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Previous measurements and numerical simulations of buoyant turbulent plumes that
develop from area sources provide convincing evidence that entrainment varies locally
in response to an imbalance from the asymptotic state of equilibrium, a state referred
to as a pure plume. Across the wide spectrum of possible source conditions, that span
forced and lazy plume releases, this variation of entrainment has been successfully
captured by a single, or universal, description in which the entrainment function α
varies linearly with the local Richardson number. Herein, an analytical solution for
the virtual origin of forced, pure and lazy turbulent plumes from circular sources in
unstratified environments is derived based on this universal description of entrainment.
Prior to this, the analytical solutions reported were limited to those based on the
simplifying assumption of invariant entrainment, so-called constant-α solutions of
the plume conservation equations. Analytical solutions for the fluxes of volume
and specific momentum are first developed. These solutions highlight the deficit in
near-field entrainment in forced plumes and enable the general imbalance from the
equilibrium state to be predicted via the streamwise variation of the local Richardson
number. Focus then turns to the virtual origin due to the practical benefits that a
knowledge of this location offers experimentalists (e.g. in comparing measurement
with theory) and theoretical modellers (e.g. in incorporating a turbulent plume within
a broader modelling framework).

Key words: plumes/thermals

1. Introduction
The classic framework for the theoretical study of turbulent plumes and the widely

adopted model that captures the streamwise variation in plume entrainment were
reported in the mid-twentieth century (Priestley & Ball 1955; Morton, Taylor &
Turner 1956). However, until now, analytical solutions for turbulent plumes with such
variable entrainment have eluded us. In this paper, we develop these solutions, solving
directly the plume conservation equations subject to a local variability in entrainment.

† Email address for correspondence: gary.hunt@eng.cam.ac.uk
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893 A12-2 F. Ciriello and G. R. Hunt

The applicability of the solutions we provide for the mean fluxes of volume and
momentum is wide, spanning forced, pure and lazy plume releases. These solutions
are complemented by expressions for the location of the virtual origin and insights
into the streamwise variation of the Richardson number (§ 2). The close agreement
we observe between these predictions and measurements of the virtual origin inferred
from experiments (§ 3) provides confidence in their practical application.

Turbulence in a buoyant plume approaches a state of local equilibrium with height
(Turner 1986). This state of equilibrium, referred to as a ‘pure’ plume (Morton 1959),
allows for straightforward mathematical descriptions of turbulent entrainment that are
based on self-similarity, i.e. on parameterisations of mixing that are locally invariant.
This parameterisation forms the basis for the closure of the plume conservation
equations of Morton et al. (1956) whose solutions have been used to predict the
dynamics of turbulent plumes in nature, industry and the built environment (see the
reviews by Kaye (2008), Woods (2010) and Hunt & van den Bremer (2011)).

For the pure plume, a height-invariant description of entrainment has legitimately
been assumed and analytical solutions to these equations widely reported (Morton
1959; Morton & Middleton 1973; Hunt & Kaye 2001, 2005). Pure plumes do not
exhibit a dynamical variability with height (Ezzamel, Salizzoni & Hunt 2015), their
behaviour characterised by a local Richardson number Ri(z) which maintains the
unique pure-plume source value Ri(z)=Rip at all heights z> 0; z denotes the vertical
coordinate with origin coincident with the physical source and Rip the (constant)
pure-plume Richardson number. These solutions treat the plume as self-similar at all
distances from the source; this is satisfied only when the release is ‘pure’ (Turner
1986; Hunt & Kaye 2005), beyond the near-source region of flow establishment
(Fischer et al. 1979).

Plumes from general (i.e. non-pure plume) area sources, however, are released
such that the local conditions are distinct from those that characterise the self-similar
state (Turner 1986). These plumes are in a ‘non-pure’ state, either locally ‘forced’
or ‘lazy’, and undergo an adjustment between the source and the far field (Morton
1959; Morton & Middleton 1973). The buoyancy force drives this adjustment and
consequently there is dynamical variability, characterised by Ri(z)→Rip, so that local
conditions in the plume, including entrainment, are expected to depend on Ri(z). This
behaviour has been confirmed by measurements, in both thermal and aqueous-saline
plumes, that show these imbalances radically change the entrainment in the proximity
of the source and the approach to the self-similar state (Papanicolaou & List 1988;
Wang & Law 2002; Kaye & Hunt 2009; Ezzamel et al. 2015). Further support
for modified entrainment due to non-pure-plume behaviour has been garnered from
direct numerical simulation (DNS) and theoretical studies (van Reeuwijk et al. 2016;
Marjanovic, Taub & Balachandar 2017).

