NOTE ON THE GROUP OF AFFINE TRANS-
FORMATIONS OF AN AFFINELY
CONNECTED MANIFOLD

JUN-ICHI HANO and AKIHIKO MORIMOTO

The purpose of the present note is to reform Mr. K. Nomizu’s result® on
the group of all affine transformations of an affinely connected manifold. We

shall prove the following.

THEOREM. The group of all affine transformations of an affinely connected

manifold is a Lie group.

Mr. K. Nomizu proves the theorem when the affinely connected manifold is
complete.” And he gives out a question whether this assumption of complete-
ness is really necessary. We shall show it is possible to prove the theorem
without any assumption by considering a Riemannian metric in the bundle of
frames of the manifold, which is naturally defined by the affine connection.

After preparing this note we heard from Mr. Nomizu that he has also proved
the same theorem and using this result Mr. S. Kobayashi® has proved similar
results on transformation groups of manifolds with certain connections.

In section 1 we resume the definitions and properties about affine connec-
tions, geodesic curves and regular neighbourhoods, which are given in Mr. K.
Nomizu’s paper. The definition of the group of affine transformations is given

in section 2. The proof of the theorem is given in the last four sections.

1. Let M be a connected differentiable manifold® of dimension # with an

Received September 3, 1954.

1) K. Nomizu; On the group of affine transformations of an affinely connected manifold,
Proc. Amer. Math. Soc. vol. 4 (1953).

2) For the definition of “completeness” see.!)

3) S. Kobayasi; Groupe de transformations qui laissent invariante une connexion in-
finitesimale, Comptes rendus, 238 (1954).

4 The term “differentiable” will always mean “of class C®”. As for the definitions
and the notations of manifold, tangent vector, differential form, etc. we foilow C. Chevalley;
Theory of Lie groups, Princeton University Press, 1946. A manifold is not necessarily con-
nected.
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affine connection. According to Chern’s formulation,” the affine connection is
defined by a set of # + #° linear differential forms 6" and 0} (4, 7=1,...,n)
on the bundle of frames B™ of M which satisfy the equations of structure of
affine conrection. If we take a local coordinate system (#') in M, then there
corresponds a local coordinate system (u', X ]’?) in B* such that the » vectors
of a frame are given by ngf'a“i); (j=1,..., n), where the determinant of
(X¥) % 0. Let (Y?) be the inverse matrix of (X5). Then the # + #* linear
differential forms ¢, ﬁf are given as follows:

= é Yidd, 0; = 2 Yi(dXs + ;11—"" X5 du™), where I'fy are so-called
coefﬁcientJS_ of the affine connectlon w1t’h respect to the local coordinates (u').
Then 6 and 0} are linearly independent linear differential forms defined on the
whole space B* and satisfy the following equations of structure:

2 Pin6 A 6™,
2 lym=1

g — 6% A 6k
k=1

E Simb N O™

,m=1

db} -glja;i’/\ A

where
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v

Sim = 33 Y4 X? X7 X3 R,

k,p,4q,r=1

Tf,,q, R%.» being the components of the torsion and curvature tensors respectively.

Let B be the tangent bundle of M. For each element L, of B, where
» € M and L, is a tangent vector at p, there exists a geodesic curve f(¢) defined
by the so-called canonical parameter® ¢ in — ¢ <t <& for some positive ¢ with
origin f(0) = p and tangent vector df«%)no) = L. With respect to a local
coordinate system (') in a coordinate neighbourhood of p, f(#) is represented
by a set of solutions of the system of differential equations

du’ (f(t)) duf* (1))
dt

CLLD | 33 ritren

(i=1,...,n)

=0

with the initial conditions

% cf. D or S. Chern; Lecture note on differential geometry, Princeton.
6 Hereafter we consider geodesic curve always with the canonical parameter.
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#(f(0) =u(p) and L= ﬁ%(ﬂ’“lffi)_)>l_o<a%>p .

If a geodesic curve f(#) can be extended over the valus of the canonical
parameter — ¢ < < g + ¢, there exists a certain neighbourhood U of L, in B
such that for each L, € U the geodesic curve f1,(¢) is defined in — § <¢
< a + ¢ with origin f2,(0) = ¢ and tangent vector L, at q and the mapping 7°
from U into a certain neighbourhood of f(a) in M defined by 7“(Ly) = f1,(a) is
differentiable.

