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1. INTRODUCTION 

The idea that dynamical instabilities might play an important role in determining 
the equilibrium structure of elliptical galaxies is a startling one, especially to those 
of us who are accustomed to associating instabilities with rapidly-rotating systems 
like disk galaxies. The shock is even greater when we learn that these instabil-
ities have been taken seriously by workers in the Soviet Union for a long time. 
As Dr. Polyachenko points out in his talk, instabilities affecting spherical, non-
rotating galaxies were being discussed by Soviet astronomers as long ago as 1972. 
Much of this work has recently become more accessible through the publication 
of an English-language version of Fridman and Polyachenko's monograph, Physics 
of Gravitating Systems (Fridman and Polyachenko 1984). In the West, it appears 
that only two people were prescient enough to systematically test the stability of 
spherical models before learning of the Soviet work (Hénon 1973; Barnes 1985). 
In particular, Barnes discovered independently that a spherical system composed 
of predominantly radial orbits evolves rapidly into a bar. Subsequent work has 
demonstrated that even some mildly anisotropic models can be unstable in this 
way. 

Why did this important class of instabilities remain undetected for so long? 
There are probably two reasons. First, it is easy to construct stable equilibrium 
models for elliptical (or at least spherical) galaxies. Indeed, a number of math-
ematical proofs, beginning with Antonov's remarkable papers of 1960 and 1962, 
demonstrated (though not in a physically very intuitive way) that isotropic spheri-
cal systems are guaranteed to be stable as long as their distribution functions satisfy 
certain reasonable constraints. By contrast, stable disk models are notoriously dif-
ficult to construct. The second reason is more subtle, and, in retrospect, rather 
ironic. When an N-body experimenter wants to make a strongly anisotropic galaxy 
model, he generally does so by relaxing an out-of-equilibrium set of initial coordi-
nates and velocities chosen in such a way as to give him roughly the final state he 
is looking for. This procedure is obviously much easier than constructing an exact 
equilibrium solution to the collisionless Boltzmann equation. But a model galaxy 
formed in this way will never be unstable, because if it were, the instability would 
have acted during the relaxation to produce a different (and stable) final state. 
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What is ironic is that it is clear, from a careful re-reading of past work on galaxy 
formation, that instabilities very similar to the ones now known to afflict equilib-
rium systems were active in many of the published collapse simulations. It takes 
only a little imagination to wonder whether instabilities of the sort talked about by 
Polyachenko and Barnes might have played an active role during the formation of 
real galaxies. 

This talk is divided into four parts. The first part summarizes what has been 
learned so far about the stability and instability of spherical equilibrium models. 
Unfortunately, nothing definite is known yet about the stability of triaxial models. 
The second part discusses how dynamical instabilities might be used to constrain 
the dynamics of particular well-observed galaxies. The third part describes some 
preliminary work on the question of whether instabilities could have played an active 
role during galaxy formation. The fourth part presents an efficient new algorithm 
for testing the stability of spherical and triaxial models. 

The total number of published papers on this topic is still quite small, and this 
talk should be seen less as a review then as an introduction to a rapidly developing 
field. 

2. STABILITY OF SPHERICAL MODELS 

Orbits in spherical potentials are characterized by four integrals of motion, the en-
ergy E and the three components of the angular momentum J. Since J is conserved, 
every orbit lies in a plane. According to Jeans's theorem, equilibrium models can 
be constructed from distribution functions / that depend on the phase-space co-
ordinates r and ν through E and J alone. If the model is to exhibit the same 
symmetries as the potential, then / must be a function of r, which means that 
/ = f(E, J 2 ) . In fact this is not quite correct: one can imagine adding to / a term 
that is odd in J and contributes nothing to the total density. Such a term effectively 
specifies what fraction of the stars revolve clockwise or counterclockwise on each 
orbit. In what follows, however, only non-rotating models will be considered. 

Consider first the case of velocity isotropy, / = f(E). Most of what we know 
about the stability of isotropic systems was first discovered by Antonov (1960, 
1962). Antonov considered systems for which df ¡dE < 0, and found a necessary and 
sufficient condition for stability in the form of a complicated variational principle. 
He went on to derive a number of simpler, sufficient conditions for stability. The 
most important of these are: 

I. A spherical system with / = f(E) and df/dE < 0 is stable to all 
non-radial (i.e. non-spherically-symmetric) perturbations; 

IL A spherical system with / = f(E), df/dE < 0 and ά3ρ/άΦ3 < 0 is 
stable to all perturbations. Here ρ and Φ are the density and potential, 
respectively. 