Studies on turbulent plumes spanning over 60 years of research are aligned in their
view that entrainment for non-pure plumes varies as a linear function of the local
Richardson number (Priestley & Ball 1955; Papanicolaou & List 1988; Wang & Law
2002; Kaminski, Tait & Carazzo 2005; Ezzamel et al. 2015; van Reeuwijk & Craske
2015). Beginning with Priestley & Ball (1955), entrainment was modelled by invoking
this form for the case of a forced plume (Ri(z) < Rip), wherein a linear entrainment
function α = α(Ri(z)) was introduced and matched between values measured for
the pure jet and the pure plume. More recently, the same form for the entrainment
function was deduced based on solutions of the plume conservation equations which
are consistent with the equations for the conservation of energy fluxes (Kaminski et al.
2005; van Reeuwijk & Craske 2015). On account of these developments placing no
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Analytical solutions for plumes 893 A12-3

restrictions on the source condition for the plume, we have referred to this linear
entrainment function as being universal. Surprisingly, despite the wide acceptance of
this form, analytical solutions to the plume conservation equations subject to a linear
dependence of the entrainment function with Richardson number have not previously
been reported. Our motivation herein is therefore twofold: (i) to develop analytical
solutions to the plume conservation equations for entrainment following a linear
variation with local Richardson number and (ii) to determine the associated locations
of the virtual origin for general forced, pure and lazy plumes from area sources.

The virtual origin refers to the location at which a point source of buoyancy flux
would give rise to a plume whose behaviour matches the far-field behaviour of the
actual (area source) plume of interest. In essence, the virtual origin is deduced as a
vertical offset, or correction, to the analytical solutions for a plume formed from a
point source of buoyancy flux. Hunt & Kaye (2001) provide a theoretical description
of the origin location based on the solution to the plume equations for α = constant.
Whilst origin corrections are often instrumental in theoretical developments for which
the plume is a single component of the overall system (Kaye & Hunt 2007), the
magnitude of this correction and its dependence on the source conditions have not
been determined for the aforementioned linear entrainment model.

The remainder of this paper is structured as follows. In § 2 analytical solutions are
derived for a plume from a point source and a general area source. We then develop
expressions for the virtual origin, make comparisons with laboratory measurements
(§ 3), and discuss the insights these solutions provide regarding the approach of the
plume to the self-similar state. Conclusions are drawn in § 5.

2. Solutions to the plume equations
Denoting z as the vertical coordinate with origin at the physical source, the steady

integral conservation equations of Morton et al. (1956) for the time-averaged fluxes
of volume πQ, specific momentum πM and buoyancy πB of an axisymmetric plume
in an unstratified and otherwise quiescent environment may be expressed as

dQ
dz
= 2αM1/2,

dM
dz
= κ

BQ
M
,

dB
dz
= 0, (2.1a−c)

where κ = 1 for top-hat and κ = 2 for Gaussian profiles of buoyancy and vertical
velocity. A derivation of (2.1) is given, for example, in Hunt & van den Bremer
(2011). Following classic plume theory, the solution to these governing equations
relies on a turbulence closure, known as the entrainment hypothesis, which relates
the horizontal velocity of the fluid entrained peripherally into the plume ue to a local
vertical velocity w

ue := αw. (2.2)

Widely referred to as the entrainment coefficient, herein we refer to α as the
entrainment function (cf. Marjanovic et al. 2017) as we acknowledge that α may
be constant or take a functional form depending on the source conditions. The
assumption of a constant α relies on the spatial invariance of the local turbulence as
achieved when there is a specific balance of the buoyancy and inertial forces acting
on the flow (Turner 1986). Following Turner (1973), the ratio of these forces, whether
in balance or otherwise, is characterised locally by the Richardson number

