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SECOND-ORDER NORMAL VECTORS
TO A CONVEX EPIGRAPH

ALBERTO SEEGER

The second-order behaviour of a nonsmooth convex function / is reflected by the
so-called second-order subdifferential mapping d2 f. This mathematical object
has been intensively studied in recent years. Here we study d3 f in connection
with the geometric concept of "second-order normal vector" to the epigraph of / .

1. MATHEMATICAL BACKGROUND

Throughout this note / : Rn—»R U {+00} is assumed to be a lower-semicontinuous
proper convex function. As usual, the class of such functions is denoted by Fo(]Rn).
The purpose of this work is to provide the reader with some additional mathematical
tools for a better understanding of the second-order behaviour of / around a reference
point x € IRn. Recall that the first-order behaviour of / around x is reflected by the
set

(1.1) 8f(x) := {y 6 1 " : f(x') > f(x) + (y, x' - x) for J i ' e R n } ,

where (•,•) stands for the usual Euclidean product in the space Rn. The set (1.1) is
known as the subdifferential of / at x, and each of its elements is called a subgradient
of / at x (see [6]).

Second-order information on / is captured by a family of sets

The precise definition of d2f[x,y], and some new results concerning this set, will be

given in Section 3.

Twice epi-differentiability is a fundamental concept in the definition of d2f[x,yj.

A new characterisation of this notion will be given in Section 2.

For convenience in our exposition, we recall below the concept of epigraphical

convergence.
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DEFINITION 1.1: (see, for instance, Attouch [1]). A sequence {<pk}kzx of functions
<pk : Rn—>R is said to be epi-convergent to ip : Rn-M if for every h G R n , the following
properties are satisfied:

(1.2) 3 {hk}—>h such that ip(h) ^ limsup<fk{hk)\

(1.3) V {hk}—>h one has f(h) ^ liminf <fk(hk)-

A family {<pt}t>o of functions ipt : R
n—>K epiconverges to <p : Rn—>R (as t goes to 0 + ),

if for all {fjt}—»0+ , the sequence {y>tt} epi-converges to (p. In such a case one says that
ip is the epigraphical limit of the family {<fit}t>o , and one writes ip = epi- lim tpt •

t->o+

2. ON TWICE EPI-DIFFERENTIABILITY

In connection with the second-order analysis of nonsmooth functions, Rockafellar's
concept of twice epi-differentiability has drawn the attention of many authors. In the
case of nonsmoooth convex functions, this notion can be introduced in the following
terms:

DEFINITION 2.1: Let / e ro(Rn) be finite at x, and let y € df(x). The function
/ is said to be twice epi-differentiable at x relative to y if the epigraphical limit

(2.1) f"[x,y,-}:= epi- lim £/[*,»;•]
t-»o+

exists, where

The function f"[x,y;-] is called the second-order epi-derivative of / at x relative to

y-

Important classes of convex functions enjoying the above twice epi-differentiability
property have been singled out by Rockafellar [9] (see also [2, 8]). The existence of
the second-order epi-derivative f"[x,y;] has been characterised in several equivalent
ways by Moussaoui and Seeger [5]. These authors have shown that e-subdifferentials,
distance functions, and projections, are useful tools for studying this question. Here we
follow another approach which consists in emphasising the role of the epigraph

epi / := {(*,/?) £ R " x R : / (* ) ^ 0},

or more precisely, of its indicator function

V-em f{*,fi) •= I
0 if (x,P) e epi / ,

I +oo otherwise
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A well-known fact in convex analysis is that

(2.2) y e df(x) if and only if (y, - 1 ) £ N[f; x],

where

corresponds to the normal cone to epi / at the point (x,f(x)). The equivalence (2.2)
is sometimes expressed in the form

(2.3) df(x) = {y € R" : {y, - 1 ) £ N[f; x]}.

