
Canad. J. Math. 2024, pp. 1–21
http://dx.doi.org/10.4153/S0008414X24000294
© The Author(s), 2024. Published by Cambridge University Press on behalf of
Canadian Mathematical Society

Range inclusion and diagonalization of
complex symmetric operators
Cun Wang, Jiayi Zhao, and Sen Zhu
Abstract. We consider the range inclusion and the diagonalization in the Jordan algebra SC of
C-symmetric operators, that are, bounded linear operators T satisfying CTC = T∗, where C is
a conjugation on a separable complex Hilbert space H. For T ∈ SC , we aim to describe the set
CR(T) of those operators A ∈ SC satisfying the range inclusion R(A) ⊂ R(T). It is proved that (i)
CR(T) = TSC T if and only if R(T) is closed, (ii) CR(T) = TSC T, and (iii) C

R(T) is the closure of
CR(T) in the strong operator topology. Also, we extend the classical Weyl–von Neumann Theorem
to SC , showing that every self-adjoint operator in SC is the sum of a diagonal operator in SC and a
compact operator with arbitrarily small Schatten p-norm for p ∈ (1,∞).

1 Introduction

This paper is a continuation of a recent paper [44], and aims to study the range
inclusion and the diagonalization of complex symmetric operators. We start by
recalling some terminology and basic facts.

1.1 Preliminaries

Throughout the following, H will always denote a separable, complex Hilbert space
with an inner product ⟨⋅, ⋅⟩. We letB(H1 ,H2) denote the Banach space of all bounded
linear operators from H1 to H2. We shall write B(H) instead of B(H,H). A map
C ∶H →H is called a conjugation if:

(i) C is antilinear, i.e., C(αx + y) = αCx + Cy for x , y ∈H and α ∈ C,
(ii) C is invertible with C−1 = C, and

(iii) ⟨Cx , Cy⟩ = ⟨y, x⟩ for all x , y ∈H.
An operator T ∈ B(H) is said to be complex symmetric (c.s.) if CTC = T∗ for some
conjugation C on H; in this case, T is called C-symmetric. The general definition
of a C-symmetric operator was first given in I. M. Glazman’s paper [18], which
combined with [19] marks the foundation of the extension theory of C-symmetric
differential operators. Glazman’s work was complemented in a series of papers such as
[26, 28, 30, 32, 35, 37], most of which were devoted to the existence and concrete

Received by the editors November 20, 2023; revised March 11, 2024; accepted April 1, 2024.
Published online on Cambridge Core April 4, 2024.
The third author is the corresponding author and was partially supported by the National Natural

Science Foundation of China (Grant No. 12171195)
AMS subject classification: 47B99, 47A05, 47A55, 46L70.
Keywords: Complex symmetric operators, range inclusion, the Weyl–von Neumann Theorem,

diagonal operators.

https://doi.org/10.4153/S0008414X24000294 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X24000294
https://orcid.org/0000-0001-9928-0273
https://doi.org/10.4153/S0008414X24000294


2 C. Wang, J. Zhao, and S. Zhu

descriptions of extensions of C-symmetric differential operators. The reader is referred
to [47] and the references cited therein for more historical comments. Throughout
the following, we let C denote a conjugation on H unless otherwise stated, and let SC
denote the collection of all C-symmetric operators. The term “symmetric” stems from
the fact that an operator T is complex symmetric if and only if there is an orthonormal
basis {e i} of H such that T can be written as a (complex) symmetric matrix relative
to {e i}.

Now let us introduce the background of the general study of c.s. operators, initiated
in [14, 15]. In the finite-dimensional case, the class of c.s. operators, containing those
operators induced by Toeplitz matrices and Hankel matrices, has been studied for
many years. In fact, the study of c.s. operators has classical roots in the work on auto-
morphic functions [24], projective geometry [25], quadratic forms [39], symplectic
geometry [40], and function theory [42]. In the infinite-dimensional case, it is shown
that the class of c.s. operators contains many important special operators, such as
normal operators, binormal operators, truncated Toeplitz operators [38], and many
integration operators. People’s current interests in c.s. operators are greatly inspired
by many results of S. Garcia, M. Putinar, and W. Wogen [14–16] as well as their
connections to concrete operators [10–12] and applications to mathematical physics
[13, 20, 34].

Also, c.s. operators play an important role in the study of JB∗-triples, a class of
complex Banach spaces with well-behaved algebraic, geometric and holomorphic
properties. This is due to the Jordan structure of SC . In fact, SC is a weak operator
closed subspace of B(H), closed under the Jordan product ○, defined by

A ○ B = 1
2
(AB + BA), ∀A, B ∈ B(H).

SC has been studied under the name of Hermitian type Cartan factors for many
years. There are six types of Cartan factors, namely rectangular type, Hermitian
type, symplectic type, triple spin factors, and two finite-dimensional exceptional
Cartan factors. They originally arose in É. Cartan’s classification of finite-dimensional
bounded symmetric domains (see [2] or [3, Theorem 2.5.9]) and play an important
role in the proof of the Gelfand–Naimark theorem for JB∗-triples [9].

The present study is inspired by several interesting results concerning SC , which
suggest a rich structure of SC . In [11], it was proved that each contraction T ∈ SC is the
mean of two unitary operators in SC . In [44], the authors classified Jordan ideals of SC ,
showing that Jordan ideals of SC arise by intersection from associative ideals of B(H)
and hence are self-adjoint. Moreover, Jordan automorphisms of SC are shown to be
induced by certain unitary operators. Also, it is proved that those Jordan invertible
ones constitute a dense, path connected subset of SC . These results provide interesting
contrasts between SC and B(H).

1.2 Range inclusion in SC

The first aim of this paper is to characterize the range inclusion of operators in SC ,
that is, given an operator T ∈ SC , to characterize all those operators A ∈ SC satisfying
R(A) ⊆ R(T), where R(A) denotes the range of A.
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In [6], R. Douglas proved the following classical result on the range inclusion for
bounded linear operators on Hilbert spaces.

Theorem 1.1 [6] Let A and B be two bounded linear operators onH. Then the following
statements are equivalent:

(i) R(A) ⊆ R(B);
(ii) AA∗ ≤ λBB∗ for some λ ≥ 0;

(iii) A = BX for some operator X ∈ B(H).

The preceding result exhibits a close relationship among the notions of range
inclusion, majorization, and factorization for bounded linear operators. In [7],
M. R. Embry extended this result to Banach spaces and obtained that A = XB for
some bounded operator X on R(B) if and only if R(A′) ⊆ R(B′). Here, A′ and B′
denote, respectively, the adjoint of A and the adjoint of B. P. H. Wang and X. Zhang
[45] established some range inclusion theorems for non-archimedean Banach spaces
over general valued fields.