Let f i( ¢, u, a) be the solutions of the system of differential equatiqns which
dar’ i
‘dt‘> a .

t=0
We put o' = f(1, #, «) and consider (', v’) as function of (#', a’), then we see

define a geodesic curve with initial conditions _fi(O, U, a)= W and(

that at o’ = 0 (for all #) their functional determinant is equal to 1. Hence it
follows that for any neighbourhood U of any point p in M there exist an open
neighbourhood N of p contained in U and an open neighbourhood U of zero
tangent vector at p in B such that the mapping F from U onto N X N which
is defined by F(L,) = (g, ' (Lg)) for Ly in 11 is a differentiable isomorphism.
This opeun neighbourhood N is called a regular neighbourhood of p contained
in U.” Itis easily seen that the geodesic curve f(¢), 0 £ t = 1, with f(0) € N,
/(1) € N and with the tangent vector F(f(0), /(1)) at f(0) is contained in U.

For the sake of necessity we shall prove the following

LeMMA 1. Let N, be a regular neighbourhood of p in M whose closure is
contained in a regular neighbourhood N of p. If a geodesic curve fi(t), — ¢
<t <1+ e with origin q and tangent vector L, at q is contained in Ni, then
L, is an element of U, = F{(N, x Ny).

Proof. Let T, be the tangent space at q. The restriction of the mapping
F on T, N1 is also a differentiable homeomorphism from T, N U; onto ¢ X N
As U, is open. the set of non-negative numbers {i; A =0, 1L, € U} is open in
the set of all non-negative real numbers. And as zero-tangent vector at ¢ is
contained in 1; its connected compontent of zero {1; 0 £ A < A;} where 1, may
be o, is not empty. From the definition of the mapping F, F(AL,) = (q, f£,())
for 0 =4 <. If A is not o, ALy is contained in U;, so AL, is contained in

) When we say simply that N is a regular neighbourhood of p it means N is a regular
neighbourhood of p contained in some neighbourhood U of p. cf. 1.
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U. Therefore F is defined at AL, and F(4L,) = (q, f1,(4)). As AL, is not
contained in Wi, f,(4) is not contained in N;.. If A, were not larger than 1,
from our assumption fz,(4;) would be contained in N; and this is a contra-
diction. So A; must be larger than 1 and surly L, is contained in U..
Moreover the fact that for any compact sets K and K' contained in N the
set F"Y(Kx K') in B is a compact set is effectively used by K. Nomizu, and

we shall follow him.

2. Let T and T' be Hausdorff spaces. We denote the set of all continu-
ous mappings from T into T’ with the compact-open topology by C(T, T').
And we denote the set of all homeomorphisms of T onto itself by H(T). Let
U and U' be open sets in T, K and K' be compact sets in 7, and let
W(U,U' ; K, K') be the set of ¢ in H(T) such that ¢(U) C K and ¢ "(U")
C K'. We take the totality of sets W(U, U’ ; K, K') as a subbase for open sets
of H(T), then H(T) becomes a Hausdorff space.

Let M and M' be differentiable manifolds of dimension » with affine con-
nections. Let 6' and 0,': (,7=1,...,n) be n+ #° linear differential forms on
the bundle B* of frames of M, 6" and 0’}: (., 7=1,..., n) be linear differ-
ential forms on the bundle B'* of frames of M', which define the affine con-
nections on M and M' respectively. If ¢ is a differentiable mapping from M
into M' of rank z at any point, it induces a differentiable mapping D¢ from
B* into B'* and 8D¢(6") is equal to 6. We shall call ¢ an affine transformation
if 6Dg(0}') = 6;. We denote the group of all affine transformations from M
onto itself by A(M). A(M) is a subset of H(M). We define the topology of
A(M) by the relative topology induced by the topology of H(M), then A(M)
is a topological group.

Let R and R' be two n-dimensional Riemannian manifold defined by the
fundamental quadratic tensor fields G and G’ respectively.