One of the main goals of this paper is to show that a somewhat similar formula also

holds at a second-order level. This leads us to study the relationship between f"[x,y; •]

and ip • [(x, f(x)),(y,—l); (•,•)], the latter term being of course the second-order

epi-derivative of V'epi / a* ix'f(x)) relative to (y, — 1). As a first step in our study,
we look at the second-order differential quotients

<pt(h):=6*f[x,y;h)

and

A simple matter of calculation yields:

LEMMA 2 . 1 . Let f £ r o ( R n ) be finite at x, and let y 6 df(x). Then, for all

t>0 and h G Rn, one has

Moreover, if the function f is finite at x + th, then the inGmum in (2.4) is attained at

PROOF: By definition one has

i>t{h, a) := - [ e p i f j CP1 f {{y, -1) , (h, a)) 1.
i I t J

After a short calculation one gets

rf>t(h, a) = - IV'epi / ( * + tfl, / (« ) + <«) - (y, h) + a I ,

that is to say,

, ,. , / f (« - M) if (/(* + th) - f(x))/t ^ a,
I +oo otherwise
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If / is not finite at x + th, then both terms in (2.4) are equal to +oo. Otherwise,

the function ipt(h, •) is minimised at a = t~1[f(x + th) — /(x)], and its infimum is just

<fit(h). D

Next we would like to pass to the limit as t—>0+ in formula (2.4). An epigraphical
limit is however a subtle concept, and needs to be handled with care. To avoid some
undesirable technicalities, suppose that a; is a point at which the function / £ Fo(Rn)
is continuous. This requirement is not too stringent and helps to keep our presentation
clear. Under this continuity assumption, the directional derivative

h £ Rn
 H-» f'(x; h) := lim ^ [ / ( z + th) - f{x)}

i-»o+

is finite everywhere, and one has

Urn t?[f{x + tkhk) - f(x)} = f(x;h) for all {(tk,hk)}-+(0+,h).

Now one can state the main result of this section.

THEOREM 2 . 1 . Let f e ro(R") be continuous at x, and let y e df(x). Then

the following statements are equivalent:

(a) / is twice epi-differentiable at x relative to y;

(b) i>er>i t l s twice epi-differentiable at (x,f(x)) relative to (y, — 1).

For convenience, we split the proof of the above theorem into two lemmas.

LEMMA 2 . 2 . Let f e r o (En) be continuous at x, and let y E df(x). Suppose

ipepi * is twice epi-differentiable at (x,f(x)) relative to (y,—1). Then, f is twice

epi-differentiable at x relative to y. Moreover, for all h £ K", one can write

(2-6) =Vepi f[(x,f(x)),(y,

PROOF: Take any (h,a) £ RnxR,and write

If a < f'(x;h), then
t-1[f(x+th')-f(x))>a'

for all (t,h',a') close to (0+,A,a). This fact, together with expression (2.5), implies
that

(2.7) liminf 1>t(h'>a') =
(*,k» ,<*')->(<>+,h,a)
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Thus, i/>(h,a) = +00 . Consider now the case a > f'(x;h). Since y 6 df(x), one has
necessarily f'(x;h) ^ (y, h). Hence, a — (y,h) is strictly positive, and the term

goes to +00 as (t,h',a') goes to (0+,h,a). Thus, we are again in the situation de-
scribed by (2.7). Summarising, i/>(h,a) = +00 whenever a ^ f'(x;h). This implies of
course that

It remains now to show that the function

is the epigraphical hmit of the family {tpt}t>o as t—»0+. Take any sequence {tk}—>0+

and any h £ Kn. One needs to prove the conditions

(2.8) 3 {hk}-*h such that ij>(h, f'(x;h))^ lim sup <ptk (hk),

and

(2.9) V {hk}-*h one has ip(h, f'{x; h)) ^ liminf <Ptk{hk)-

Since the epigraphical limit V1 exists, one has

if>(h, f (x; h)) < liminf iptk(hk,ak)

for all {(hk,ak)}—>(h,f'(x;h)). But, for the particular choice

(3.10) ak =tk-
1[f(x+tkhk) - / (*) ] ,

one gets
Ak(hk,ak) = <ptk{hk).

