∼ 1.2 to 1.4 times faster
than the surface in a homogeneous ZAMS star (this ratio rises in an evolved star).
In a static model, there is thus no net momentum flux. However, there always exists a
flux of concentration, as both the effective and turbulent diffusivity lead to concentration
fluxes that are directed opposite to the concentration gradient. Moreover, while horizontal
diffusion acts to reduce the efficiency of diffusion for the chemicals, it does not have the
same effect on angular momentum; in a turbulent region, Dv � νv is thus much larger
than Deff .

As the model star evolves, the circulation must adjust itself to provide the momentum
flux required to reconstruct the equilibrium profile. This readjustment is made more
drastic by mass loss, as the upward migration of the surface layers will create an even
larger deficit of momentum. Mass loss is thus a key ingredient in the determination of the
amount of large scale mixing taking place in the outer layers of stars. This is especially
true of slow rotators in which turbulence is not large at the surface.

3. Turbulence
To complete the model, one has to obtain an estimate of the turbulent viscosities νv

and νh and turbulent diffusivities Dv and Dh. We will assume that Dv = νv and Dh = νh.
The source of turbulence considered here is the shear instability†.

Shear instabilities develop because energy is stored in differential rotation. A linear
stability analysis shows that instability may grow as soon as there is an inflection point
in the profile (Rayleigh 1880, Watson 1981). However, laboratory experiments indicate
that destabilization occurs even if this is not the case, and in general one may assume
the presence of turbulence as soon as the Reynolds number is large enough (see, e.g.,
Richard & Zahn 1999). This is the point of view we shall adopt.

In the case of the vertical viscosity νv, work must be done against the stable strati-
fication for the instability to occur. In the case relevant to stellar models, this will be
made possible only if the thermal stratification measured by the Brunt-Väisälä frequency
N2

T = gδ
HP

(∇ad −∇) is reduced by the thermal diffusivity (Townsend 1958, Dudis 1974,
Lignières et al. 1999). Stratification in stars is also due to mean molecular weight gra-
dients. The composition part of the Brunt-Väisälä frequency N2

µ = gφ
HP

∇µ = −g d ln µ
dr

is unaffected by thermal diffusivity. However, it can be weakened through the action of
strong horizontal diffusion (Talon & Zahn 1997). Meynet & Maeder (1997) have shown
that such an effect has to be taken into account if rotational mixing is to account for
abundance anomalies in massive stars.

Small eddies are easier to render unstable by these diffusive processes, but they lead
to a limited amount of mixing. Very large eddies remain stable. A turbulent diffusion
coefficient can be deduced which corresponds to the largest unstable eddies. Taking into
account both thermal diffusivity and horizontal diffusion yields

νv =
8Ric

5
(r dΩ/dr)2

N2
T /(K + Dh) + N2

µ/Dh
. (3.1)

for the vertical viscosity, where Ric � 1/4 is the critical Richardson number. The leading
factor 8Ric/5 depends on the geometry (here assumed spherical) of the turbulent eddy
and on the exact value of Ric. It is thus not well constrained only from theory and could

† For a discussion on the magnitude of the baroclinic instability which will be neglected here,
see, e.g., Spruit & Knobloch (1984).
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Figure 1. (left) Comparison of the Eddington-Sweet circulation velocity, including the reversed

cell due to the Gratton-Öpik term (indicated by the arrow) and of the asymptotic solution
described by (2.5), for a turbulent diffusion given by (3.1) and a surface velocity of 100 km s−1 in
a 1.7 M� star. The magnitude of the circulation is reduced by several orders of magnitudes, while
the reversed cell disappears totally, since the circulation must transport momentum outward to
balance the turbulent diffusion. (center) Turbulent and effective diffusion corresponding to the
asymptotic rotation state for a surface velocity of 100 km s−1. (right) Turbulent and effective
diffusion for various surface velocities (dashed - 150, full - 100, dotted - 50 km s−1) in the
asymptotic state, and in an evolving model. These models include a cutoff based on the critical
Reynolds number (cf. Eq. 3.2).

vary by a factor of a few either way. Furthermore, this instability will grow only provided

νv ∼> (νmol + νrad)Rec (3.2)

where the critical Reynolds number is Rec � 10.
For horizontal shears there is no competing force preventing the growth of the insta-

bility. The magnitude of the horizontal turbulent viscosity is related to the magnitude of
the horizontal differential rotation Ω̂, which is constantly regenerated by meridional cir-
culation. Zahn (1992) originally suggested that it should be proportional to the horizonal
shear

νh � 1
ch

r |2V − αU | (3.3)

and that ch could be determined from observations, but it did not rely on a specific model.
This prescription has recently been reviewed by Maeder (2003) and Mathis et al. (2004).
The first paper proposes a formulation in which the viscosity is based on the dissipation
and feeding of turbulent energy while the second relies on experimental results. Both
lead to the same order of magnitude for νh. However, the second formulation is smoother
and will thus be preferred here:

νh =
(

β

10

)1/2 (
r2Ω

)1/2
(r |2V − αU |)1/2 (3.4)

with β � 1.5 × 10−5 derived from laboratory measures (α is a measure of differential
rotation). Here again, one may wonder whether this coefficient is correct for compressible
fluids and a modification by a factor of a few cannot be ruled out a priori. Recent
models by Maeder (private com.) suggest that this prescription is actually too strong
and produces too little mixing in massive stars; a value between (3.3) and (3.4) should
be preferred. This also suggest that horizontal differential rotation might have to be
considered in future work (Mathis & Zahn 2004).
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4. Rotational mixing along the HR diagram
To understand the varying importance of mixing along the HR diagram, one may

discuss various time-scales involved with mixing. First, let us note that the time spent
on the main sequence τms varies as τms ∝ M−0.6 for M ∼> 10M� and τms ∝ M−3 for
M ∼< 10M� (Schaller et al. 1992). The time-scale for turbulent mixing is of order

τturb � R2

D
. (4.1)

If turbulence is dominated by shears, as suggested here, then we have D ∝ K. Classical
scalings (see, e.g., Hansen & Kawaler 1994) yield R ∝ M0.75 and K ∝ M3.25 for electron
scattering opacities and K ∝ M5.3 for Kramers opacities. Thus, we get

τturb ∝ M−1.75 to M−3.8 (4.2)

(Maeder 1998). This implies that the level of mixing (measured by τms/τturb) rises with
mass above ∼ 10M� and stays about constant in lower mass stars for a given rotation
profile. In the framework of rotational mixing, this explains why evidences of deep mix-
ing are observed only in massive stars while “surface” abundance anomalies driven by
microscopic diffusion occur in lower masses.

One must also consider the Eddington-Sweet time-scale, which gives an estimate of
the time required to reach the asymptotic rotation profile defined by (2.5)

τE.S. �
R

U
∝ 1

α

M2

LR
. (4.3)

Using the relation L ∝ M2.25 for M ∼> 10M� and L ∝ M4 for M ∼< 10M�, we get

τE.S. ∝ M−2.5 for low mass ∝ M−0.75 for high mass stars (4.4)

for a given rotation velocity V = ΩR. These time-scales vary with mass similarly to the
main sequence lifetime.

For a M = 1.7 M� star rotating at 100 km s−1, τE.S. � 10% τms. Thus, for fast rotators,
the initial rotation profile has little impact on the main sequence evolution. However, if
the rotation velocity drops to 30 km s−1, we get τE.S. � τms. This has received little
attention from theoreticians of rotational mixing so far; it implies that, in very slow
rotators, turbulent diffusion should not drop as fast as Ω2.

Figure 2 illustrates the impact of the initial rotation state on the diffusion coefficient.
Two cases are shown:

(a) asymptotic rotation state according to (2.5) on the main sequence;
(b) solid body rotation in a fully convective star at the top of the Hayashi track.

If meridional circulation and turbulence are the only processes contributing to the trans-
port of momentum, condition (b) should apply. The initial rotation profile could be made
somewhat smoother by including angular momentum transport by internal gravity waves,
since the convective envelope is deep during the pre-main sequence phase (see Talon &
Charbonnel 2003) or some large scale magnetic field (see, e.g., MacGregor & Brenner
1991). It would also be smoother in a star that completed its accretion phase after the
formation of its radiative core (see, e.g., Stahler 1983). Condition (a) which would re-
quire strong coupling between the radiative and the convective zone during the pre-main
sequence phase is not expected to be realistic from a theoretical point of view. Further-
more, recent observations of the evolution of the surface velocity from the birth line to
the ZAMS favor core-envelope decoupling during the pre-main sequence as a general rule
(Wolff, Strom & Hillenbrand 2004).
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Figure 2. (left) The equilibrium turbulent diffusion profile on the ZAMS. (right) The turbulent
diffusion profile at 500 Myrs with angular momentum evolution from the PMS. No cutoff based
on the Reynolds number has been applied here (cf. Eq. 3.2) and the velocities shown here are
denoted by different lines (dashed - 150, dotted - 50, and full - 15 km s−1).

When differential rotation on the PMS is considered, mixing in slow rotators increases.
This is related to the larger differential rotation, linked to the longer Eddington-Sweet
time-scale. This could explain why abundance anomalies do not depend on the rotation
velocity for slow rotators (see, e.g. Varenne & Monier 1999).

5. Boundary conditions
To complete the mathematical system of equations, one must also specify boundary

conditions. Since the problem is described by a fourth order differential equation, four
conditions are required. The first two impose momentum conservation at convective
boundaries

∂

∂t

[
Ω

∫ R

rt

r4ρdr

]
= −1

5
r4ρΩU + FΩ for r = rt

∂

∂t

[
Ω

∫ rb

0

r4ρdr

]
=

1
5
r4ρΩU for r = rb

where rt and rb are respectively the top and the bottom of the convection zone, which
are assumed to rotate as solid bodies†. Here, we also allow explicitly for a torque FΩ to
be applied at the stellar surface, as would be the case in an asynchronous binary system,
or in a star subject to braking due to a magnetic wind. If such braking occurs, it will
lead to an increase of both meridionnal circulation and shear turbulence and enhance
significantly mixing close to the surface. For A stars, we will assume FΩ = 0.