Ri(z) :=
BQ2(z)
M5/2(z)

. (2.3)
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893 A12-4 F. Ciriello and G. R. Hunt

Regardless of the conditions imposed at source, all plumes naturally tend to a pure-
plume self-similar state with streamwise distance z in which the local Richardson
number is invariant, i.e. Ri(z)→Rip= constant as z→∞ (Morton 1959; Hunt & Kaye
2001). It follows, from (2.1) and (2.3), that the vertical variation of the Richardson
number is

dRi
dz
=

(
4αRi−

5κ
2

Ri2

)
M1/2

Q
. (2.4)

Morton et al. (1956) deduced power-law solutions for the fluxes Q and M for the
point-source plume, i.e. solving (2.1) subject to the source conditions Q0 = M0 = 0
and B0 > 0 at z = 0. Morton (1959) then extended the analysis to area sources. He
demonstrated that these plumes may be characterised by a scaled source Richardson
number

Γ0 :=
Ri0

Rip
where Ri0 =

B0Q2
0

M5/2
0

. (2.5)

For non-pure source conditions, i.e. Ri0 6= Rip, the source fluxes create an imbalance
from the pure-plume state in the proximity of the source, where locally the scaled
Richardson number Γ (z) := Ri(z)/Rip 6= 1. Morton (1959) presented approximate
solutions to (2.1) for 0< Γ0 < 1 (so-called forced plumes) based on a vertical offset
to the pure-plume power-law solutions; these vertical offsets being widely referred
to as virtual origin corrections. Morton & Middleton (1973) extended his analysis to
plumes from sources for which Γ0 > 1 (so-called lazy plumes). Hunt & Kaye (2001)
subsequently deduced analytical solutions for the plume fluxes and virtual origin valid
for both forced and lazy cases. The aforementioned solutions are all based on the
assumption of a constant value of α and thus do not take into account changes in
behaviour due to imbalances from pure-plume behaviour.

2.1. The entrainment function
Non-pure plumes that are formed from area sources do not exhibit spatially invariant
turbulence and are characterised by a vertical variation of the local Richardson number,
from a source value of Ri0 to the far-field value of Rip (Turner 1986). Several analyses
of the derivation of the plume conservation equations, including those of Priestley &
Ball (1955), Kaminski et al. (2005) and van Reeuwijk & Craske (2015), have shown
that the entrainment function takes the form

α := γ1 + γ2Ri, (2.6)

for constant coefficients γ1 > 0 and γ2 > 0. Table 1 summarises historical numerical
predictions and experimental measurements of these coefficients. The solution of
(2.1c) is B = B0 irrespective of the entrainment function. Carazzo, Kaminski & Tait
(2006) propose an extended form of (2.6) that compensates for the adjustment of the
cross-stream velocity and buoyancy profiles with streamwise distance (see discussion
in appendix A). Invoking the entrainment function (2.6), the conservation equations
(2.1a,b) become

dQ
dz
= 2γ1M1/2

+ 2γ2B0
Q2

M2
,

dM
dz
= κB0

Q
M
. (2.7a,b)
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Analytical solutions for plumes 893 A12-5

Author(s) Top-hat (κ = 1) Gaussian (κ = 2) Approach
γ1 γ2 αp γ1 γ2 αp

Rouse, Yih & Humphreys (1952) P — — 0.116 — — 0.082 Hot wire
Priestley & Ball (1955) F 0.071 0.35 0.127 0.05 0.25 0.09 Thermocouple
Morton et al. (1956) P — — 0.131 — — 0.093 Filling-box
Baines (1983) P — — 0.103 — — 0.073 Filling-box
Papanicolaou & List (1988) F 0.078 0.25 0.117 0.055 0.18 0.083 LDV
Wang & Law (2002) F 0.075 0.25 0.125 0.053 0.18 0.088 PIV
Kaminski et al. (2005) F 0.085 0.35 0.140 0.060 0.25 0.099 dye
Ezzamel et al. (2015) F 0.075 0.51 0.156 0.053 0.36 0.110 PIV
van Reeuwijk et al. (2016) J 0.091 — — 0.064 — — DNS