[See Lemma 2.1.]

Condition (2.9) is proven in this way. To prove (2.8) we use again the existence of
the epigraphical hmit i(>. One knows that

(2.11) i(>(h,f'(x;h)) ^ l imsupV-tJ/ i i .a jb)

for some {(hk,ak)}^(h,f'(x; h)). If if>(h, f (x; h)) = +00, then condition (2.8) holds
trivially. So, one can suppose that ij)(h, f \x\ h)) < +00, and
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Now, notice that
^tk{hk,ak) ^ il>tk(hk,f3k) - <fitk(hk),

and hence

\imsupiptk(hk,cck) ^ am sup tftk(hk).

Condition (2.8) follows by combining (2.11) and the above inequality. D

Next we state the converse of Lemma 2.2.

LEMMA 2 . 3 . Let f e ro(Kn) be continuous at x, and let y £ df(x). As-

sume that f is twice epi—differentiable at x relative to y. Then, ipeoi t is twice

epi-differentiable at (x, f(x)) relative to (y, —1). Moreover, for all (h, a) 6 K n xR, one
can write

( f"[x,y;h] i£a = f'(x;h)
(2.12) 4" • [(x,f(xMy,-l);(h,a)} = \ \

H J [ +oo otherwise

PROOF: We keep the same notation as in the proof of the previous lemma. Take
any sequence {tjb}—>0+ and any (h,a) £ RnxK.. One has seen already that if a ^
f'(x;h), then the second-order epi-derivative ij> is well defined at (h,a), and it is
equal to +oo. So, we just need to consider the case a = f'(x;h), and prove the
conditions

(2.13) 3 {{hk,ah)}-+(h,f{x;h)) such that f"[x,y;h} > li

and

(2.14) \/{(hk,ak)}->{h,f'(x;h)) one has f'[x,y;h]^Kmw£1>th(hh,ah).

But the first one follows from the existence of f"[x,y; h] and the possibility of choosing
{ak} as in (2.10). To prove the second condition, observe that

[see Lemma 2.1] no matter how one chooses the sequence {«*}• Thus

f"[x,y;h] ^liminf <ptk{hk) ^ hminf rl)tk(hk,ak).

This completes the proof of the lemma. U

Lemmas 2.2 and 2.3 not only serve to prove Theorem 2.1, but also provide some for-

mulae Unking the second-order epi-derivatives f"[x, y; •] and ip" • [(x, f(x)), (y, — 1);

(-,-)] in a simple way. These formulae have many interesting consequences, some of

which will be explored in the next section.
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3. O N S E C O N D - O R D E R NORMAL DIRECTIONS

As explained by the author in [11, 12, 5], to each second-order epi-derivative
f"[x,y;-] one can associate a unique nonempty closed convex set d2f[x,y] in such a
way that

f"[x,y;h] = [snp{(z,h} : z € &f[x,y}}? for all h G Rn.

More precisely:

DEFINITION 3.1: Let f,x, and y, be as in Definition 2.1. The second-order sub-
differential of / at x relative to y is the set given by

(3.1) d2f[x,y] := {z G Kn : (z,h) ^ {f"[x,y;h}y/2 for all h G En}.

Each vector z in d2f[x,y] is called a second-order subgradient of / at x relative to y.

REMARK 3.1. A variant of the set (3.1) is obtained by using pointwise convergence
instead of epigraphies] convergence (see [3, 4, 10]). However, such a variant is of less
interest, at least in the context of this note.