It is natural to ask whether there is a C-symmetric analogue of Douglas’ range
inclusion theorem. Given a linear subspace M of H, we denote

CM = {X ∈ SC ∶ R(X) ⊂M}.

Let T ∈ SC . We attempt to characterize CR(T). Note that SC is not closed in the usual
operator multiplication, that is, given A, B ∈ SC , R(A) ⊆ R(B) does not imply B = AX
for some X ∈ SC (see Example 2.5). So we turn to the quadratic product in SC given by
(X , Y) �→ XY X for X , Y ∈ SC . For T ∈ SC , it is easy to check that

TSC T ∶= {T XT ∶ X ∈ SC} ⊆ CR(T) .

It is natural to ask whether the converse inclusion holds.
The first result of this paper is the following theorem, which provides a complete

answer to the preceding question.

Theorem 1.2 If T ∈ SC , then CR(T) = TSC T if and only if R(T) is closed.

The preceding result shows that if T ∈ SC with non-closed range, then TSC T is
properly contained in CR(T). However, by the following result, they always have the
same norm closure.

Theorem 1.3 If T ∈ SC , then CR(T) = TSC T.

By the preceding result, each A ∈ SC withR(A) ⊆ R(T) is a norm limit of operators
with the form T XT for X ∈ SC . Thus Theorem 1.3 can be viewed as an approximate
range inclusion theorem for SC .

Given A, B ∈ SC , it is interesting to compare the closure of CR(A)with that of CR(B).
To state our result, we introduce a notation. Let M,N be two linear subspaces of H.
We write M ≺ N if for each closed subspace M1 of H contained in M and ε > 0 there
exists a closed subspaceN1 ofH contained inN such that ∥PM1 − PN1∥ < ε, where PM1

denotes the orthogonal projection of H onto M1.

Theorem 1.4 If A, B ∈ SC , then CR(A) ⊂ CR(B) if and only if R(A) ≺ R(B).
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Hence, CR(A) = CR(B) if and only if R(A) ≺ R(B) and R(B) ≺ R(A). Clearly,
R(A) = R(B) implies CR(A) = CR(B). In general, the converse does not hold (see
Example 2.12).

Inspired by Theorem 1.3, we are interested in characterizing the closure of TSC T
in several usual topologies for T ∈ SC , such as the weak* topology, the strong operator
topology (sot) and the weak operator topology (wot) . Given a subset E of B(H), we
write E

w∗
, E

sot
and E

wot
to denote the the weak*-closure, the sot -closure and the

wot -closure of E, respectively.

Theorem 1.5 If T ∈ SC , then

CR(T)
sot = CR(T)

wot = CR(T)
w∗ = C

R(T) .

In view of the preceding results, it is natural to classify the inclusion relations
among TSC T , CR(T), CR(T) and C

R(T) for T ∈ SC . It is obvious that

TSC T ⊆ CR(T) ⊆ CR(T) ⊆ C
R(T) .

In Section 2, we shall show that any two of these sets coincide if and only if T has a
closed range (see Proposition 2.15).

1.3 Diagonalization in SC

The other aim of this paper is to study the extension of the Weyl–von Neumann
Theorem to SC .

The Weyl–von Neumann Theorem, due to H. Weyl and J. von Neumann [33, 46],
states that, after the addition of a compact (or even Hilbert–Schmidt) operator of
arbitrarily small norm, a self-adjoint operator becomes a diagonal operator. Recall that
an operator T ∈ B(H) is diagonal if there is an orthonormal basis for H consisting of
eigenvectors for T. In 1958, S. T. Kuroda [29] strengthened the result by proving that
every self-adjoint operator is the sum of a diagonal operator and a compact operator
with arbitrarily small Schatten p-norm for p ∈ (1,∞).

We shall prove in Section 3 the following result, which can be viewed as an SC -
analogue of the Weyl–von Neumann Theorem.

Theorem 1.6 Let T ∈ SC be a self-adjoint operator. If p > 1 and ε > 0, then there is
a diagonal, self-adjoint operator D ∈ SC such that T − D lies in the Schatten p-class
Bp(H) and ∥T − D∥p < ε.

Remark 1.7
(i) The proof of Theorem 1.6 is inspired by [4, Theorem 38.1]. The main difficulty

stems from the fact that we always have to deal with not only the self-adjoint
operator T but also the conjugation C at the same time.

(ii) By [27, Theorem 1], if A is a self-adjoint operator not purely singular, then A is
not a trace class perturbation of any diagonal operator. Thus the preceding result
does not hold for p = 1.

(iii) I. D. Berg [1] and W. Sikonia [41] independently proved that each normal operator
T on H is the sum of a diagonal operator and a compact one with arbitrarily
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small norm. The preceding result is sometimes called the Weyl–von Neumann–
Berg Theorem. In [22], P. R. Halmos gave a more perspicuous proof that reduces
the normal case to the Hermitian one. As an application of Theorem 1.6, we
shall prove that finite commuting normal operators in SC can be simultaneously
diagonalized (see Theorem 3.3).

(iv) In [43], D. Voiculescu considered the simultaneous diagonalization of commut-
ing self-adjoint operators and showed that if T1 , . . . , Tn(n ≥ 2) are commuting
self-adjoint operators and ε > 0, then there exist n commuting self-adjoint diag-
onal operators D1 , . . . , Dn such that ∥Ti − D i∥n < ε for all i = 1, . . . , n, where
∥ ⋅ ∥n is the Schatten n-norm. We do not know whether Voiculescu’s result can
be extended to the SC-setting.

As another application of Theorem 1.6, we shall provide a result concerning the
irreducible approximation in SC , which shows that those irreducible ones in SC
constitute a dense subset of SC (see Corollary 3.6). This is an SC -analogue of Halmos’
irreducible approximation theorem [21].

The proofs of Theorems 1.2–1.5 will be given in Section 2. Section 3 is devoted to
the proof of Theorem 1.6.

2 The range inclusion in SC

The aim of this section is to give the proofs of Theorems 1.2–1.5.

2.1 Proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we first make some preparations.
Given a bounded linear operator A, we denote by ker A the kernel of A.

Lemma 2.1 Let A, B ∈ SC . If R(A) ⊂ R(B), then

R(A∗) ⊂ R(B∗), ker B ⊂ ker A, ker B∗ ⊂ ker A∗ .

Proof Since CAC = A∗ and CA∗C = A, one can see that C(R(A)) = R(A∗). Like-
wise, we have C(R(B)) = R(B∗). It follows immediately that R(A∗) ⊂ R(B∗). Thus
R(B∗)� ⊂ R(A∗)�, that is, ker B ⊂ ker A.