A differentiable mapping ¢ from R into R’ of rank % such that ¢ maps the
fundamental quadratic tensor fields G’ of R to the fundamental quadratic tensor
field G of R is called an isometry. A Riemannian manifold is a metric space
and an isometry is of course an metric preserving mapping.” Moreover, on

a Riemannian manifold there is one and only one affine connection with the

8 cf. S. Myers and N. Steenrod; The group of isometres of a Riemannian manifold,
Ann. of Math. vol. 40 (1939).
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following properties: 1) Its torsion tensor is zero; 2) The scalar product of
two vectors remains unchanged by a parallel displacement along a curve.”
An isometry from R into R' is an affine transformation from R into R' with
respect to these connections. We denote the set of all isometries from R onto
itself by I(R). I(R) is a topological group with the relative topology induced
by A(R). The point-wise convergence of a sequence of isometries and the con-
vergence with respect to the topology of I(R) are equivalent.

When an affine connection is defined on a #-dimensional differentiable mani-
fold M by linear differential forms ¢ and 65 (;, j=1,..., #) on the bundle of
frames B*, we can define a Riemannian metric on B* by the positive definite
symmetric quadratic tensor field t}:}.ﬁ" R0 + Enjl?j 2 ﬁ}, where & means tensor
product of covariant vector fields. The inlci;ced isomorphism D¢ of B* onto
itself by an affine transformation from M onto itself obviously preserves this

tensor field.

LemMA 2. Let M and M' be two differentiable manifolds of dimension n
with affine connections. Let {¢.} be a sequence of affine transformations from
M into M' which converges to a continuous mapping ¢ from M into M' with
respect to the compact-open topology of C(M, M'). Then the image of a geodesic
curve in M by ¢ is a geodesic curve in M' and ¢ has the first partial derivatives
at each point in M. And the sequence {dp,} of mappings from the tangent
bundle B of M into the tangent bundle B' of M' converges point-wise to the
mapping do from B into B' induced by ¢.

Proof. We take an arbitrary point p in M, and regular neighbourhoods N
and N, of p which have compact closure such asin lemma 1. For an arbitrary
tangent vector L, at p, there is a positive number 2 such that the image of the
geodesic curve f'(#), — ¢ <t <1 + ¢ with origin f'(0) = p and tangent vector
L}, = AL, at p is contained in N,. This follows from the continuity of ¢. By
the convergence of the sequence {¢,} with respect to the compact-open topology
in C(M., M'), we can find a sufficiently large number »y such that ¢, ° f'(#) € N,
for v > 1o, 0 £t £ 1. By lemma 1 the set of tangent vectors dg,(L}) for » = ny
is contained in a compact set K in the tangent bundle B' of M'. Then we can

choose a subsequence d¢,.(L),) which converges to some tangent vector Ly, in

9 cf. S. Chern’s, lecture note in 9.
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K. And the geodesic curve g'(¢) with origin ¢(p) and tangent vector Ly, at
¢(p) can be extended over the values of the canonical parameter — & <1?
<1+ e foreg > 0. From the continuity of ~r,’ foreach f,0 £ ¢t £ 1, it is clear that
¢, © f'(t) converges g'(¢). On the other hand ¢, o f'(¢) converges to ¢ ° f'(1),
so we see that g'(t) = ¢ o f'(¢). It is proved that the image of a geodesic
curve f(t) = f'(t/2), — /A <t <1/1 + ¢/, with origin p and tangent vector L,
at p is also a geodesic curve. If we take a normal coordinate system around
£, it is easily shown that ¢ has the first partial derivatives with respect to this
coordinate system. From above considerations the sequence {d¢.\L})} is con-
tained in a compact set K, and any convergent subsequence must converge to
Ljs, hence the original sequence {d¢.,(L}))} itself converges to Ljyp,. As
dp(Ly) = dp,(AL}) = Ade,(L}), the sequence {dg.(Ly)} converges to Ly = ALjp).

. n i/
With respect to a coordinate system (¥') around ¢(p), Lup) = Zl(év‘ gt(é)))t-o

i=

ca O (dy (g o f(1)) (2 _ : ;
(ayi)¢(1)) = ?:’:( e )tto (Byi);«(p) = d¢(Lp), hence a mapping d¢ is defined

from the tangent bundle B into the tangent bundle B’, and {d¢.(L,)} converges
to d¢p(Ly) at each element L, in B g.e.d.