Second-order normal directions to a given convex set are obtained by applying the
concept of second—order subdifferentiability to its corresponding indicator function. In
the specific case of a convex epigraph, one has:

DEFINITION 3.2: Let / G ro(Kn) be finite at x, and let y G df{x). If V»epi / is

twice epi-differentiable at (a;,/(a:)) relative to (j/, —1), then each vector in the set

(3-2) N2[f;x,y] := d2^ f[(x,f(x)),(y,-l)j

is called a second-order normal vector to epi / at (x,f(x)) relative to (y, —1).

An equivalent definition of the set N2[f;x,y] can be found in our previous work
[12]. The superscript 2 over the capital letter N reminds us that we are working at
a second—order level. N2[f;x,y] is a closed convex set in RnxK which contains the
origin. However, this set is not always a cone.

The purpose of this section is to explore the connection existing between the
second-order subgradients of a convex function, and the second-order normal vectors
to its epigraph. As an extension of formula (2.3), one gets the following nice result:

THEOREM 3 . 1 . Let f £ ro(Rn) be continuous at x, and let y G df(x). Assume
any of the equivalent conditions in Theorem 2.1. Then,

(3.3) d2f[x,y} = {z£R»: (z,0) G N2[f;x,y)}.

PROOF: By definition, d2f[x,y] is the subdifferential at 0 6 1 " of the sub-
linear function q := {f"[x,y,-]}1/2. Similarly, N2[f;x,y] is the subdifferential at
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(0,0) G R n x R of the sublinear function I := {^ j f[(x,f(x)),(y,-l); (•, -)]}1/2 . Now,

according to Lemma 2.2, one can write

q(h)= inf £{h,a) foral l / iGRn.

Moreover, for h = 0 the above infimum is attained at a = f'(x;0) = 0. By applying
Rockafellar's rule [7, Theorem 24] on the subdifferential of a marginal function, one
gets

dq(0) = {z 6 R" : (2,0) G 9^(0,0)}.

But this is just another way of writing formula (3.3). u

Theorem 3.1 says that d2f[x,y] can be identified with the section of N2[f;x,y]

corresponding to the height 7 = 0. Recall that for computing first-order subgradients
one has to cut the normal cone N[f;x] at the level 7 = —1. Below we illustrate this
situation with the help of an example.

EXAMPLE 3.1. Let / : R-»R be given by

For x = 0, one has N[f;x] = {(y,f) € RxR : \y\ + 7 ^ 0}. By cutting this normal
cone at the level 7 = - 1 , one gets df(x) = {y £ R : \y\ - 1 ^ 0} = [-1,1]. Take, for
instance, the subgradient y — 1. As a matter of computation one gets N2[f;x,y] =
{(.2,7) G RxR : z + 7 ^ 1}. The set d2f[x,y] is obtained by setting 7 = 0 in the
inequality z + j < 1. Thus, d2f[x,y] - {z £ R : z 4 1} = (-00,1].

The next result is somehow the converse of Theorem 3.1. It tells us how to compute
N2[f;x,y] in terms of d2f[x,y}.

THEOREM 3 . 2 . Under the same assumptions as in Theorem 3.1, one can write

(3.4) N2[f;x,y] = {(2,7) £ R"xR : z + jy e d2f\x,y)}.

PROOF: By definition, (2,7) G N2[f;x,y] if and only if

2 foral l(A,a)eRnxR.

According to Lemma 2.3, the above condition reduces to

{(z,i),(h,f'(x;h))) ^ {/"[*,y-h)Y12 ^ all h G R".

This is clearly equivalent to

(3.5) (z,h) +ff'(x;h) ^ {f"[x,y;h]y'2 for aU h e D
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where
D := {h e Kn : f"[x,y; h] < +00}

denotes the effective domain of f"[x,y; •]. But on the set D, the directional derivative
f'(x; •) coincides with the linear function (y, •). Thus, condition (3.5) can be written
in the form

(2 + jy,h) ^ {f"[x,y; h}}1'2 for all h £ D.

