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ABSOLUTELY FREE ALGEBRAS IN A TOPOS
CONTAINING AN INFINITE OBIJECT

BY
D. SCHUMACHER

0. Introduction. This note confirms that the existence proof for absolutely
free algebras originated by Dedekind in [2] and completely developed for
instance in [4] can still be carried out in a topos containing an infinite object
i.e. an object N for which N=N+1 if the type of the algebras considered is
finite, pointed and internally projective i.e. is a finite sequence of objects,
(I)1=j=« for which the functors ( )% preserve epimorphisms and each of which
has a global section.

However restrictive these requirements in the case of non-finitary operations
might be, the omission of nullary operations is not serious: if m of the I; are
zero the absolutely free algebra over an object X can be obtained as an algebra
with no nullary operations which is absolutely free over the coproduct of X
with the m-fold coproduct of the terminal object 1 of the given topos.

Henceforth all types are understood to be finite, pointed and internally
projective.

The present paper represents a vast improvement over [7] which came out at
roughly the same time B. Lesaffre [S] had obtained the very same result. The
existence proof for free finitary algebras in a topos containing a natural number
object in [5] is an adaption of the existence proof for free finitary algebras over
sets as it may be found in [1].

As in the classical case, we draw from, the existence of absolutely free
algebras will be established in two steps:

ProrosiTION 1. For every type and every object X of the given topos E there is
an algebra A of this type in E containing X the operations of which are
monomorphic, mutually disjoint and disjoint from X.

ProposITION 2. For every subobject X of (the underlying object of) an algebra
A there can be defined a subalgebra [X] of A containing X in such a way that
two homomorphisms from [X] coinciding over X are equal and moreover any
morphism from X into an algebra B has a unique extension to a homomorphism
from [X] into B if A and X are as in Proposition 1.

1. The proof of Proposition 1. This proof requires only that E contains an
infirite object N and is a finitely complete and cocomplete cartesian closed
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category whose initial objects are strict initial and whose coproducts are
disjoint, i.e. have monomorphic and mutually disjoint injections.

Given a type (I;)1=j=« it is sufficient to show that for any object X there is an
object A such that forall 1=j<k A=A and X and A + A are retracts of A.
For then

. k
X—>A— H A— A

i=0
Alle/

i

Alk=A
is an algebra of type (I;);<j=x containing X the operations of which are
monomorphic, mutually disjoint and disjoint from X.

Now, A = X” x2™ with J=1IYx---X I} has the required properties:

J has a global section, say 1——J. Hence X"X" =X with !, the unique
morphism from J into 1 and therefore X is a retract of X’. But X” in turn is a
retract of X’ x2™* since 2™’ has a global section and there is hence a
morphism f from X’ to 2V X7 SZED, XI5 N,

A+A=Ax2=X"x2™P*! Since J has a global section, (NxJ)+1 is a
retract of (NXJ)+J=(N+1)xJ=NxJ. Therefore 2®*"*! is a retract of
2™*7 which finally gives that A+ A is a retract of A.

For every 1=j=<k JXL=IyX---XI""'x---XIy=J and hence A=
(X])I’ X (2N><J)I]. =XJ)(I’. X 2N><J><I]. =A.

2. The proof of Proposition 2. The following proof is based on the theorem
of Mikkelsen’s [6] that for every endomap @ of the class Sub(A) of all
subobjects of an object A, which is “induced” by an order preserving en-
domorphism ¢ of Q*, there is a monomorphism m into A which is smallest
among all ueSub(A) with &(u)=pu. Calling a monomorphism m into a
product B X Y and a morphism Y —£-> QP transpose of each other iff g is the
exponential adjoint of the characteristic function of m, ¢ induces ® means that
for all s € Sub(A) ®(s) is a transpose of ¢F where 1 —T5 0% is the transpose of
s. The order onAQA, which ¢ preserves, is the canonical one i.e. the equalizer
of (@xQ)* 250" and (@xQ)* 2>Q* Note that for morphisms
Y —£50% and Y —2> 04 (h g) factors through the order on Q" iff the
transpose of g factors through the transpose of h. From this it follows easily
that an endomorphism ¢ of Q* is order preserving if and only if for all
morphisms g and h the transpose of ¢g factors through the transpose of ¢h if
the transpose of g factors through the transpose of h.

With the help of his theorem and Freyd’s Proposition 2.21 (unique existentia-
tion) [3] Mikkelsen had succeeded in translating into a topos Dedekind’s
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proof of the existence of natural numbers from the existence of infinite sets.
Since the passage from infinite objects to natural number objects is a special
case of passing from an algebra in Proposition 1 to the corresponding abso-
lutely free algebra, it is rather obvious that a slight generalization of Mik-
kelsen’s proof should provide a proof for Proposition 2.

For every morphism A—15B let J; be the transpose of an image of
(fxQ*)ea, where €, is a subobject of the evaluation A XQ* —=5 Q. This
assignment is functorial i.e. we have a functor 3, usually called the direct
image functor.

For any objects A and I of the topos we define the morphism II,: Q* — Q*'
(called “raising to the I-th power”) as follows: the map (e,)" into (A x Q") is
a monomorphism, which we regard as having codomain A’x(Q*), thus
obtaining as its transpose a morphism (Q*)" — Q*'. Composing this morphism
with the evident morphism (Q%)":0* — (Q*)! yields IIy.