F 0.085 0.25 0.127 0.060 0.25 0.090 DNS
P 0.095 0.20 0.137 0.067 0.20 0.097 DNS

Marjanovic et al. (2017) L 0.085 0.24 0.139 0.060 0.24 0.098 DNS

Average — 0.082 0.34 0.129 0.060 0.24 0.091 —
±2σ — 0.016 0.16 0.014 0.011 0.12 0.020 —

TABLE 1. Values for γ1 and γ2 in axisymmetric plumes. Entries for the pure-plume
entrainment coefficient αp are given. The letters P, J, F and L are indicative of plume
behaviour in each study. P indicates a pure plume, J a pure jet, F a forced plume and L a
lazy plume. Hereafter, we take the average values listed. LDV (laser-Doppler velocimetry).
PIV (particle image velocimetry).

2.2. Point-source solution
For the point source, Q0=M0=0 at z=0. Thus, guided by dimensional considerations,
we seek the power-law solutions

Q=CQB1/3
0 z5/3, M =CMB2/3

0 z4/3. (2.8a,b)

Substituting (2.8) into (2.7) yields the coefficients

CQ =
4

3κ

(
9γ1κ

2

10κ − 16γ2

)4/3

, CM =

(
9γ1κ

2

10κ − 16γ2

)2/3

. (2.9a,b)

2.3. Area-source solution
For the general area-source conditions Q0 > 0, M0 > 0 and B0 > 0, we scale Q and
M on their respective source values and the streamwise coordinate on Lq :=Q0/M

1/2
0 .

Thus, we introduce

ζ :=
z

Lq
, q :=

Q
Q0
, m :=

M
M0
. (2.10a−c)

Note, for top-hat profiles, Lq is the radius of the source. Accordingly, (2.7) reduce to

dq
dζ
= 2γ1m1/2

+ 2γ2RipΓ0
q2

m2
,

dm
dζ
= κRipΓ0

q
m
, (2.11a,b)
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893 A12-6 F. Ciriello and G. R. Hunt

where the pure-plume Richardson number is given by

Rip =
8γ1

5κ − 8γ2

(
=

C2
Q

C5/2
M

)
. (2.12)

Combining (2.11a) and (2.11b) gives the nonlinear differential equation

dq
dm
=

2γ1

κRipΓ0

m3/2

q
+

2γ2

κ

q
m
. (2.13)

Defining A1(m) := 2γ1m3/2/κRipΓ0 and A2(m) :=−2γ2/κm, (2.13) becomes

dq
dm
=A1(m)q−1

−A2(m)q. (2.14)

This is the Bernoulli differential equation for which solutions are readily available
(Ince 1956, pp. 22–23). With the change of variable η := q2, (2.14) reduces to the
linear differential equation

dη
dm
= 2q

dq
dm
= A1(m)− ηA2(m), (2.15)

where A1(m) := 2A1(m) and A2(m) := 2A2(m). Writing c as a constant of integration,
the solution of (2.15) is

η=

∫
exp

(∫
A2(m) dm

)
A1(m) dm+ c

exp
(∫

A2(m) dm
) . (2.16)

Integrating from the source, where q= 1 and m= 1, the solution of (2.13) is thus

q2
=

4γ1

∫ m

1
exp

(
−

4γ2

κ

∫ m

1

1
m

dm
)

m3/2 dm+ 2c

κRipΓ0 exp
(
−

4γ2

κ

∫ m

1

1
m

dm
) . (2.17)

Performing the integration in (2.17) we have

q2
=

1
Γ0
(m5/2

−m4γ2/κ)+ 2cm4γ2/κ . (2.18)

From the source conditions, the constant of integration c = 1/2. As a result, (2.18)
may be written as

q2
=

m5/2

Γ0
+
Γ0 − 1
Γ0

m4γ2/κ ⇒ Γ = 1+ (Γ0 − 1)m4γ2/κ−5/2. (2.19a,b)

The first term on the right-hand side of (2.19a) is the pure-plume component; note
from the dimensionless form of (2.8) that q2

= m5/2 for Γ0 = 1, and correspondingly
from (2.19b), Γ = 1. The second term thus captures the adjustment towards
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Analytical solutions for plumes 893 A12-7

pure-plume behaviour. Note that the sign of the exponent on m is negative (e.g.
4γ2/κ − 5/2≈−1.14 taking γ2 = 0.34 and κ = 1, table 1). Momentum flux increases
monotonically with streamwise distance ζ due to the work done by the buoyancy
force, thus from (2.19b) Γ asymptotes to a value of unity as expected.