Antonov was able to show that the family of "stellar dynamical polytropes" defined 
by 

f{E) oc (Eo - E)n~3'2 , E < Eo, (1) 

is stable for η > 3/2, i.e., for all values of η such that df/dE < 0. Antonov's 
theorems may be used to verify that many of the isotropic models that resemble 
real galaxies, such as Hénon's (1959) isochrone or the isotropic Michie-King (1966) 
models, are also stable. 
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Antonov's proofs leave open the question of the stability of systems whose 
distribution functions do not satisfy conditions I or II. The first systematic search 
for unstable, isotropic models was carried out by Hénon (1973), who used a spherical 
N-body code to check the stability of polytropes with η < 3/2 (i.e., df/dE > 0) . 
He found that all were stable (at least to the spherical modes permitted by his 
computer code) , with the possible exception of the η — 1/2 model, which appeared 
to oscillate at a level slightly above the noise. (The case η = 1/2 turns out to be a 
peculiar one, since all the stars in this model have exactly the same energy; smaller 
values of η are not allowed.) Barnes, Goodman and Hut (1986) later showed that 
these polytropic models are stable to non-spherical modes as well. 

As of now, Hénon's is the only candidate for an unstable isotropic system. 
It is certainly possible that other unstable isotropic models exist, especially when 
df jdE > 0. On the other hand, it seems very unlikely that any isotropic model 
resembling a real galaxy will ever be found to be unstable. This is because an 
observed density profile p(r) implies a unique isotropic distribution function f(E), 
and the isotropic models corresponding to many of the standard galaxy surface 
density profiles are known to be stable. 

The situation is very different, and much more interesting, for anisotropic 
systems. A number of attempts have been made to generalize Antonov's sufficient 
stability criteria to systems with / = f{E, J 2 ) . These proofs (e.g. Doremus and 
Feix 1973; Gillon, Doremus and Baumann 1976; Sygnet et al. 1984) are mostly 
still controversial, and at least one (Gillon, Doremus and Baumann 1976) appears 
to be contradicted by the numerical experiments described below. A more fruitful 
approach has been to search for particular, unstable models. Hénon (1973) tested 
the radial stability of the "anisotropic polytropes" defined by 

f{E9 J2) oc J2m{Eo - E)n~3/2. (2) 

Models generated from equation (2) have velocity ellipsoids with fixed axis ratios 
σ 2 / σ 2 = (1 + m ) - 1 , where o> and at are the radial and tangential components 
of the velocity dispersion tensor. Hénon found that the oscillatory instability that 
seemed to be present in the isotropic model with η = 1/2 became stronger as the 
velocity ellipsoid was made more prolate. 

At about the same time that Hénon published his paper on instabilities in 
polytropic models, a number of Soviet workers had begun to apply techniques of 
perturbation theory to spherical systems. So far, two new classes of instabilities 
have been identified in this way. One class, associated with systems dominated by 
circular orbits, is probably not very relevant to elliptical galaxies. The other class, 
affecting systems dominated by radial orbits, almost certainly is. 

2.1. Spherical Systems Dominated by Nearly-Circular Orbits 

A disk galaxy in which all the stars move along exactly circular orbits is violently 
unstable to small-scale axisymmetric modes, i.e. clumping in rings (Toomre 1964). 
It is natural to ask whether a spherical galaxy composed of circular orbits is similarly 
unstable. The simple answer is "no": unlike a disk, the gravitational force in 
a sphere is due entirely to the interior mass, and this fact is sufficient to insure 
that a sphere will not clump into shells (Bisnovatyi-Kogan, Zel'dovich and Fridman 
1968). Non-spherical perturbations can be unstable, however. For a spherical 
system composed purely of circular orbits, a sufficient condition for instability to 
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non-spherically-symmetric modes is 

(Fridman and Polyachenko 1984, Vol. 1, p . 179). Barnes, Goodman and Hut (1986) 
explored this type of instability numerically using N-body models generated from 
the anisotropic polytrope distribution function (2). For m > 0, equation (2) implies 
a preponderance of circular orbits, and a density profile that peaks at nonzero r. In 
the limit of large m, all the matter lies on a thin shell. Oscillatory instabilities are 
easy to understand for such an extreme system, since all the orbits have nearly the 
same period, and perturbations tend to recur naturally after a fraction of an orbital 
period. Barnes, Goodman and Hut (1986) found that all models with m £ 1/2 
exhibited quadropole oscillations with rapidly increasing amplitude, and achieved 
stability only after a substantial rearrangement of matter. 