On the other hand, R(A) ⊂ R(B) implies R(B)� ⊂ R(A)� and, equivalently,
ker B∗ ⊂ ker A∗ . ∎

Throughout the following, given a closed subspace M of H, we denote by PM the
orthogonal projection of H onto M.

Proof of Theorem 1.2 “�⇒”. Assume that CR(T) = TSC T . We shall show that R(T)
is closed.

Assume that {xn}∞n=1 ⊂H and Txn → y0 ∈H. It suffices to show that y0 ∈ R(T).
Note that T ∈ CR(T). Thus there exists A ∈ SC such that T = TAT . Hence, TATxn → y0
and TATxn → TAy0, which implies y0 = TAy0 ∈ R(T).

“⇐�”. Now assume that R(T) is closed. Since TSC T ⊆ CR(T) is clear, it remains
to show CR(T) ⊆ TSC T .
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DenoteN = (ker T)� andM = R(T). For x ∈ N, define Fx = Tx. SinceM is norm-
closed, F is an invertible operator from N into M. Define S = PNF−1PM. One can
verify that TS = PM and ST = PN.

Since T ∈ SC , one can see that C(ker T) = ker T∗, that is, C(N�) =M�. Thus
C(N) =M and C(M) = N. Denote C1 = C∣M. Then C1 ∶M�→ N is conjugate-linear,
invertible, and isometric. One can check that Cx = C−1x = C−1

1 x for all x ∈ N.

Claim 1 C1(F−1)∗ = F−1C−1
1 .

In fact, for any x ∈M, note that

TCx = TC1x = FC1x , CT∗x = CF∗x = C−1
1 F∗x .

Thus FC1 = C−1
1 F∗, (F−1)∗C1 = C−1

1 F−1 and C1(F−1)∗ = F−1C−1
1 .

Claim 2 S ∈ SC .

For any x ∈H, there is the unique decomposition x = x1 + x2, where x1 ∈ N and
x2 ∈ N�. So Cx1 ∈M and Cx2 ∈M�. By Claim 1, we have

CSCx = C(PNF−1PM)(Cx1 + Cx2)
= C(PNF−1PM)Cx1

= C(PNF−1PM)C−1
1 x1

= C(PNF−1C−1
1 x1)

= C−1
1 (F−1C−1

1 x1)
= (C−1

1 F−1C−1
1 )x1 = (F−1)∗x1

= PM(F−1)∗PNx = S∗x .

This proves S ∈ SC .
Set X = SAS. Thus one can easily check that X ∈ SC . We shall prove that T XT = A.

Note that R(A) ⊂ R(T) =M. It follows that

T XT = TSAST = PMAPN = APN .

It suffices to prove that APN = A, that is, A(I − PN) = 0.
Since R(A) ⊂ R(T), it follows from Lemma 2.1 that ker T ⊂ ker A. That is, N� ⊂

ker A. Therefore we conclude that A(I − PN) = 0. ∎

Corollary 2.2 Let T , A ∈ SC . If either R(T) or R(A) is closed, then R(A) ⊂ R(T) if
and only if A = T XT for some X ∈ SC .

Proof It suffices to prove the necessity.
“�⇒”. By Theorem 1.2, we need only deal with the case that R(A) is closed.
Using Theorem 1.2 again, we can find Z ∈ SC such that A = AZA. Since R(A) ⊂

R(T), by Douglas’ range inclusion theorem, A = TY for some Y ∈ B(H). Noting that
A, T ∈ SC , we have

A = CA∗C = C(TY)∗C = CY∗T∗C
= (CY∗C)(CT∗C) = (CY∗C)T .
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Then

A = AZA = (TY)Z(CY∗C)T = T[Y Z(CY∗C)]T .

One can verify that X ∶= Y Z(CY∗C) ∈ SC , which completes the proof. ∎
Remark 2.3 The result of Corollary 2.2 is sharp. In fact, given any T ∈ SC , it holds that
R(T) ⊂ R(T); if, in addition, R(T) is not closed, then, by the proof for the necessity
of Theorem 1.2, there exists no X ∈ B(H) such that T XT = T . Here, we provide a
concrete example of complex symmetric operator with non-closed range.

Let {en}∞n=1 be an orthonormal basis of H and

T =
∞

∑
n=1

en ⊗ en

n
.

For x = ∑∞n=1 α i e i , define Cx = ∑∞n=1 α i e i . Then C is a conjugation on H and one can
check that T ∈ SC . Clearly, R(T) is not closed. If X ∈ SC and T = T XT , then

1
n
= ⟨Ten , en⟩ = ⟨T XTen , en⟩ = ⟨XTen , Ten⟩ =

1
n2 ⟨Xen , en⟩,

that is, ⟨Xen , en⟩ = n. Since n is arbitrary, we deduce that X is not bounded, a
contradiction.

For e , f ∈H, we define an operator e ⊗ f on H as

(e ⊗ f )(x) = ⟨x , f ⟩e , ∀x ∈H.

Corollary 2.4 Let T ∈ SC . If x , y ∈ R(T), then

x ⊗ (Cx) ∈ TSC T and x ⊗ (Cy) + y ⊗ (Cx) ∈ TSC T .

Proof Denote X = x ⊗ (Cx) and Y = x ⊗ (Cy) + y ⊗ (Cx). It is easy to verify that
X ∈ SC and R(X) = R(X) ⊂ R(T). By Corollary 2.2, we have X ∈ TSC T . Likewise we
have Y ∈ TSC T . ∎

At the end of this subsection, we provide several illustrating examples.
The following example shows that Douglas’ range inclusion theorem does not hold

for SC .
Example 2.5 Let D be a conjugation on H and

A = [0 I
I 0]

H

H
, T = [I 0

0 −I]
H

H
, C = [D 0

0 D]
H

H
,

where I is the identity operator on H. Then it is easy to check that C is a conjugation
on H ⊕H, A, T ∈ SC and R(A) ⊂ R(T).

If X ∈ B(H ⊕H) and A = T X, then one can verify that

X = T−1A = [ 0 I
−I 0] .

Clearly, X ∉ SC .
The following example shows that Theorem 1.2 can not be extended to B(H) or

general Jordan operator algebras.
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Example 2.6 Let M be a closed subspace of H with dimM = dimM�. Set

T = [I0 0
0 0]

M

M�
and A = [0 B

0 0]
M

M�
,

where I0 is the identity operator on M and B is an invertible operator from M� onto
M. Then R(A) ⊂ R(T).