The latter inequality amounts to saying that z + ~/y £ d2f[x,y]. u

We mention that Theorem 3.2 yields a simple expression for the polar set of
N2[f;x,y] in terms of the polar set of d2f[x,y\. Polarity is an interesting tool in
the analysis of closed convex sets containing the origin. By definition, the polar set of
C C Kn is given by

C° := {h E Rn : (z,h) ^ 1 for all 26 C}.

COROLLARY 3 . 1 . Under the same assumptions as in Theorem 3.1, the polar set

of N2[f;x,y] is given by

{N2[f;x,y}}° = {(h,(y,h)): h G (d2f[x,y))°}

= {(M»,*» : f"[x,y,h]^l}.

PROOF: Let L : KnxR->R" be the linear mapping given by

L(z,i) - z + jy.

By applying Theorem 3.2 and a standard calculus rule on polar sets (see [6, Corollary

16.3.2]), one obtains

{N2[f;x,y}}° = {L-^&flxM)}0 = L*({d2f[x,y}}°),

where L* : Rn—»R"xE stands for the adjoint mapping of L. It suffices now to observe
that L* is given by L*h = (h, (y,h)). D

We end this section by mentioning another by-product of the formulae established
in Lemmas 2.2 and 2.3. The next proposition deals with the second-order epi-derivative
of the Legendre-Fenchel conjugate /* 6 Fo(Kn) of / . It has been proven by Rock-
afellar [9, Theorem 2.4] that the existence of f"[x,y; •] is equivalent to the existence of
(f*)"[y,x; •]; moreover, both second-order epi-derivatives are related by the conjugacy
relationship

! ' W { ! } (*) for all z e R".
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We show next that (/*) [j/,a;;-] can also be expressed in terms of the second-order
epi—derivative

(*, 7) £ R " X R H *'\ f[(y, -1 ) , (a-, /(*)); (*,7)],

where

°"epi / : = V-epi /

stands for the support function of epi / .

PROPOSITION 3 . 1 . Under the same assumptions as in Theorem 3.1, one can

write

In particular,

(3.7) (f*)"[y,x;z] = <r"epi f[{y,-l),(x, f(x)); (z,0)} tor all z G Rn.

PROOF: According to Lemma 2.3, one has

N f y"[x,y;h] Xa = f(x;h),
( 3 8 ) 2 • - ' I ^ ^ •

z (_ +00 otherwise

where if>(h, a) := V1™ A(x> f(x))> (y> ~l)i C1)a)] • By taking the Legendre—Fenchel con-

jugate on both sides of (3.8), one gets

(z,7) = sup < (z,h) +ya f"[x,y, h] : a = f'(x; h) > .

In the above supremum, one can let h range over the effective domain D of f"[x,y; •].

If h belongs to such a set D, then f'(x;h) = (y,h). Hence,

(h) (*,7) = sup £{(z + ly,h) - \f"[x,y, h)}

By using Rockafellar's conjugacy relationship [9, Theorem 2.4], one obtains finally

s^epi ,[(!/>-i),(*,/(*));(*,7)] = i(n"[y,*;* + 7y]-

The proof of the proposition is now complete. U
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4. CONCLUSIONS

As one may expect, the epigraph epi / carries in a hidden way information on
the second—order behaviour of the convex function / . To bring this information into
light, it suffices to collect all second-order normal vectors to epi / . Of course, one can
localise this search around a reference point x, and a reference subgradient y. Once we
have evaluated the set N2[f;x,y], it is possible to get d2f[x,y] by using the cutting
procedure explained in Theorem 3.1. If one wishes to move in the opposite direction,
one can invoke Theorem 3.2. Indeed, formula (3.4) tells us how to construct N2[f; x,y]

starting from d2f[x,y].

Up to some minor modifications, the results presented in this note can be extended
to an infinite dimensional setting. For instance, on a reflexive Banach space, the symbol
(•, •) has to be understood as a duality product, epigraphical convergence has to be
changed by Mosco-convergence, and so on.
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