Tangentially anisotropic models generated from equation (2) could never be 
mistaken for real galaxies because of their peculiar density profiles. Recently Poly-
achenko (1985) has suggested that systems with dp/dr < 0 might exhibit similar 
instabilities. This hypothesis is an important one to check. At present, however, 
there is no numerical evidence to suggest that this class of instability is relevant to 
systems that look like real elliptical galaxies. 

2.2. Spherical Systems Dominated by Eccentric Orbits 

If a circular-orbit model seems an unlikely one for an early-type galaxy, the opposite 
extreme, a galaxy consisting largely of radial orbits, seems much more natural: after 
all, collapse from cold initial conditions tends to build in very elongated orbits, at 
least at large radii. Antonov suggested as early as 1973 that a purely radial-orbit 
model would be unstable to clumping of particles around any radius vector. There is 
presently some uncertainty about the validity of Antonov's proof. Nevertheless the 
instability exists. It was first verified numerically by Polyachenko (1981), who used 
a direct-summation N-body code to follow the evolution of a 200-particle radial-
orbit model with density profile ρ oc r~ 2 . The initially equilibrium model evolved 
rapidly into a bar. The instability was rediscovered independently by Barnes (1985), 
who used a more sophisticated mean-field N-body code to test the stability of the 
anisotropic polytropes of equation (2). 

Figure 1 illustrates the development of the radial-orbit instability in a model 
with an initial surface-density profile that is essentially identical to a de Vaucouleurs 
r 1 / 4 law; the initial velocities were chosen from a distribution function that gives 
increasingly radial orbits at large radii, similar to the models produced in collapse 
simulations (Merritt and Aguilar 1985). 

What is the physical mechanism behind the radial-orbit instability? One 
simple interpretation (Fridman and Polyachenko 1984, Vol. 2, p . 148; Barnes, 
Goodman and Hut 1986) is based on the well-known Jeans (1929) instability of a 
uniform, self-gravitating medium. Jeans showed that any such medium is unstable 
to gravitational clumping on length scales 

where ρ and σ are the density and the (isotropic) velocity dispersion. The radial ve-
locity dispersion in a radially-anisotropic system of size R and mean density ρ must 

(4) 
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be of order σ2 « GpR2 to satisfy the virial theorem. Since the tangential velocity 
dispersion in such a system is much lower, equation (4) suggests that clumping 
might be expected in a tangential direction, i.e. in a cone around any radius vec-
tor. Since the growth time for the Jeans instability is not strongly dependent on 
λ, one might expect an unstable model to evolve on all azimuthal length scales 
greater than \j simultaneously. This means that small-scale clumping should not 
be sufficient to stabilize a model before a large-scale, or bar, mode has perma-
nently destroyed its spherical symmetry. These predictions are consistent with the 
numerical experiments. 

Figure 1. Radia l -orbi t instabil i ty in an anisotropic spherical m o d e l . T h e initial density and 

ve loc i ty dispersion satisfy equat ions (5 ) and ( 6 ) , wi th anisotropy radius r a = 0 . 1 r o - T h i s is an 

a x i s y m m e t r i c , mean-field N - b o d y calculat ion with 5 0 0 0 part ic les . 

On the other hand, it would be a mistake to associate this class of instability 
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too closely with the simple instability discussed by Jeans. Any system dominated 
by radial orbits must be very inhomogeneous. Since the time scale for growth of 
the Jeans instability and the orbital time scale are both roughly equal to ( G p ) - 1 / 2 , 
an unstable mode would scarcely begin to grow before the particles contributing 
to it had moved far away from their initial positions, to regions of very different 
density and velocity dispersion. Furthermore, since the unperturbed trajectories 
are not closed, there is no guarantee that a perturbation that is initially confined 
to a small angular region will not quickly be spread over a much larger one. 