LemMMA 3. Let M be a differentiable manifold with an affine connection. If
a sequence {¢.} of elements in A(M) converges to a element ¢ in H(M) with
respect to the topology in H(M), then ¢ is contained in A(M).

Proof. From our assumption, the sequence {¢,} converges to ¢ with respect
to the compact-open topology of C(M, M') and also the sequence {¢;'} converges
to ¢”". Then lemma 2 can be applied to these sequences. Moreover, as ¢ is
a homeomorphism, the image of a geodesic curve which is not a point is also
not a point and therefore d¢(L,) is zero vector if and only if L, is zero vector.
Then ¢ induces a mapping D¢ from the bundle of frames B* of M onto itself
and the sequence {D¢,} converges point-wise to D¢. As ¢, is an affine trans-

formation, D¢, is an isometry of the Riemannian manifold B* defined by the

fundamental tensor field 2)60' ® ¢ + 310 ® 6. Therefore D¢ is a metric pre-
i=1

J,e=1
serving mapping. The situation is just same for D¢~'. Thus we see that D¢

is 2 homeomorphism of B* onto itself and consequently ¢ and ¢ ' are of class C.

We can consider the sequence {Dg,} is contained in A(B*), where the affine

10) ¢f. S. Chern’s lecture note in %,
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connection is given by the Riemannian metric defined above. That the sequence
{D¢.} converges to D¢ with respect to the topology of H(B*) follows from the
fact that for the sequence of isometries of B* the point-wise convergence and
the convergence with respect to the topology of H(B*) are equivalent. Then
above discussion can be applied to the sequence {Dg,} and we can see D¢ and
D¢ are of class C°. This means ¢ and ¢ ' are of class C>. Repeating the
same argument for the sequence {D(D¢,)} on the bundle of frames B** of B*,
{D(D(D¢.))} on the bundle of frames B*** of B** and so on, we can conclude

¢ is an isomorphism of M and is an affine transformation.

3. Van Dantzig and van der Waerden proved the following theorem”’: if
a sequence of metric preserving homeomorphisms {¢.} of a connected locally
Euclidean metric space M satisfying the 2nd axiom of countability converges
at a certain point in M, there can be found a subsequence {¢..} which con-
verges to a certain metric preserving homeomorphism point-wise in M. We
remark here that this theorem is true without any separability assumption in
the case where M is a connected Riemannian manifold, and ¢, are isometries

of M. Namely we shall prove the following.

LemMma 4. If a sequence {¢.} of isometries of a Riemannian manifold R
converges at a certain point P, in R then there exists a suitable subsequence ¢.
which converges at each point of the connected component of R which contains
Do Such that ¢;' converge at each point of the connected component of R which
contains the limit point of ¢.(po). In particular if R is connected we can find
the subsequence ¢.. which convergss to an isometry ¢ such that the sequence ¢}’

also converges to ¢ .

Proof. We take a compact neighbourhood V of Py, where P, is the limit
point of ¢,(p). Then we can find an open neighbourhood U of p, in some
coordinate neighbourhood of po whose closure is compact such that ¢.(U) C V
for » & »,, where v, is some sufficiently large number. We also take a count-
able dense subset {g.} of U, then we can choose a subsequence {¢.,} of {4,)
such that ¢,,(q:) converge to some point in V as ¢ tends to infinity. Next we
choose a subsequence {¢.,} of {¢.,} such that ¢.(g.) converge to some point
of V,and so on. Then we see easily that the sequence {¢.,} converges at each

1) van Dantzig und van der Waerden, Uber metrischen homogene Ridume, Abh. Math.
Sem. Hamburg, vol. 6 (1928).
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point ¢; and also at each point of U. We denote the sequence {¢.;} by {¢..}
and consider the maximal open set O containing U in which ¢, converge at
each point. If O did not contain the connected component K of R containing
o, there would be a boundary point p; of Oy = O N K. If the closure of the
e-neighbourhood U(py, ¢) of p; is compact we take a regular neighbourhood N
of P, contained in U(py, ¢/4). As p: is a boundary point of O;, O; N N contains
a point p. of O;. By the convergence of ¢, at p. we can find a sufficiently large
number m such that p(¢gv(ps), ¢m(pe)) < e/4 for »' = m, where p denotes the
Riemann metric in B. Now it is shown that ¢..(N) C U(¢n(p1), ¢) for »' = m.
For ¢ (N) CU(¢, (1), ¢/4) and if x € U(p.(p1), ¢/4) then o(x, ¢ (p1)) < ¢/4

and

o(x, pm(P)) = o(x, ¢,(P1)) + o(dy (P1), ¢u(p2))