Substituting for the physically realistic (positive) root for q from (2.19a) into (2.11b)

dm
dζ
=
κRipΓ0

m

(
m5/2

Γ0
+
Γ0 − 1
Γ0

m4γ2/κ

)1/2

. (2.20)

Hence
ζ =

1

κRipΓ
1/2

0

∫ m

1
m−1/4(1+ (Γ0 − 1)m4γ2/κ−5/2)−1/2 dm. (2.21)

Defining 2F1 as the ordinary hypergeometric function (e.g. Abramowitz & Stegun
1964, pp. 556–566)

2F1(a, b; c; x)=
∞∑

n=0

an bn

cn

xn

n!
, where an

=

n∏
k=0

(a− k), (2.22a,b)

denotes the falling Pochhammer symbol, (2.21) can be integrated to give

ζ =
4

3κRipΓ
1/2

0

(m3/4
+F −Fδ), (2.23)

where the functions F =F (m, Γ0) and Fδ =Fδ(Γ0) are defined as

F = 2F1

(
1
2
,

3
8γ2/κ − 10

; 1+
3

8γ2/κ − 10
; (1− Γ0)m4γ2/κ−5/2

)
− 1

=

∞∑
k=0


n∏

k=0

(
1
2
− k
) n∏

k=0

(
3

8γ2/κ − 10
− k
)

n∏
k=0

(
1+

3
8γ2/κ − 10

− k
) ((1− Γ0)m4γ2/κ−5/2)n

n!

− 1,

(2.24)

and

Fδ = 2F1

(
1
2
,

3
8γ2/κ − 10

; 1+
3

8γ2/κ − 10
; 1− Γ0

)

=

∞∑
k=0


n∏

k=0

(
1
2
− k
) n∏

k=0

(
3

8γ2/κ − 10
− k
)

n∏
k=0

(
1+

3
8γ2/κ − 10

− k
) (1− Γ0)

n

n!

 . (2.25)

Asymptotically far from the source, the plume becomes pure, cf. (2.19b), and
momentum flux scales with the 4/3rd power of distance, cf. (2.8b). Thus, an origin
correction ζv can be deduced on rearranging (2.23) in the form

m=CMRi2/3
p Γ

2/3
0 (ζ + ζv)

4/3
⇒ ζv =

4

3κRipΓ
1/2

0

(Fδ −F ). (2.26a,b)
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FIGURE 1. (a) Values of F/Fδ versus ζ and (b) G2/G1 versus ζ for different values of
Γ0.

In the limit as ζ →∞, ζv → ζavs, (1 − Γ0)m4γ2/κ−5/2
→ 0 and F → 0, and hence

(2.26b) reduces to

ζavs =
4

3κRipΓ
1/2

0

Fδ. (2.27)

The solution for the asymptotic virtual origin given in (2.27) is valid for forced, pure
and lazy plumes, i.e. Γ0 > 0. Figure 1(a) plots F/Fδ versus ζ confirming that F �
Fδ for ζ � 1.

While (2.27) remains the apex contribution of the current analysis, an alternative
solution approach to determine ζavs is to expand the bracketed term in (2.21) using
the binomial theorem and integrate term by term to give

ζavs =
3Bδ

4κRipΓ
1/2

0

, Bδ :=

∞∑
k=0

(Γ0 − 1)k

k!(k(4γ2 − 5/2)+ 3/4)

k∏
j=1

(
1
2
− j
)
. (2.28a,b)

This solution, valid for 0<Γ0< 2, reduces to the constant-α solution of Hunt & Kaye
(2001) on setting γ2 = 0. Expressions (2.27) and (2.28a) scale identically on Rip and
Γ0 and indeed are identical in the range 0<Γ0 < 2 (indicating that 3Bδ/4= 4Fδ/3).