A better description of the physical mechanism underlying the radial-orbit 
instability is given, in a slightly different context, by Lynden-Bell (1979). In a 
spherical potential, every orbit is a rosette, with an angle between apocenters that 
lies between π and 2π. For very eccentric orbits, this angle is close to π, and orbital 
precession is very slow (cf. Figure 2a). Now suppose that the potential is modified 
by the addition of a weak bar-like perturbation. If the minimum of the bar potential 
lies ahead of the orbit, the net torque will be in the same direction as the orbital 
motion. What Lynden-Bell showed was that for certain orbits—and, in particular, 
for very eccentric ones—a positive torque leads to a greater precession rate, causing 
the orbits to align with the bar and oscillate about it (Figure 2b) . Note that in 
Lynden-BelPs picture, the growth rate of the instability is determined primarily by 
the orbital precession rate, and not by the dynamical time. 

Figure 2 . A t t r a c t i o n of eccentric orbits by a bar . (a) Spherical potent ia l ; orbit precesses at a 

cons tant rate , (b ) Spherical potent ia l plus a weak bar (oriented ver t i ca l ly ) . T h e orbit accelerates 

in the direction of the bar . 

The most surprising thing about the radial-orbit instability is how little aniso-
tropy is required for a model to be unstable. Barnes, Goodman and Hut (1986) 
found that the final ellipticity of spherical models generated from equation (2) 
increased smoothly as m was reduced below zero, suggesting that the instability is 
present even for slight departures from isotropy. Merritt and Aguilar (1985) found 
a similar behavior in two families of models with a density profile closer to that 
of real galaxies. One of these families was derived from a distribution function of 
the form f(E,J2) oc J2mg(E), similar to equation (2); the second was defined as 
the superposition of an isotropic and a purely radial model, and thus contained 
a finite number of particles with zero angular momentum. Note that all three of 
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these distribution functions diverge as J —• 0. Although the ability of the N-body 
codes to distinguish between stable and unstable models is limited by particle noise, 
these numerical simulations suggest that models with velocity anisotropies as small 
as or/ot « 1.2 can be bar-unstable. 

This surprising conclusion has recently been verified analytically by Palmer 
and Papaloizou (1987; this volume). Their analysis shows that any spherical system 
characterized by a distribution function that diverges as fast as J~a as J goes to 
zero, for all Ü7, is guaranteed to be unstable to clumping on all angular scales. Since 
a model with α « 0 has σ Γ / σ * « 1, Palmer and Papaloizou's work verifies that large 
anisotropies are not required for instability. 

2.5 
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Figure 3 . Evo lu t ion of the ell ipticity of a family of anisotropic spherical m o d e l s . ra/r0 is the ratio 

of an isotropy to hal f -mass radii (cf. eqs. [5] , [6]) . From a set of mean-f ie ld, 5000-part i c l e N - b o d y 

s imulat ions by M e r r i t t and Agui lar ( 1 9 8 5 ) . 

Less is known about the stability of anisotropic models whose distribution 
functions do not diverge as J —• 0. Only one such family has been analyzed 
numerically. (Stability boundaries for two other non-singular families have been 
calculated by a normal-mode technique [Fridman and Polyachenko 1984, Vol. 1., 
p . 207], but there is some reason to doubt the accuracy of these calculations, which 
have not been checked numerically; see Polyachenko [1985] and Sec. 5 below.) 
Merritt and Aguilar (1985) tested the stability of a family of models with density 
profile 

P{r) = P o ( r / r 0 ) - 2 ( l + r / r 0 ) - 2 , (5) 

suggested by Jaffe (1983) as an approximation to real galaxies, and a distribution 
function of the form / = f(E + J 2 / 2 r 2 ) ; here ro is the half-mass radius, and ra 

is a free parameter that determines the degree of velocity anisotropy through the 
relation 

σ2 r2 

— = 1 + — 
a2 r 2 ' (6) 

These models obtain their anisotropy essentially by excluding all high-angular-
momentum orbits from the region r > ra. Merritt and Aguilar (1985) found that 
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this family undergoes a sudden transition to instability when ra is reduced below 
~ 0.3ro (Figure 3) . Models near the stability boundary have an average anisotropy 
( σ 2 ) 1 / 2 / ( σ 2 ) 1 / 2 « 1.6. Thus, at least for this family, instability does seem to require 
a sizable anisotropy. 