Now, let X —> A be a monomorphism into the underlying object of an
algebra A =(A, (fj)1=j=«)- Then the morphism

(@™, 3. 10

b:Q [V #—&, Q&roa_"V, 0

induces an endomap @ of Sub(A) which sends any monomorphism u into A to
a union of a and the monomorphisms f,[u"], ..., filu’], where f[:.] denotes
the image of fi. For (i) the transpose of the composmon Y 25 0% 250 s
the image of (gX Y)n w1th m transpose of h; (i) the transpose of the

“pointwise union” Y """ Q"C 2 QF of a family (Y—> Q€ )i=j=n IS @
union of transposes of the morphisms h;; and (iii) the transpose of
Y -5 Q* —5 0 is the pullback of y' along A’X Y:A’XY = (AXY)
with vy transpose of g, which gives in particular that for any monomorphism u
into A the transpose of I} is w”.

¢ is order preserving since (i), (ii) and (iii) imply that for all morphisms
Y -5 0* and Y —5 Q* the transpose of ¢g factors through the transpose
of ¢h if the transpose of g factors through the transpose of h.

Thus for every algebra A =(A,(f)i=j=x) and every monomorphism
X —> A there is a monomorphism B —> A which is smallest among all
subobjects w of A, through which a and all fj{u"] factor. For the morphisms b
and g (1=j=k) for which the diagrams

BY--*.B
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commute, B=(B,(g)i<;j=x) is an algebra of the same type as A, m is a
homomorphism from B into A and finally b generates B ie. every
monomorphism m’ into B through which b and all g[m'] factor, is an
isomorphism. B is reasonably called the subalgebra of A generated by a. In
particular, the image of X+ B"+-- -+ B% SLUNLAY AN isomorphic and thus
[b, g1, - - -, g] epimorphic. If the f; are monomorphic, mutually disjoint and
disjoint from a then also the g are monomorphic, mutually disjoint and
disjoint from b and hence [b, g1, ..., g] is an isomorphism.

An algebra B=(B,(g)i=;j=«) the operations of which are monomorphic,
mutually disjoint and disjoint from a monomorphic X LN generating B is
however in any topos an absolutely free algebra over X: Given an algebra
$=(S, (07)1=j=x) and a morphism x from X into S, a monomorphism
C—- BxS, which is smallest among all monomorphisms w into BXS
through which (b, x) and all (g; X a;)[w"] factor, is up to an isomorphism the
graph of a homomorphism h from B into S for which x=hb (such a
homomorphism is apparently unique since B is generated by b). For p,A turns
out to be both an epimorphism and a monomorphism (i.e., an isomorphism)
and hence, if we note that A is a homomorphism from the subalgebra
C=(C, (hj)1=j=x) of BXS=(B XS, (g X 0j)1=j=x) generated by (b, x), it follows
easily that (p,A)(piA)”" is the homomorphism from B into S requested.

Obviously b and all g;(p;A)" factor through p;A. It is in order to conclude
from here, that besides b all the g[."] factor through the image ¢« of p;A and
thus ¢ is an isomorphism (i.e., p,A is an epimorphism), that we required the
arities to be internally projective.

The much harder problem of showing that p;A is monomorphic can be
surprisingly smoothly settled following Mikkelsen’s advice to test for
monomorphy by Freyd’s Proposition of Unique Existentiation:

LemMA (compare with [1; Lemma 5.431]). Let q be a homomorphism from an
algebra C=(C, (hj),=j=x) generated by a monomorphism X —- C, into an
algebra B = (B, (g)1=j=<«) the operations of which are monomorphic, mutually
disjoint and disjoint from a monomorphism X —— B for which b= gc. Then q is
a monomorphism.

The proof of the Lemma is, with Mikkelsen’s suggestion in mind, straightfor-

ward: If
Q=—=0Q
C—B
q

is the pullback of unique existentiation, then in order to show that w is
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isomorphic and hence g is monomorphic, it is sufficient to prove that ¢ and all
hw" factor through w; which in turn is true if

X S X QIJ = QIi
(1) ) J J,, and @ the [ lqhiw,,
C - B C——q——-> B

are pullbacks. For the latter (as for Freyd’s Lemma 5.431) the fact that
[c, ha, ..., k] is epimorphic turns out to be rather essential: The pullback
bNngqlc, hy,..., h,] of b and qlc, hy,..., h,] is bN[b,giq",..., gq™]=
[bNb,0,...,0]=b and hence

X X
l
Il ... Ik
X+Cit o+ Cr {5 C—>B
is a pullback. But in general if
D — D

|

E—G—F

is a pullback and ¢ is an epimorphism then also

1)=1|)
|

eel l
G—F

is a pullback because, fitting in a pullback of GF and DF

|l

also DHGE with the'induced morphism from D into H is a pullback. Whence
DH is epimorphic and leftinvertible and thus an isomorphism.
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For (2) note that because

Q——— C isapullback thenall Q% L, ch

Ij

I
—_— i
Q qw=m Q g,-(qw)lj

are pullbacks and that hence the pullback ghw'Ngqlc, h,..., ] of
qhw’ and qle, hy, . .., hy ] is  qg(qw)"N[b, giq", ..., &q™1=
[o,..., g(qw)50,...,0]=g(qw)". This implies that the diagram

Qb Qb
iwh qhyw' =|gi(qw)"
X+Ch+ -+ CH C—B
[c,hy,. .., he] q

is a pullback to which the general remark above on pullbacks of this form
applies.
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