Substituting for m from (2.26) into (2.19) gives the square of the volume flux

q2
= G1 + G2 ⇒ q= G 1/2

1

(
1+

G2

G1

)1/2

, (2.29a,b)

where the functions G1(Γ0, ζ ) and G2(Γ0, ζ ) are defined as

G1 := Γ
2/3

0 C2
QRi2/3

p (ζ + ζv)
10/3, (2.30)

G2 :=
Γ0 − 1

Γ
1−8γ2/3κ

0

(C3
QRip)

16γ2/15κ(ζ + ζv)
16γ2/3κ . (2.31)

Since G2 is associated with the non-pure adjustment behaviour, cf. (2.19b), the ratio
G2/G1→ 0 in the limit as ζ →∞, provided γ2/κ 6 5/8, (n.b. which indeed is the
case cf. table 1)

G2

G1
=

Γ0 − 1

Γ
(1−8γ2/κ)/3

0

C16(γ2/κ−5/8)/5
Q Ri16(γ2/κ−5/8)/15

p (ζ + ζv)
16(γ2/κ−5/8)/3 (2.32)

(see figure 1b).
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Finally, substituting for m from (2.26a) into (2.19b), the variation of the local
Richardson number Γ (ζ ), indicating the imbalance from the equilibrium state, is

Γ (ζ )= 1+ (Γ0 − 1)((Γ0Rip)
2/3CM)

4(γ2/κ−5/8)(ζ + ζv)
16(γ2/κ−5/8)/3. (2.33)

3. Experiments
Particle image velocimetry measurements were acquired for negatively buoyant

plumes formed by the injection of an aqueous-saline solution into a freshwater filled
visualisation tank. Polyamide seeding particles with a nominal diameter of 50 µm and
a density of 1.03 g cm−3 were used to seed the flow. PIV measurements were only
conducted for plume release densities lower than 1.02 g cm−3 in order to minimise
the optical distortion of particles owing to differences in refractive index between
the saline release and the freshwater ambient. The Stokes velocity of the particles,
estimated at 0.04 cm s−1, was considerably smaller than the centreline velocities
recorded in the plume (1–7 cm s−1) such that the velocity lag experienced by the
particles was expected to be minimal.

The videos were recorded at an acquisition rate of 30 f.p.s. with a shutter speed of
10 ms. A high aperture (F/1.4) was used to reduce the depth of field to a depth less
than the thickness of the light sheet (the latter estimated at 10 mm). The PIV window
was 180 × 360 mm2 (width by height) recorded with a resolution of 5 Megapixels
(2048 × 2560). Particle scatter size roughly ranged between 3 and 5 pixels. A 15 pixel
highpass filter was used to improve uneven lighting and a 5 pixel Wiener denoise
filter was applied to reduce ghosting due to noise and unfocused particles. A two-
pass interrogation scheme was adopted. Interrogation windows of area 128 × 128 and
64 × 64 pixels2 were used with a 50 % overlap for each window. Processing was
conducted using a modified version of the open source software PIVlab from Thielicke
& Stamhuis (2014).

Plume nozzles with 44.5 mm and 89.0 mm diameters were used. The volume flux
was estimated by integrating the time-averaged velocity field measured along the
central plume axis and assuming rotational symmetry. The source volume flux was
measured with an Apollo LowFlo flowmeter, with range 0.1–3.0 l min−1, and to an
accuracy of ±1 % of the reading. The density of the saline solution and freshwater
ambient was measured with an Anton Paar DMA 5000 density meter of accuracy
±0.0005 g cm−3.

The virtual origin correction ζv∗ was estimated from the volume flux measurements
by defining it as

ζv∗ :=
q3/5
∗

C3/5
Q Ri1/5

0

− ζ∗, (3.1)

where the asterisk subscript (·)∗ denotes a measured quantity. The maximum
cumulative error |δζv∗| on ζv∗ was estimated to be ±11 %. The error on CQ(γ1, γ2)
was estimated based on the historical values of γ1 and γ2 reported in table 1. Our
estimates of the location for the virtual origin from (3.1) are shown in what follows
by circular markers (u) with error bars overlain.