The obvious next question is whether models with reasonable (i.e. non-
divergent) distribution functions, and small overall anisotropics, can be bar-unsta-
ble. If the answer is " y e s ' \ then the stability of virtually every radially anisotropic 
model will have to be verified before it can be used to describe an equilibrium 
galaxy. A good starting point for such a study might be the families of models 
derived by Dejonghe (1986). 

3. CONSTRAINING THE DYNAMICS OF OBSERVED GALAXIES 

No galaxy can remain in an unstable state for more than a few crossing times. In 
the case of disk galaxies, this fact is often used to infer the presence of heavy halos, 
massive bulges, or some other source of "rigid" gravity capable of inhibiting the 
tendency to bar formation. The situation is obviously very different for elliptical 
galaxies. The bar instability discussed above will destroy the spherical symmetry 
of an initially spherical model; but since elliptical galaxies are often very elongated, 
there is no reason to suppose that this instability did not act at some time in the 
past. In fact, it will be argued below that the radial-orbit instability may have been 
partly responsible for producing the flattenings of observed galaxies. 

Nevertheless the existence of instabilities means that a theorist has less free-
dom than he might otherwise have had in constructing equilibrium models for 
particular galaxies. Consider the simplest case, a spherical galaxy with constant 
mass-to-light ratio. Complete knowledge of the surface-brightness profile μ{τ) is 
sufficient to yield a unique space density p(r) . The number of different distribution 
functions f(E, J2) consistent with a given p(r) is very large; the only constraint de-
rives from the fact that a very radial distribution of orbits implies a density profile 
that diverges as fast as 

p a r - ^ l n r l " 1 / 3 (7) 

at small radii (Agekyan 1961). Since real galaxies appear to have cores, they can-
not be constructed out of purely radial orbits. However one can come very close; 
the "maximally anisotropic" models corresponding to observed galaxy luminos-
ity profiles are almost completely radial (Richstone and Tremaine 1984; Merritt 
1985). This is where instabilities can play a useful role: a sequence of models with 
fixed density profile will often become bar-unstable before the limit of maximum 
anisotropy is reached. 

In practice, more information is often available than just ß(r). But even an 
exact determination of the projected velocity dispersion profile cp(r) still leaves a 
formally infinite set of possible distribution functions (Dejonghe 1987). In the case 
of the most thoroughly modelled elliptical galaxy, M87, theorists have so far been 
content to stop after finding just one or two distribution functions consistent with 
the observed profiles (Newton and Binney 1984; Richstone and Tremaine 1985). It 
would be interesting to construct a family of models for M87, each member of which 
has the same surface brightness and velocity dispersion profiles, and see whether 
some members can be ruled out on the basis of instability. 

A first step in this direction would be to test the stability of the handful 
of published models of M87. These models appear to be excellent candidates for 
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instability since their central regions are dominated by radial orbits. Unfortunately 
the fraction of the total mass contained within the strongly anisotropic region is 
only ~ 1 0 ~ 3 , making these models very difficult to treat with a standard N-body 
code. Preliminary calculations (Merritt 1986), based on a mean-field code with 10 4 

particles, suggest that the model of Newton and Binney (1984) is unstable. 

4. THE RADIAL-ORBIT INSTABILITY DURING G A L A X Y FORMATION 

Polyachenko (1981) was the first to make the point that, if an elliptical galaxy is 
to avoid forming in an unstable state, the instability must somehow manifest itself 
during the formation process. He later verified (Polyachenko 1985) that collapse 
starting from very cold and spherical initial conditions can be bar-unstable. In 
retrospect, it appears that quite a few people narrowly missed discovering the radial-
orbit instability in this way. For instance, Aarseth and Binney (1978), in their 
study of collapse from flattened initial conditions, found that "[the] flattest final 
configurât ion...started from the least flattened initial configuration!" Polyachenko's 
work demonstrates that there need be no simple relation between the initial and 
final ellipticities of a galaxy that forms via collapse, as long as the collapse is 
sufficiently "strong" that it produces a significant fraction of nearly-radial orbits 
which can then clump into a bar. 