For any X ∈ B(H) with

X = [X1,1 X1,2
X2,1 X2,2

] M

M�
,

one can check that

T XT = [X1,1 0
0 0]

M

M�
≠ A.

Hence, A ≠ T XT for any X ∈ B(H).

2.2 Proof of Theorem 1.3

Let M be a closed subspace of H. A conjugate-linear map J on H is called a partial
conjugation supported on M if ker J =M� reduces J and J∣M is a conjugation.

Lemma 2.7 [15, Theorem 2] Let T ∈ B(H) and C be a conjugation on H. Then T ∈
SC if and only if T = CJ∣T ∣ for some partial conjugation J supported on R(∣T ∣) and
commuting with ∣T ∣.

Proof of Theorem 1.3 Since it is clear that TSC T ⊂ CR(T), it suffices to prove that
CR(T) ⊂ TSC T . Fix an operator A in CR(T). We shall prove that A ∈ TSC T . This
follows readily from the following claim.

Claim Given ε > 0, there exists B ∈ SC with R(B) = R(B) ⊂ R(A) such that
∥A− B∥ < ε.

In fact, if the preceding claim holds, then, by Corollary 2.2, B ∈ TSC T and
dist(A, TSC T) < ε. Since ε > 0 was arbitrary, we deduce that A ∈ TSC T .

By Lemma 2.7, A = CJP, where P = ∣A∣ and J is a partial conjugation supported on
R(P) with JP = PJ.

Now we fix an ε > 0 and define three functions f , g , h on [0, ∥A∥] as

f (t) =
⎧⎪⎪⎨⎪⎪⎩

0, t ∈ [0, ε/2),
t, t ∈ [ε/2, ∥A∥],

h(t) =
⎧⎪⎪⎨⎪⎪⎩

0, t ∈ [0, ε/2),
1/t, t ∈ [ε/2, ∥A∥],

g = f h.

It is easy to see that:
(i) f (P), g(P), and h(P) are positive operators commuting with J,

(ii) g(P) is an orthogonal projection with R( f (P)) = R(g(P)) = R(h(P)), and
(iii) R(g(P)) reduces J.

Define J̃ = Jg(P). Then J̃ is a partial anti-conjugation supported on R(h(P)) com-
muting with h(P). Set B = CJ f (P). Note that J f (P) = J̃P. It follows that B = CJ̃ f (P).
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By Lemma 2.7, we have B ∈ SC . Note that

R( f (P)) = R( f (P)) ⊂ R(P).

Since J is supported on R(P), it follows that

R(B) = R(B) ⊂ R(A).

Note that

∥A− B∥ = ∥CJP − CJ f (P)∥ ≤ ∥P − f (P)∥ < ε.

This completes the proof. ∎
The following result can be seen from the proof of Theorem 1.3.

Corollary 2.8 Let T ∈ SC . Then, given ε > 0, there exists A ∈ SC with ∥T − A∥ < ε such
that R(A) = R(A) ⊂ R(T).

2.3 Proof of Theorem 1.4

The aim of this subsection is to prove Theorem 1.4.
A subset E of H is called an operator range if E = R(A) for some A ∈ B(H). We

denote by Ran(H) the set of all operator ranges inH. Then, by [8, Section 2], Ran(H)
is a lattice.

The following lemma shows that each operator range can be attained in SC .

Lemma 2.9 Given T ∈ B(H), there exists A ∈ SC with R(A) = R(T).

Proof Let T = U ∣T ∣ be the polar decomposition of T, where U is a partial isometry.
So R(T) = R(U ∣T ∣U∗).

Denote P = CU ∣T ∣U∗C. Clearly, P is positive and hence a complex symmetric
operator. Then we can find a conjugation J on H so that JP = PJ. Set A = CJP. Then,
by [17, Theorem 3.1], A ∈ SC and

R(A) = R(CJP) = C(R(JP)) = C(R(P)) = R(U ∣T ∣U∗C) = R(T).

This ends the proof. ∎
For A ∈ B(H), we denote At = CA∗C. Then it is easy to check the following.

(a) A ∈ SC if and only if A = At .
(b) ASC At ⊂ SC .

Proposition 2.10 If A, B ∈ B(H), then the following are equivalent:
(i) R(A) ⊂ R(B);

(ii) CR(A) ⊂ CR(B);
(iii) ASC At ⊂ BSC Bt .

Proof (i)�⇒(ii). This is obvious.
(ii)�⇒(i). For any x ∈ R(A), by Corollary 2.4, we have

x ⊗ (Cx) ∈ CR(A) ⊂ CR(B) ,

which implies x ∈ R(B). Hence R(A) ⊂ R(B).
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(i)�⇒(iii). By Douglas’ range inclusion theorem, R(A) ⊂ R(B) implies A = BZ
for some Z ∈ B(H). Note that

At = CA∗C = C(BZ)∗C = CZ∗B∗C = (CZ∗C)(CB∗C) = Z t Bt .

Thus, for any X ∈ SC , we have

AXAt = (BZ)X(Z t Bt) = B(ZXZ t)Bt .

One can verify that ZXZ t ∈ SC . Thus AXAt ∈ BSC Bt .
(iii)�⇒(i). For x ∈H, denote y = Ax. We shall prove that y ∈ R(B). Note that

y ⊗ (Cy) = (Ax) ⊗ (CAx) = (Ax) ⊗ [(CAC)(Cx)]
= A[x ⊗ (Cx)](CAC)∗ = A[x ⊗ (Cx)]At ∈ ASC At .

So y ⊗ (Cy) ∈ BSC Bt . Then y ⊗ (Cy) = BXBt for some X ∈ SC . It follows that
y ∈ R(B). ∎
Corollary 2.11 If T ∈ B(H), then CR(T) = TSC T t if and only if R(T) = R(T).
Proof By Lemma 2.9, there exists A ∈ SC with R(A) = R(T). Then CR(A) = CR(T)
and, by Proposition 2.10, we have

TSC T t = ASC At = ASC A.

Then CR(T) = TSC T t if and only if CR(A) = ASC A. The desired result follows readily
from Theorem 1.2. ∎
Proof of Theorem 1.4 Denote M = R(A) and N = R(B). By Theorem 1.3, ASC A =
CM and BSC B = CN.

“�⇒”. Choose a closed subspaceM1 ofM and an orthonormal basis {e i}i∈Λ ofM1.
Define U = ∑i∈Λ e i ⊗ (ce ∶ i). Then one can check that U ∈ SC is a partial isometry
with R(U) =M1, which implies U ∈ CM ⊂ CN. By the hypothesis, there exist Xn ∈
CN, n ≥ 1, such that Xn → U .