4. Results and discussion
The solutions for the α= constant and α=γ1+γ2Ri formulations are expected to be

indistinguishable in the far field, where locally the differences in behaviour between
the actual plume and a pure plume are diminishingly small, irrespective of the source
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FIGURE 2. Values of q (a–c), m (d–f ) and Γ (ζ ) (g–i) versus ζ for Γ0= {0.001, 1, 1000},
highlighting differences between the analytical solutions for α = constant (solid red lines
-) from Hunt & Kaye (2005), and for α= γ1+ γ2Ri (solid blue lines -) from (2.29), (2.26)
and (2.33) (top-hat, κ = 1). Corresponding dashed lines show approximate solutions based
on the virtual origin corrections given by Hunt & Kaye (2001, dashed red lines - -) and
by (2.27, dashed blue lines - -). The α= constant and α= γ1 + γ2Ri solutions overlie for
the pure-plume case.

conditions (2.19b). This is confirmed in figure 2, which plots the streamwise variations
of volume flux (figure 2a–c, from (2.29)) and momentum flux (figure 2d–f, from
(2.26)), for example cases of forced (Γ0= 0.001), pure (Γ0= 1) and lazy (Γ0= 1000)
plumes. For the forced plume there is clearly a deficit in entrainment prevalent (lower
volume flux) in the near-source region for the α = γ1 + γ2Ri formulation (blue line)
when compared with the constant-α predictions (red line); the trend in this region is
reversed for lazy plumes. The variation of Γ (ζ ) is plotted in figure 2(g–i). In both
forced (figure 2g) and lazy (figure 2i) cases, the solutions indicate that the approach
to pure behaviour is less rapid than predicted by constant-α solutions.

Our analytical solution (2.27) for the virtual origin correction ζavs = zavs/Lq,
recalling Lq=Q0/M

1/2
0 , is plotted as a function of Γ0 in figure 3(a) together with ζavs

inferred from integrating (2.11) numerically using a fourth-order Runge–Kutta method.
Numerical and analytical solutions overlie so as to be graphically indistinguishable.
Evidently, agreement between the prediction ((2.27), blue line -) and the data is good
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FIGURE 3. (a–c) Value of zavs versus Γ0 for κ = 1. Solution for α= constant from Hunt
& Kaye (2001, dot-dashed red line -·-) and for α = γ1 + γ2Ri from ((2.27), blue line -).
Markers plotted in (a) show experimental measurements from Hunt & Kaye (2001, f),
Ezzamel (2011,p) and our own PIV measurements of aqueous-saline plumes (§ 3,u).

and improved over the constant-α solution of Hunt & Kaye (2001, dot-dashed red
line - ·-).

Physically, the magnitude of the virtual origin correction is indicative of the
characteristic streamwise length over which the adjustment towards the pure-plume-
like state occurs (Hunt & Kaye 2001). Based on classically adopted scalings, the
adjustment length is expected to scale on the jet length Lj := M3/4

0 /B1/2
0 (≡LqRi−1/2

0 )
for forced plumes (Papanicolaou & List 1988; Wang & Law 2002), and on the
acceleration length La := Q3/5

0 /B2/5
0 (≡ LqRi−1/5

0 ) for lazy plumes (Fischer et al. 1979;
Hunt & Kaye 2005). To assess this, figure 3(b) shows zavs/Lj and figure 3(c) shows
zavs/La.

For highly forced plumes (Γ0� 1, figure 3b) our solution (2.27) for the α = γ1 +

γ2Ri formulation clearly shows zavs ∼ O(Lj), thereby confirming that the adjustment
length does scale on the jet length. The distance between actual and virtual origins
is less than that predicted by the Hunt & Kaye (2001) constant-α model. Note that
(2.27) gives

zavs

Lj
=

4

3κRi1/2
p
· 2F1

(
1
2
;

3
8γ2/κ − 10

; 1+
3

8γ2/κ − 10
; 1
)
≈ 0.58 for Γ0� 1. (4.1)