It is easy to estimate roughly how hot a spherical, proto-galactic cloud must 
be to avoid making a bar. Simulations of radial collapse (e.g. van Albada 1982) 
show that galaxies formed in this way tend to have isotropic "cores" and radially-
anisotropic "envelopes." The total squared angular momentum of such a galaxy-
defined as the sum of the squared angular momenta of all the stars-is roughly 
Μ 2 Γ 2 σ 2 , where r c is the radius of the isotropic "core" and σ is the central velocity 
dispersion. In a spherical collapse, angular momentum is conserved; thus 

Μ2τ\σ2 « M2R2

io
2

i « 2MR2Ti « SMR2Ti (8) 

where the subscript i refers to the unrelaxed state, Τ is the kinetic energy, and R 
is the radius. Energy conservation further requires 

Mo2&2\Wi\ (9) 

where W is the potential energy. Combining relations (8) and (9), 

R2 \Wi\ 
(10) 

The family of equilibrium models studied by Merritt and Aguilar (1985) is bar-
unstable when the "anisotropy radius" ra (cf. equation [6]) is less than ~ 0.3 times 
the half-mass radius. Equating ra with rc and Γ χ / 2 with R gives 

to insure that the galaxy which is formed will not be bar-unstable. 
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This admittedly crude estimate turns out to be roughly correct: Merritt and 
Aguilar (1985) find, for a particular set of smooth and spherical initial conditions, 
that collapses with 2T{/\Wi\ £ 0.1 are bar-unstable. This is a potentially important 
result because, as van Albada (1982) and McGlynn (1984) have shown, collision-
less collapse from smooth initial conditions is only capable of producing objects 
resembling real galaxies if the initial state is roughly this cold. 

Figure 4. Co l lapse of a cold, initially oblate c loud, as seen from the direct ion of the initial 

s y m m e t r y axis . T h i s is a 2500-part i c l e , d i rec t - summat ion N - b o d y s imulat ion ( from M . D u n c a n ) . 

How the radial-orbit instability manifests itself in more general collapses, 
which are unlikely to be smooth, spherical, or even very "cold", is an open ques-
tion, and one that will be very difficult to answer numerically. All that is known 
so far (Aguilar, Merritt and Duncan, this volume) is that initial conditions that 
are close to oblate are susceptible to bar-formation in much the same way that 
spherical initial conditions are (cf. Figure 4) . It would be hasty to conclude from 
this that oblate galaxies are impossible to make, however, since other processes, 
such as mergers or tidal-torquing, naturally produce oblate systems. 

5. NUMERICAL TECHNIQUES 

Broadly speaking, algorithms for evaluating the stability of equilibrium models can 
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(12) 

be divided into two classes: linear techniques that are based on the linearized (i.e. 
small-perturbation) form of the collisionless Boltzmann equation; and nonlinear 
techniques that are based on the actual equations of motion. Most of the results 
discussed above were obtained using N-body codes, which are fully nonlinear and 
relatively easy to program. Linear techniques, on the other hand, are far more 
accurate and efficient when searching for the exact boundary between stability and 
instability. The standard method for solving the linearized equations (cf. Kalnajs 
1977) consists of expanding an initial perturbation in terms of a complete set of 
basis functions, computing the linear response density, and requiring the potential 
generated by the response to be equal to that imposed. In this way one obtains the 
"normal modes" of the system as well as the frequencies at which they grow. 

In practice, normal mode calculations can be very difficult, and only a hand-
ful of stellar dynamical models (mostly disks) have been analyzed in this way. A 
feeling for the difficulties involved may be gotten by comparing the normal mode 
calculations of Fridman and Polyachenko (1984, Vol. 1, p . 219) for the anisotropic 
polytropes of equation (2), to those of Palmer and Papaloizou (1987) for the same 
family of models. The two sets of authors arrive at rather different conclusions: 
Fridman and Polyachenko find a clear-cut stability boundary at m « —0.3 (cor-
responding to ar/ot « 1.2), whereas Palmer and Papaloizou find instability for 
all m < 0 (or/at > 1) . The N-body experiments based on this family (Barnes, 
Goodman and Hut 1986) are not sufficiently accurate to decide which result is 
more correct, since the instability growth rate becomes very small near the stabil-
ity boundary, and any evolution is swamped by noise due to the finite number of 
particles. 