By Corollary 2.8, we can find {Yn} ⊂ SC with R(Yn) = R(Yn) ⊂ N such that ∥Yn −
Xn∥ < 1

n , n ≥ 1. Then Yn ∈ CN and Yn → U . Furthermore, we have YnY∗n → UU∗.
Note that UU∗ = PM1 and R(YnY∗n ) = R(Yn) is closed, n ≥ 1. There exists δ > 0

such that σ(YnY∗n ) ⊂ {0} ∪ [δ,∞). Define a continuous function f on {0} ∪ (δ/2,∞)
as

f (t) =
⎧⎪⎪⎨⎪⎪⎩

0, t = 0,
1, t ∈ (δ/2,∞).

Then f (YnY∗n ) → f (UU∗) = PM1 . Note that f (YnY∗n ) is an orthogonal projection
with

R( f (YnY∗n )) = R(YnY∗n ) = R(Yn) ⊂ N.

This proves the necessity.
“⇐�”. Clearly, it suffices to prove CM ⊂ CN. By Corollary 2.8, it suffices to prove

that any X ∈ SC with R(X) = R(X) ⊂M satisfies X ∈ CN.
Denote M1 = R(X) and, for convenience, we write P for PM1 . By Corollary 2.11,

we have X ∈ CM1 = PSC P t . So X = PYP t for some Y ∈ SC . On the other hand, by the
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hypothesis, we can find orthogonal projections {Pn} with R(Pn) ⊂ N such that Pn →
P. So PnYP t

n → PYP t = X. Noting that PnYP t
n ∈ SC and R(PnYP t

n) ⊂ R(Pn) ⊂ N, we
conclude that PnYP t

n ∈ CN and X ∈ CN. ∎
Next, we determine TSC T for certain compact operators T.

Example 2.12 Let {en}∞n=1 be an orthonormal basis of H such that Cen = en , n =
1, 2, . . . . We define two diagonal operators on H as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

22
1

32
1

42

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1
e2
e3
e4
⋮

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2 1

3 1
4

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1
e2
e3
e4
⋮

.

It is clear that A, B ∈ SC and A = B2. Thus R(A) ⊂ R(B). Noting that

∑
n

en

n2 = B(∑
n

en

n
) ∈ R(B), ∑

n

en

n2 ∉ R(A),

we obtain R(A) ⊊ R(B). Next, we shall show that CR(A) = CR(B) or, equivalently,
ASC A = BSC B.

Since it is clear that [ASC A∪ BSC B] ⊂ [SC ∩K(H)], where K(H) is the ideal of
operators in B(H), it suffices to show [SC ∩K(H)] ⊂ [ASC A∩ BSC B].

Arbitrarily choose an operator T ∈ SC ∩K(H). For each n ≥ 1, we let Pn denote
the orthogonal projection of H onto ∨{e1 , . . . , en}. Note that Pn TPn ∈ SC with

R(Pn TPn) = R(Pn TPn) ⊂ R(A) ∩R(B).

By Corollary 2.2, Pn TPn ∈ CR(A) ∩ CR(B). Note that Pn TPn → T . We obtain T ∈
ASC A∩ BSC B. Thus we have shown

ASC A = BSC B = SC ∩K(H).

Remark 2.13 Let A, B ∈ B(H) and C be defined as in the preceding example. Set

C̃ = C ⊕ C , R = A⊕ B, T = B ⊕ A.

Then one can see that R, T ∈ SC̃ with R(R) ⊈ R(T) and R(T) ⊈ R(R). However, one
can show that C̃R(R) and C̃R(T) have the same norm closure.

2.4 Proof of Theorem 1.5

We first make some preparations.
Lemma 2.14 Let M be a subspace of H. Then

C
M
∩K(H) = CM ∩K(H) = CM ∩K(H).

Proof One can easily check that C
M

is closed in the weak operator topology. It is
clear that

[CM ∩K(H)] ⊂ [CM ∩K(H)] ⊂ [C
M
∩K(H)].

So it suffices to prove [C
M
∩K(H)] ⊂ CM ∩K(H).
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Now assume that A ∈ C
M
∩K(H). We shall prove A ∈ CM ∩K(H). By [15, Theo-

rem 3], A can be written as

A =
∞

∑
n=1

λn(Cen) ⊗ en ,

where en are certain orthonormal eigenvectors of ∣A∣ = ∣AA∗∣1/2 and the λn are the
nonzero eigenvalues of ∣A∣, repeated according to multiplicity. Clearly, λn → 0 and
Cen ∈ R(A) ⊂M. Then

m
∑
n=1

λn(Cen) ⊗ en �→ A (m →∞).

So it remains to prove that (Cen) ⊗ en ∈ CM ∩K(H) for each n ≥ 1.
Since Cen ∈M, there exists a sequence {xk}∞k=1 ⊂M converging to Cen . Clearly,

xk ⊗ (Cxk) ∈ CM ∩K(H) for all k ≥ 1. Note that {xk ⊗ (Cxk)} converges to
(Cen) ⊗ en in the norm topology. We deduce that (Cen) ⊗ en ∈ CM ∩K(H). Thus
we complete the proof. ∎

Proof of Theorem 1.5 We denote M = R(T). It is trivial to see that C
M

is closed in
both the weak operator topology and the weak* topology; moreover,

CM

w∗ ⊂ CM

wot ⊂ CM .

On the other hand, since CM is a subspace of B(H), it is clear that CM

wot = CM

sot.
Then it suffices to show C

M
⊂ CM

w∗.
We need only consider the case that M is not closed. In this case, we can choose an

orthonormal basis {e i}∞i=1 of M. Define U ∈ B(H) as

U =
∞

∑
i=1

e i ⊗ (ce i).

Thus U is a partial isometry lying inSC ,R(U) =M and (ker U)� = C(M). So U ∈ C
M

and it follows from Theorem 1.2 that C
M
= USCU .

Fix an operator A ∈ SC . Then it suffices to prove UAU ∈ CM

w∗.
For the conjugation C, there is an orthonormal basis { f i} of H such that C f i = f i

for all i (see [13, Lemma 2.11]). For each n ≥ 1, set Pn = ∑n
i=1 f i ⊗ f i . It is easy to see

Pn ∈ SC . Noting that Pn APn ∈ SC and, as n →∞, Pn APn converges to A in the sot. So
UPn APnU converges to UAU in the sot. Now it remains to prove the following claim.

Claim UPn APnU ∈ CM

w∗ for each n = 1, 2, . . . .