+ 0(¢u(D2), dm(p2)) + 0(Ppm(Ds), ¢pm(p1))
0(x, ¢ (D)) + o1, D2) + 0(pu(P2), Pm(p2))

+ 0(1"2, Pl) <e

As ¢pm{U(p1, €)) = Uldm(b1), €) is compact, ¢..(NN) is contained in a fixed com-
pact set for all »/ = m. Hence we can find a subsequence {¢..} of {¢..} which
converges at each point of NV as the same way as we have chosen the sequence
{¢.} for U. Next we take a regular neighbourhood NV; of p contained in N
then for any two points p and ¢ of N; there exists a geodesic curve contained
in IV joining » and q. If we take arbitrary points » in N; and ¢ in Ni N Oy,
we can join p and g with a geodesic curve f(¢), — e <t <1 4 ¢ contained in
N, whose tangent vector at origin f(0) = ¢ is equal to L, and the tangent
vector at f(1) = p is equal to L,. From the lemma 2 g(t) = limy s @y © f(2)
is a geodesic curve and {dp,.(L;)} converges to the tangent vector Lg., of the
geodesic curve g(t) at £(0). Then from the continuity of the solution of a
system of differential equations with respect to initial conditions {¢,. o (1)}
converges to g(1). Thus {¢,’} converges at each point in the open set N; U O
(% ¢) and this is a contradiction. Hence the convergence of {¢..} in K is
proved. It is clear that {¢:'} converges at po, so we can find as above a suit-
able subsequence {¢,..} of {¢.} which converges in K to a continuous mapping
¢ from K into R such that {¢;’} converges in L to a continuous mapping ¢

from L into R, where L is the connected component of R containing P.
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Now we assume that R is connected, then we can easily see that ¢ and ¢
are homeomorphisms of R and each one is the inverse mapping of the other.

The differentiability of ¢ and ¢ follows from lemma 3.

4. LemMaA 5. Let {¢.} be a sequence of elements in A(M). If the sequence
{D¢.} converges at a certain frame (L}, . . ., Lp) at po, then there exists a
subsequence ¢ which converges to an affine transformation ¢ with respect to
the topology of A(M).

Proof. In B* there are at most two connected components of B* each of
which contains (Lp,, . .., Lp) or (= Ly, L}, ....L}). As it is clear that
{Dg¢,} converges also at ( — Lp, Lp, . . . , L}), from the proof of lemma 4 we
see that there exists a subsequence of isometries {D¢..} which converges to an
isometry ¢* at each point in B* such that {D¢;'} also converges to ¢*™". As

#* is a fibre preserving isomorphic mapping, ¢*

induces an isomorphism ¢ of
M. 1t is easily verified that {¢,.} converges to ¢ with respect to the topology
of H(M) from the fact that point-wise convergence of isometries is equivalent
to the convergence with respect to the topology of H(B*). Next we shall prove
that ¢ is an affine transformation, i.e. D¢ leaves the linear differential forms
0% invariant. For this purpose it is sufficient to show that D¢ = ¢*, because
according to lemma 2 {dD¢..} converges to d¢" at each point in B* and so ¢*
leaves 6; invariant.