It would clearly be useful to develop a new technique that has the computa-
tional simplicity of an N-body code, and the (potential) accuracy of a normal mode 
analysis. Recently S. Tremaine and I have begun to investigate such a technique. 
The linearized, collisionless Boltzmann equation may be written 

Α) / ι = 3Φχ dfo 

Dt dx " dv 

where fo and fi are the equilibrium and perturbed distribution functions, Φ χ is 
the perturbed potential, and Dofi/Dt denotes the rate of change of fi along an 
unperturbed trajectory defined by Φο: 

Poh =dfi dfi 3Φο dfi 
Dt dt V " 5x ax ' dv' 

Equation (12) is the starting point for any calculation of the linear response (cf. 
Polyachenko, this volume). One way of understanding this equation is to note that 
it gives the change with time, evaluated along an unperturbed orbit, of the perturbed 
phase-space density. Thus 

^Φ df 

Iht ' d^dt' ( 1 3 ) 

where (x, v ) are the coordinates at time t of a particle initially at ( χ ο , ν ο ) , and the 
integral is understood to extend along the trajectory containing the initial and final 
points. If we imagine dividing up phase space at time zero into a set of Ν regions 
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with volumes AVi, Liouville's theorem states that motion along the unperturbed 
trajectories will leave these volumes unchanged. Equation (13) then predicts the 
change with time of the perturbed mass mt- associated with each volume element 
AK: t 

« , . ( « ) = m t ( 0 ) + AVi jf ^ · (14) 

Equation (14) is a prescription for a Monte-Carlo integration of the linearized 
equations. Its implementation requires only (a) the unperturbed equations of mo-
tion, i.e. V $ o ; (b) the first velocity derivatives of the unperturbed distribution 
function / o ; and (c) an algorithm for evaluating the potential Φι generated by a set 
of mass points m¿. Since this technique assigns all of the particles to the perturba-
tion, none are "wasted" in reproducing the underlying equilibrium as in a standard 
N-body code. Also, since the technique is derived from the linearized equations, 
the solution is guaranteed to remain in the linear regime at all times. This fact 
makes the search for normal modes much easier than in a standard N-body code 
(cf. Seilwood 1983). 

0 0.5 1 1.5 2 2.5 3 

time 
Figure 5. Evo lut ion of the per turbed density of an initially h o m o g e n e o u s , M a x w e l l i a n medium. 

T h e parameter X=kj/k is the ratio of the wavelength of the per turbat ion to the Jeans wavelength. 

Solid lines: exact solutions; symbol s : M o n t e Car lo integrations. 

Figure 5 shows a linearized Monte-Carlo calculation of the response of an 
infinite, homogeneous, Maxwellian distribution of particles to a perturbation of the 
form 

Φβχ*(χ,ί) = £(¿)cos(k - χ ) , 

i.e. an impulsive plane wave. The exact solution to the linearized equations is easy 
to obtain in this case (A. Toomre, private communication), and is also shown in 
Figure 5. The Monte-Carlo technique reproduces the exact solution quite well with 
only 1000 particles. 

This Monte-Carlo technique can easily be applied to systems with any sym-
metry, as long as the equilibrium distribution function can be specified sufficiently 
smoothly. It should be a useful tool for evaluating the stability of both spherical 
and triaxial models. 
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DISCUSSION 

Lauer: According to Gerhard, even a small black hole will destroy box orbits. Is 
it possible to have a black hole large enough to prevent formation of a bar, but 
small enough to still permit anisotropics large enough to explain cusps and rises in 
velocity dispersion? Can a black hole prevent formation of a bar? 

Merritt: Box orbits are not a prerequisite for velocity anisotropy, so the destruction 
of box orbits does not necessarily imply the elimination of cusps or high central ve-
locities. There are three ways that a central black hole might suppress instabilities. 
1) A black hole fixes part of the gravitational field. 2) Reflection of radial orbits 
around a black hole would probably reduce the growth rate of a bar mode. 3) 
Adding a black hole to a galaxy with a known central velocity dispersion entails a 
modification of the orbital distribution near the center so that the dispersion re-
mains constant. This modification will usually go in the direction of more circular 
orbits, which increases stability. 

de Zeeuw: What are the smallest axis ratios one can obtain via the radial-orbit 
instability? 