In fact, if the preceding claim holds, then, by [4, Proposition 20.3], UAU ∈ CM

w∗.
Set a j, i = ⟨Af i , f j⟩ for all i , j ∈ {1, 2, . . . }. Since A ∈ SC , we have a i , j = a j, i . Then

Pn APn =
n
∑
i=1

a i , i f i ⊗ f i + ∑
1≤i< j≤n

a i , j( f i ⊗ f j + f j ⊗ f i)
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and

UPn APnU

(1)

=
n
∑
i=1

a i , i(U f i) ⊗ (U∗ f i) + ∑
1≤i< j≤n

a i , j[(U f i) ⊗ (U∗ f j) + (U f j) ⊗ (U∗ f i)]

(2)

=
n
∑
i=1

a i , i(U f i) ⊗ (U∗C f i) + ∑
1≤i< j≤n

a i , j[(U f i) ⊗ (U∗C f j) + (U f j) ⊗ (U∗C f i)]

(3)

=
n
∑
i=1

a i , i(U f i) ⊗ (CU f i) + ∑
1≤i< j≤n

a i , j[(U f i) ⊗ (CU f j) + (U f j) ⊗ (CU f i)].

(4)

Note that U f i , U f j ∈ R(U) =M.
For any x , y ∈M, it follows from Lemma 2.14 that x ⊗ (Cy) + y ⊗ (Cx) ∈ CM . In

view of (1), we obtain UPn APnU ∈ CM ⊂ CM

w∗. This proves Claim and completes the
proof. ∎

The following result classifies the inclusion relations among TSC T , CR(T) , CR(T)
and C

R(T) for T ∈ SC .

Proposition 2.15 For T ∈ SC , the following are equivalent:

(i) R(T) = R(T);
(ii) CR(T) = CR(T);

(iii) CR(T) = CR(T)
wot;

(iv) CR(T) = C
R(T);

(v) CR(T) = ASC A for some A ∈ SC ;
(vi) TSC T = CM for some subspace M of H;

(vii) TSC T = TSC T;
(viii) TSC T = TSC T

wot
.

Proof “(i)�⇒(iii), (iv) and (viii)”. Since R(T) is norm-closed, one can easily verify
that CR(T) is closed in the wot and, by Theorem 1.2, we have CR(T) = TSC T . Hence
TSC T is closed in the wot .

“(viii)�⇒ (vii)” and “(iii)�⇒ (ii)”. Both are obvious.
“(vii)�⇒ (i)”. Since TSC T is norm closed, by Theorem 1.3, TSC T = CR(T) ⊇

CR(T). Hence,TSC T = CR(T) and, by Theorem 1.2, R(T) is closed.
“(ii)�⇒ (i)”. Choose an x ∈ R(T). Then there exists a sequence {xn} ∈ R(T) con-

verging to x. Clearly, xn ⊗ (Cxn) ∈ CR(T) for all n. Note that {xn ⊗ (Cxn)} converges
to x ⊗ (Cx) in norm. Since CR(T) is norm-closed, we deduce that x ⊗ (Cx) ∈ CR(T).
Thus x ∈ R(T). This shows that R(T) = R(T).

“(i)�⇒ (vi)”. By Theorem 1.2, we have TSC T = CR(T).
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“(vi)�⇒ (v)”. Assume that TSC T = CM for some subspace M of H. It is clear
that TSC T ⊂ CR(T). So CM ⊂ CR(T). Then, for any x ∈M, we have x ⊗ (Cx) ∈ CM ⊂
CR(T) and x ∈ R(T). This shows M ⊂ R(T).

On the other hand, if x ∈ R(T), then, by Corollary 2.4, x ⊗ (Cx) ∈ TSC T = CM,
which implies x ∈M. Hence R(T) ⊂M. We conclude that R(T) =M and TSC T =
CR(T).

“(v)�⇒ (i)”. Assume that CR(T) = ASC A. Since ASC A ⊂ CR(A), it follows that
CR(T) ⊂ CR(A). By Proposition 2.10, we have R(T) ⊂ R(A).

On the other hand, if x ∈ R(A), then, by Corollary 2.4, x ⊗ (Cx) ∈ ASC A = CR(T),
which implies x ∈ R(T). Hence R(A) ⊂ R(T) and R(A) = R(T). By Proposition
2.10, we have ASC A = TSC T . So CR(T) = TSC T . By Theorem 1.2, we deduce that
R(T) is closed.

“(iv)�⇒ (i)”. Denote M = R(T). We choose an orthonormal basis {e i}∞i=1 of M.
Define U ∈ B(H) as

U =
∞

∑
i=1

e i ⊗ (ce i).

Thus U ∈ B(H) is a partial isometry, R(U) =M and R(U∗) = (ker U)� = C(M). It
is easy to check that U ∈ SC . So U ∈ C

M
.

By the hypothesis, we can find {Tn} ⊂ CM such that Tn �→ U .
Since R(Tn) ⊂M ⊂M = R(U), by Lemma 2.1, we have

(ker Tn)� = R(T∗n ) ⊂ R(U∗) = (ker U)� = C(M).

Denote Ũ = U ∣C(M) and T̃n = (Tn)∣C(M). Thus Ũ , T̃n ∶ C(M) →M are bounded
linear operators and Ũ is invertible.

Since Tn → U , it follows that T̃n → Ũ . By the stability of invertibility, we deduce
that T̃n is invertible for n large enough. This implies that R(Tn) = R(T̃n) =M for n
large enough. Since R(Tn) ⊂M, we obtain M =M. ∎
Remark 2.16 By the preceding result and Theorem 1.2, if T ∈ SC has a non-closed
range, then

TSC T ⊊ CR(T) ⊊ CR(T) ⊊ C
R(T) .

On the other hand, if T has a closed range, then all these sets coincide.
Corollary 2.17 Let M be a subspace of H. Then the following are equivalent:
(i) CM = TSC T for some T ∈ SC ;

(ii) CM is norm closed;
(iii) CM is wot closed;
(iv) M =M.
Proof The implications (iv)�⇒(iii)�⇒(ii) is obvious.

“(ii)�⇒(iv)”. Using a similar argument as in the proof for (ii)�⇒(i) of Proposition
2.15, one can see that M is closed.

“(i)�⇒(iv)”. Assume that CM = TSC T for some T ∈ SC . From the proof for
(vi)�⇒(v) in Proposition 2.15, one can see that TSC T = CR(T) and M = R(T). By
Theorem 1.2, we deduce that M = R(T) is closed.
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“(iv)�⇒(i)”. By Lemma 2.9, we can choose an operator T ∈ SC with R(T) =M.
Then, by Theorem 1.2, TSC T = CR(T) = CM. ∎

3 The diagonalization in SC

The aim of this section is to study the diagonalization of normal operators in SC and
give the proof of Theorem 1.6.