For highly lazy plumes (Γ0 � 1, figure 3c), our solution (2.27) for the α = γ1 +

γ2Ri formulation shows that the adjustment length does not scale on the acceleration
length scale (note the scale on the vertical axis). Instead, it follows from (2.27) that
the virtual origin, and by extension also the adjustment length, scales on the plume
radius at source

zavs

Lq
=

4

3κRi1/2
p
≈ 3.34 for Γ0� 1 (4.2)
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(see figure 3a). By contrast, the solution for the constant-α formulation, wherein
ζavs∼Γ

−1/5
0 , appears to scale well on the acceleration length. This apparent change in

adjustment length (from La to Lq) has been observed in experimental measurements
of highly lazy plumes (Kaye & Hunt 2009), where the transition to a volume flux
that varies as a 5/3rds power law occurs downstream of the neck of the plume and
is independent of Γ0. The solution (2.27) and ζavs from Hunt & Kaye (2001) diverge
as the acceleration length La decreases with increasing Γ0.

5. Conclusions
Our focus has been on developing analytical solutions that are applicable to

turbulent plumes from area sources for which entrainment, varying locally in response
to the fluxes of momentum, volume and buoyancy, is characterised by an entrainment
function α that is linearly dependent on the local Richardson number. This form for
the entrainment underpins our developments as it has been shown, both experimentally
and numerically, to universally capture the behaviour of forced, pure and lazy plumes.
We derive analytical solutions for the virtual origin, the fluxes of momentum and
volume and the local Richardson number without placing restrictions on the source
conditions. Our solutions thereby encompass the entire spectrum of forced, pure and
lazy plume releases.

For forced and lazy releases, we show how the dynamical conditions in the plume
approach the far-field equilibrium state of a pure plume and that this approach is less
rapid than predicted under the assumption of invariant entrainment, i.e. for the widely
adopted simplification α= constant. Our solutions indicate that forced plumes adjust to
become pure plume-like within a streamwise distance comparable to 60 % of a source
jet length, while lazy plumes adjust within a distance comparable to three source radii.
Finally, our analytical solution for the virtual origin agrees closely with data that span
five orders of magnitude of source Richardson number, thereby giving us confidence
in the application of this solution to general plumes from area sources.
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Appendix A. The entrainment function of Carazzo et al. (2006)
Carazzo et al. (2006) propose an entrainment function in the form

α = γ1 + γ2Ri+
dγ3

dζ
, (A 1)

where γ3 is a higher-order integral property that depends on the velocity, buoyancy
and turbulent stress profiles. As noted by van Reeuwijk et al. (2016), the third term,
dγ3/dζ , compensates for the adjustment in velocity and buoyancy profiles and can, as
a result, be neglected in a time-averaged analysis. Our solutions are consistent with
the model (A 1) in that we specify that the profiles are assumed to be either top-hat
or Gaussian.
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Appendix B. Two-dimensional plumes

Defining a pure-plume Richardson number as Ri0L = B0LQ3
0L/M

3
0L and scaled

source Richardson number as Γ0L = Ri0L/2αpκ , the conservation equations for a
two-dimensional plume of dimensionless volume and momentum fluxes per unit
length of the source, qL and mL, can be deduced to give

dqL

dζL
= γ1L

mL

qL
+ γ2LRipL

q2
L

m2
L

and
dmL

dζL
= κRipLΓ0L

qL

mL
, (B 1a,b)

where ζL = zM0L/Q2
0L. Combining (B 1a,b) one may obtain the solutions

q3
L =

m3
L

Γ0L
+
Γ0L − 1
Γ0L

m6γ2L/κ
L and ΓL = 1+ (Γ0L − 1)m6γ2L/κ−3

L . (B 2a,b)

A virtual origin correction for a two-dimensional plume with a linear Ri entrainment
function is reported in van den Bremer & Hunt (2014), their appendix A. Following
the approach developed herein (§ 2), the correction can be expressed in terms of
hypergeometric functions as

ζavs,L =
Fδ,L

κRipLΓ
2/3

0L

, (B 3)

where

Fδ,L = 2F1

(
1
3
;

1
6γ2L/κ − 3

; 1+
1

6γ2L/κ − 3
; 1− Γ0L

)
. (B 4)

It should be noted that there is, as yet, no experimental evidence that supports the
notion of a linear entrainment function for two-dimensional lazy plumes.
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