For the other two conditions,

dΩ
dr

= 0 for r = rt, rb (5.1)

has generally been used. This condition actually states that the differential rotation just
below the convection zone should be the same as in the convection zone; in a 1D model, it
is equivalent to the stress-free condition of hydrodynamics. However, it is unclear whether
there is no radial differential rotation at the boundary of convective regions, and thus
the impact of the choice of boundary condition should also be examined.

† This is motivated by the fact that the Sun presents little differential rotation in radius in
its convection zone.
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6. Mass loss
Another parameter to take into account in modeling is the presence of some amount

of mass loss at the stellar surface. If the star looses some mass, the inner layers will
constantly have to move outward to replace those that were lost to the stellar wind. This
will have two impacts on the transport of chemicals:
• Firstly, the homogeneous drift of those surface layers will reduce the efficiency of

element separation by microscopic diffusion;
• Secondly, rotational mixing will be enhanced by the required transport of momentum

to the surface layers that are spun down by local angular momentum conservation as they
drift upward.

As far as theory is concerned, the nature of mass loss in A stars is not well understood.
It should not come from a hot corona as in the case of the Sun (Parker 1960) due to the
absence of a deep surface convection zone†; radiative accelerations are also believed to
be too small to produce significant mass loss (Abbott 1982) in main sequence A stars.
Babel (1995) studied the case of A stars in more details. He concludes that, for an effective
temperature between 8000 ∼< Teff ∼< 14000 K, only metals can be lifted by radiative forces,
giving rise to fully seperated winds, consisting only of metals. From complete calculations
made for an A star at 10000 K, he finds a wind of Ṁ ∼< 10−16 M� yr−1. Such winds
would lead to very different anomalies, as the star could be drained only of some metals
(Michaud & Charland 1986).

From an observational viewpoint, mass loss is very difficult to measure directly in A
stars. Bertin et al. (1995) derived a mass loss rate in Sirius A between 2 × 10−13 and
1.5 × 10−12 M�yr−1 based on Mg ii lines. However, only the lower limit would permit
surface abundance anomalies to form; for higher mass loss rates, matter would leave the
surface of the star before microscopic diffusion had time to act (Babel & Michaud 1991).
It has been suggested that surface abundance anomalies in A stars could represent a
means to measure mass loss rates, if they are produced solely by the competition of mass
loss and microscopic diffusion (see, e.g., Landstreet et al. 1998). Babel (1993) suggests
that, in Ap stars, inhomogeneous mass loss modulated by surface magnetic fields can be
responsible for “patches” in the surface abundance of various elements.

7. Observational constraints from Am stars
Rotation plays an important role in the appearance of the Am phenomenon. In-

deed, only slow rotators bear the characteristic signature of radiative forces and settling
(see, e.g., the review by Conti (1970)). Furthermore, it seems that slow rotation (below
100 km s−1) is a necessary and sufficient condition for late Am stars, and a necessary
(but not sufficient) condition for early Am stars.

This must be reflected in the rotating models and give strong constraints on the coef-
ficients for Dv (cf. Eq. 3.1) and Dh (cf. Eq. 3.4) as well as on the initial rotation profile
(cf. Fig. 2).

7.1. Meridional circulation and mixing in A stars
The efficiency of rotational mixing changes during the main sequence. It is initially rather
large, since the pre-main sequence contraction leads to the formation of a rapidly rotating
core. This phase lasts for an Eddington-Sweet time-scale (4.3). After the asymptotic state
is reached, differential rotation in the stellar interior rises between the ZAMS and the
TAMS. This is related to the increase of the ratio of stellar luminosity to surface gravity

† Recent observational evidence indicate there could be some activity in late A stars.
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during the same period (see Eq. 2.2) which induces an enhancement of the meridional
circulation. We thus expect the presence of a minimum in the efficiency of rotational
mixing occurring at t = τE.S..

Another delicate issue to consider is the role of mean molecular weight gradients.
It is well known that these gradients act to reduce the growth of instabilities, leading
to a reduction of the turbulent diffusion coefficients presented here. This could be an
important ingredient in the formation of Am stars.

Another point that has been neglected here is the role of horizontal diffusion in the
reduction of the efficiency of vertical turbulence in the transport of chemicals (cf. Vincent
et al. 1996). The importance of this effect will be discussed in a future study (Talon,
Richard & Michaud, in preparation).
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Discussion

Khalack: Have you investigated the influence of the magnetic field on the shellular
structure of a modelled star? How will such a star evolve?

Talon: The set of equations presented here does not take into account internal magnetic
forces. However, one can take into account the combined effect of mass loss and the surface
magnetic field that will act to brake the star’s surface. This leads to an increase of the
internal (surface) differential rotation, and thus, produces extra mixing.

Kubát: How could the stellar oblateness of rapidly rotating stars affect the processes in
stellar envelopes?

Talon: The oblateness becomes significant (of order 10%) for stars rotating faster than
about 150 km s−1. In that case, the temperature of the atmosphere will vary accoring to
latitude.
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