3.1 Proof of Theorem 1.6

We first give a key lemma.

Lemma 3.1 Let T ∈ SC be a self-adjoint operator and e ∈H. Then, given ε > 0 and
p > 1, there exist a finite-rank orthogonal projection P ∈ SC with e ∈ R(P) and a finite-
rank self-adjoint operator K ∈ SC with ∥K∥p < ε such that P(T + K) = (T + K)P.

Proof Let E be the projection-valued spectral measure for T and assume that σ(T) ⊂
[a, b]. We fix a positive integer n. Then there exist pairwise disjoint Borel subsets
Δ1 , Δ2 , . . . , Δn and a1 , a2 , . . . , an ∈ [a, b] such that

[a, b] = ∪n
i=1Δ i and Δ i ⊂ [a i −

b − a
2n

, a i +
b − a

2n
].

For i = 1, 2, . . . , n, denote Hi = R(E(Δ i)). Then each Hi reduces T and H =
⊕n

i=1Hi . Put Ti = T ∣Hi . Then T = ⊕n
i=1Ti . For each i, choose λ i ∈ Δ i . Since σ(Ti) ⊂ Δ−i ,

it follows that ∥Ti − λ i∥ ≤ (b − a)/n.

Claim For each i with 1 ≤ i ≤ n, Hi reduces C.

Fix an i with i = 1, . . . , n. It suffices to prove CE(Δ i)C = E(Δ i). Note that there
exists a sequence {pk}∞k=1 of polynomials with real coefficients such that pk(T) →
E(Δ i) in the strong operator topology. Since C pk(T)C = pk(T) for all k, it follows
immediately that CE(Δ i)C = E(Δ i). This proves the claim.

For each i, denote C i = C∣Hi . Then C i is a conjugation on Hi and, from CTC =
T∗ = T , we obtain C i Ti C i = Ti .

Since H = ⊕n
i=1Hi , we may assume that e = ∑n

i=1 e i with e i ∈Hi . Then, by Claim,
Ce i ∈Hi . For each i with 1 ≤ i ≤ n, put Mi = ∨{e i , Ce i}. Then Mi is a subspace of
Hi , reducing C, and 1 ≤ dimMi ≤ 2. Then, relative to the decomposition Hi =Mi ⊕
(Hi ⊖Mi), Ti can be written as

Ti = [
A i Fi
G i B i

] Mi
Hi ⊖Mi

.

Note that G i = F∗i , since Ti is self-adjoint.
Since C i(Mi) =Mi , relative to the decomposition Hi =Mi ⊕ (Hi ⊖Mi), C i can

be written as

C i = [
C i ,1 0

0 C i ,2
] Mi
Hi ⊖Mi

.
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Then both C i ,1 and C i ,2 are conjugations. It follows readily from C i Ti C i = Ti that
C i K i C i = K i , where

K i ∶= [
0 Fi

G i 0 ]
Mi

Hi ⊖Mi
.

Clearly, K i is self-adjoint, rankK i ≤ 4 and

∥K i∥ = max{∥Fi∥, ∥G i∥} ≤ ∥[
A i − λ i Fi

G i B i − λ i
]∥ = ∥Ti − λ i∥ ≤ (b − a)/n.

Set K = − ⊕n
i=1 K i . Thus K is a self-adjoint, finite-rank operator, CKC = K,

T + K = ⊕n
i=1(Ti − K i) = ⊕n

i=1(A i ⊕ B i)

and

∥K∥p ≤ (rankK)1/p∥K∥ ≤ (4n)1/p b − a
n

≤ 4(b − a)
n1/q ,

where q = 1/(1 − 1/p). Thus, for any ε > 0, there exists n large enough such that
∥K∥p < ε.

Denote by P the orthogonal projection of H onto⊕n
i=1Mi . Thus e ∈ R(P), rankP ≤

2n and (T + K)P = P(T + K); indeed,

(T + K)∣R(P) = ⊕n
i=1A i .

Noting that CPC = P and CKC = K, that are, P, K ∈ SC , we complete the proof. ∎

Now we are going to prove Theorem 1.6.

Proof of Theorem 1.6 Since C is a conjugation, we can find an orthonormal basis
{en}∞n=1 of H such that Cen = en for all n.

Now fix an ε > 0 and p > 1. By Lemma 3.1, we can find a finite-rank, self-adjoint
operator K1 ∈ SC with ∥K1∥p < ε/2 and a finite-rank orthogonal projection P1 ∈ SC

such that e1 ∈ R(P1) and P1(T + K1) = (T + K1)P1. DenoteH1 = R(P1) and H̃1 =H ⊖
H1. Then, with respect to the decomposition H =H1 ⊕ H̃1,

T + K1 = [
T1 0
0 T̃1

] , C = [C1 0
0 C̃1

] ,(5)

where C1T1C1 = T1 and C̃1T̃1C̃1 = T̃1.
Now apply Lemma 3.1 again to the self-adjoint operator T̃1 and the vector (I − P1)e2

to get a finite-rank, self-adjoint operator K̃2 ∈ SC̃1
and two subspaces H2 , H̃2 of H̃1

such that

∥K̃2∥p < ε/4, (I − P1)e2 ∈H2 , dimH2 < ∞, H̃1 =H2 ⊕ H̃2

and with respect to which

T̃1 + K̃2 = [
T2 0
0 T̃2

] , C̃1 = [
C2 0
0 C̃2

] ,
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where C2T2C2 = T2 and C̃2T̃2C̃2 = T̃2. In view of (5), we can find a finite-rank, self-
adjoint operator K2 ∈ SC with ∥K2∥p < ε/4 such that

T + K1 + K2 =
⎡⎢⎢⎢⎢⎢⎣

T1 0 0
0 T2 0
0 0 T̃2

⎤⎥⎥⎥⎥⎥⎦

H1
H2
H̃2

, C =
⎡⎢⎢⎢⎢⎢⎣

C1 0 0
0 C2 0
0 0 C̃2

⎤⎥⎥⎥⎥⎥⎦

H1
H2
H̃2

.(6)

Note that e1 , e2 ∈H1 ⊕H2, C i Ti C i = Ti (i = 1, 2), and C̃2T̃2C̃2 = T̃2.
By induction, we can find a sequence of self-adjoint, finite-rank operators{K i}∞i=1 ⊂

SC and a sequence of pairwise orthogonal, finite-dimensional subspaces {Hi} such
that for each n ≥ 1,

(i) e1 , . . . , en ∈ ⊕n
i=1Hi ,

(ii) ∥Kn∥p < ε/2n , and
(iii) relative to the decomposition H = (⊕n

i=1Hi) ⊕ H̃n ,

T +
n
∑
i=1

K i = (⊕n
i=1Ti) ⊕ T̃n , C = (⊕n

i=1C i) ⊕ C̃n ,(7)

where H̃n =H ⊖ (⊕n
i=1Hi) and

C̃n T̃nC̃n = T̃n , C i Ti C i = Ti , i = 1, 2, . . . , n.