Duncan: The initially oblate collapse that Dave showed was run using a direct sum-
mation N-body code and the results agree well with the results of the quadrupolar 
code. Secondly, I have run oblate and prolate configurations with initial flatten-
ings as large as 6:1. The final states are always triaxial with largest axial ratios of 
2.5 to 1. This is consistent with suggestions that flatter non-rotating systems are 
unstable. 

Villumsen: Some years ago I made some collapse calculations from non-spherical 
rotating initial conditions. The most extreme results were triaxial E8 systems with 
low ν/σ. They also had beautiful r 1 / / 4 profiles. 

King: You said that an isotropic core would stabilize an anisotropic envelope. In 
the case (o>/o~¿) 2 = 1 + ( r / r a )

2 , how big a core do you need for stability? One 
reason why I ask is that Meylan's poster paper at this meeting (p. 449) shows that 
in Omega Centauri ra is 2 or 3 times the core radius. Is Omega Centauri unstable? 

Casertano: Josh Barnes and I have run N-body simulations for a King model with a 
concentration parameter ~ 1.5. We can see instability (on a scale of ~ 5 half-mass 
dynamical times) if ra < 2r c; no instability can be seen of ra > 4r c . 

Merritt: Aguilar and I found that models with ra greater than about 0.3 times the 
half-mass radius were stable. Meylan's inferred value for the anisotropy radius of 
Omega Centauri is roughly equal to its half-mass radius, so his models are probably 
stable. 

Djorgovski: Can you tell whether the instabilities will occur if the stars move in a 
pre-existing, perhaps spherical, probably isothermal dark halo? 

Merritt: I believe that Dr. Polyachenko addresses this question in his presentation. 
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Richstone: The next question one might ask is what the dynamical appearance of 
a galaxy is after the instability has run its course. In particular, suppose you take 
a model of M87 with στ >> στ near r — 0 and it makes a bar. If you observe the 
bar, does it still have a large o0hs as r —• 0? If so, maybe you don't need to put the 
black hole back in. 

Merritt: The answer will depend on the direction from which the bar is observed. 
As seen from the long axis, the galaxy might well appear circular, with a high 
central velocity dispersion. 

Palmer: In some of the models for which we calculated growth rates for the unstable 
modes, we found very little difference between the growth rates of the η = 2, 4, 6 
&ε 8 terms in the spherical harmonic expansion of the potential. How well do you 
believe that your code can describe the evolution of the instability in these models? 

Merritt: Mean-field codes will, of course, have difficulty following the growth of 
very small-scale modes. However, even in the models you analyzed, the largest 
scale (n — 2) modes were always the fastest growing ones. Furthermore, J. Barnes 
has shown that both mean-field and "exact" N-body codes give similar results for 
a number of unstable models. 

Duncan: The diagram that Dave showed contains several spoke-like structures just 
as the bar is forming. They are real, but the bar-mode instability is dominant and 
one bar wins in a rather short time. 

Palmer: Recently I have been simulating systems with very radial orbits using a 
direct-summation code. I find higher instabilities as well as the original I = 2 bar 
instability; however, in the long run these higher-/ features seem to become weaker, 
leaving only the bar-deformation. 

Binney: Andrew May and I have a note coming out (1986, Mon. Not. R. astr. Soc, 
221, 13P) in which we point out that there is a natural method of testing for the 
stability of any model whose distribution function can be written in terms of the 
action integrals, / = / ( Λ ) : One distorts the model's potential and asks whether the 
density over- or under-responds. We used this method to determine the stability 
of anisotropic isochrone spheres with less than 1/500 of the computer time required 
by a typical N-body simulation. 

Merritt: The method is a very clever one and should be explored. Your comparison 
of computing times neglects the fact that the same N-body code can be used for 
a variety of models. Also, the adiabatic deformation technique is inherently ap-
proximate, whereas the accuracy of N-body tests can always be improved, e.g., by 
increasing the number of particles. 
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David Merritt. 

https://doi.org/10.1017/S0074180900185274 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900185274