At any point in B* there exist a neighbourhood V with compact closure
which is contained in some coordinate neighbourhood and an open set U in
some coordinate neighbourhood such that if »’ is larger than a sufficiently large
number vy, D¢, (V) C U. Let (&, X¥) and (@', X}) be local coordinate systems
in V and U respectively. Then with respect to these coordinate systems the

mapping D¢, are expressed as follows

W (Dp(u, X)) =1 (¢, (n))

_k
ok 2 0 (po ()
X,-(Dtlm(u, X)) :EXJ' - St :
{D¢,.} converges uniformly to ¢* on the compact V with respect to the metric.
And the metric topology and the manifold topology is equivalent. Therefore
the functions #‘(D¢..(2, X)) and X?(D(/)v(u, X)) converge uniformly to z'(¢(z))
=#'(¢*(u, X)) and ij(gb*(u, X)) respectively. According to a theorem of differ-
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ential calculus from the facts that
1) limyae 7 (gu(n)) = 7' (¢(u)),

_k
2) @!{J%;f}ﬂ} converge uniformly, and

ou”

3) »a~u7(¢v,( u)) are continuous,

we can conclude that limgg(%'(u)) = g%f—&p(u)), hence D¢ = limy.sws Do, = ¢™.

5. DBefore proceeding to prove the theorem, it is convenient to show that
in a certain neighbourhood of the identity of the group A(M) the 2nd axiom
of countability holds. If we take the neighbourhood W of the identity which
is given by W= {¢;¢ € A(M), ¢(K) C U, ¢"(K) C U}, where a compact set
K containing an open set V and an open set U whose closure is compact are
contained in a certain coordinate neighbourhood and V C K C U, then in this
neighbourhood W the axiom always holds with respect to the compact-open to-
pology in C(K, U), because K and U are separable. Therefore we have only
to prove that the new topology in W coincides with the relative topology in-
duced by the topology of A(M). We shall now show that if a sequence {¢,;
in W converges to ¢ in W with respect to the new topology, then also with
respect to the topology of A(M). If {¢.} did not converge to ¢ with respect
to the topology of A(M) there would exist a neighbourhood W, of ¢ in A(M)
and a subsequence {¢.} such that ¢. € W,. But from lemma 2 {d¢,} con-
verge to d¢ because ¢. satisfies the assumption ot lemma 2. Moreover, as ¢
is a homeomorphism we can see {D¢,} converge to D¢ at each point in the
same fashion as in the first part of the proof of lemma 3. Hence by lemma 5
we can find a subsequence {¢,~} of {¢,.} which converges to an affine trans-
formation ¢ with respect to the topology of A(M). From the fact that an
affine transformation which leaves a non-empty open set in M point-wise fixed
must be the identily transformation,” it is clear that ¢ = ¢, because ¢(p) = ¢'(p)
for any point » in K. Namely {¢,} converges to ¢ in A(M), which is a con-

tradiction. From this the equivalence of the two topologies is easily seen.

6. Proof of the theorem
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In virtue of a theorem of S.Bochner, D. Montgomery ™ and M. Kuranishi'”
we have only to prove that A(M) is locally compact and that any element of
A(M) which leaves a non-emply open set in M point-wise fixed must be the
identity. The latter part is proved in K. Nomizu’s paper as already indicated
in the preceding section.

We take a neighbourhood W of the identity which we deal in the section
5 and a point p in V. The induced mapping D¢ is given at p, by

Doz (<a%7>po’ R (ézn)po) - (g(ég_;?})po<£ﬁ)mm T )

where (#') is a local coordinate system in U. If we consider the following

mapping

B (217 )

from W into a general linear group, it is a continuous mapping from the proof

0

of lemma 3. Then we take a neighbourhood W' of the identity in A(M) such
that W' and its closure are contained in W and the image Dy, (') is contained
in a compact set. We have only to prove that W'is sequentially compact. Let
¢y be an arbitrary sequence in W'. As U is compact there exists a subsequence
{¢,} which converges at p. If we take again a suitable subsequence {¢,} of

{¢v}, Dp(¢y) converge to a non-singular matrix. Then {D¢, } converges at

G 2 . .
<(‘3di)po’ cee, (é&")po) in B.* From lemma 5 we get a subsquence (¢, }
which converges to an element ¢ in A(M), then ¢ is contained in W’'. Thus

the sequential compactness of W' is proved, g.e.d.

Mathematical Institute,

Nagoya University

13) S. Bochner and D. Montgomery; Locally compact groups of differentiable transfor-
mations, Ann. of Math. vol. 47 (1946). )

) M. Kuranishi; On conditions of differentiability of locally compact groups, Nagoya
Math. J. vol. 1 (1950).
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