Since {e i} is an orthonormal basis of H, it follows from statement (i) that H =
⊕∞i=1Hi and hence C = ⊕∞i=1C i . Set K = ∑∞i=1 K i . Then K ∈ Bp(H) is self-adjoint,
∥K∥p < ε and T + K = ⊕∞i=1Ti . Note that each Ti is self-adjoint and acting on a finite-
dimensional space. Thus T + K is diagonal. Since C i Ti C i = Ti for all i, it follows that
C(T + K)C = T + K. Set D = T + K. This completes the proof. ∎

Corollary 3.2 Let T be a self-adjoint operator in SC . Then, given ε > 0, there exists a
compact operator K ∈ SC with ∥K∥ < ε such that T + K is diagonal with σ(T + K) =
σ(T).

Proof Assume that σp(T) = {λ i ∶ i ∈ Λ}. Set

H0 = ∨i∈Λ ker(T − λ i) and H1 =H�0 .

Since T is self-adjoint, we deduce that H0 reduces T. Then

T = [T0 0
0 T1

]H0
H1

.

Clearly, T0 is diagonal and σp(T1) = ∅. Since CTC = C, one can see C(H0) =H0,
which implies C(H1) =H1 and

C = [C0 0
0 C1

]H0
H1

.

It is easy to check that each C i is a conjugation and Ti ∈ SC i .
By Theorem 1.6, we can find K1 ∈ SC1 with ∥K1∥ < ε

2 such that T1 + K1 is diagonal.
Moreover, by the upper semi-continuity of spectrum, it can be required that σ(T1 +
K1) ⊂ σ(T1) + B(0, ε

2 ).
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Since T1 + K1 is diagonal, without loss of generality, we may assume that σp(T1 +
K1) = {z i ∶ i ≥ 1}. Denote Ki = ker(T1 + K1 − z i) for i ≥ 1. Then

T1 + K1 = ⊕∞i=1z i I i

relative to the decomposition H1 = ⊕∞i=1Ki , where I i is the identity operator on Ki .
Since T1 + K1 ∈ SC is diagonal, it follows that

C1(ker(T1 + K1 − z i)) = ker(T1 + K1 − z i), i = 1, 2, 3, . . . .

Then each Ki reduces C1. We may assume that C1 = ⊕∞i=1C′i , where C′i = C1∣Ki is a
conjugation on Ki .

Fix an i ≥ 1. If z i ∈ σ(T1), then we set z̃ i = z i . If z i ∉ σ(T1), then z i ∉ σe(T1) =
σe(T1 + K1) and hence dimKi < ∞; noting that z i ∈ σ(T1) + B(0, ε

2 ), we can find
z̃ i ∈ σ(T1) such that ∣z i − z̃ i ∣ = dist(z i , σ(T1)) < ε/2.

Set K2 = ⊕∞i=1(z̃ i − z i)I i . Then K2 ∈ SC1 , ∥K2∥ ≤ ε/2 and

T1 + K1 + K2 = ⊕∞i=1 z̃ i I i .

Clearly, σ(T1 + K1 + K2) = {z̃ i ∶ i ≥ 1}− ⊆ σ(T1).

Claim K2 is compact.

It suffices to show limi ∣z i − z̃ i ∣ = 0. Otherwise, we can choose a subsequence
{ik}∞k=1 of N such that z ik ∉ σ(T1), z ik → z0 and

inf
k

dist(z ik , σ(T1)) > 0.

Hence, dist(z0 , σ(T1)) > 0 and

z0 ∈ σe(T1 + K1) = σe(T1) ⊂ σ(T1),

a contradiction.
Set K = 0⊕ (K1 + K2). Then K ∈ SC is compact with ∥K∥ < ε and

T + K = T0 ⊕ (T1 + K1 + K2).

By the preceding discussion, we have

σ(T + K) = σ(T0) ∪ σ(T1 + K1 + K2) ⊂ σ(T0) ∪ σ(T1) = σ(T).

It remains to show σ(T) ⊂ σ(T + K).
Note that K is compact. Hence

σe(T) = σe(T + K) ⊂ σ(T + K).

If z ∈ σ(T)/σe(T), then z ∈ σp(T) and z = λ i ∈ σ(T0) ⊂ σ(T + K) for some i ∈ Λ.
Thus we have proved that σ(T) ⊂ σ(T + K), which implies σ(T) = σ(T + K). ∎

Theorem 3.3 If N1 , . . . , Nn ∈ SC are commuting normal operators and ε > 0, then
there are commuting, diagonal operators D1, . . . , Dn ∈ SC such that N i − D i ∈K(H)
and ∥N i − D i∥ < ε for all i = 1, 2, . . . , n.

Proof Denote by A the von Neumann algebra generated by N1, . . . , Nn . It is easy
to see A ⊂ SC . By [5, Lemma II.2.8], we can find a self-adjoint operator A ∈ B(H)
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generating A and N1, . . . , Nn ∈ C∗(A). Clearly, A ∈ SC . We can find continuous
functions f1 , . . . , fn on R such that N i = f i(A), i = 1, . . . , n.

Now fix an ε > 0. In view of [4, Lemma 39.5], there exists δ > 0 such that
sup1≤i≤n ∥ f i(X) − f i(Y)∥ < ε for all self-adjoint operators X , Y satisfying ∥X∥ ≤
∥A∥, ∥Y∥ ≤ ∥A∥ and ∥X − Y∥ < δ.

By Corollary 3.2, we can find self-adjoint, diagonal D ∈ SC with σ(D) = σ(A) such
that D − A ∈K(H) and ∥D − A∥ < δ. Then ∥D∥ = ∥A∥ and

sup
1≤i≤n

∥N i − f i(D)∥ = sup
1≤i≤n

∥ f i(A) − f i(D)∥ < ε.

Note that f1(D), f2(D), . . . , fn(D) are commuting diagonal operators. Also, since
D ∈ SC , it follows that f1(D), f2(D), . . . , fn(D) ∈ SC .

Note that A− D ∈K(H). Using the functional calculus for self-adjoint operators,
one can easily prove that f i(A) − f i(D) ∈K(H), i = 1, 2, . . . , n. This completes the
proof. ∎

Using a similar argument as in the proof of Corollary 3.2, one can prove the
following.

Corollary 3.4 If T ∈ SC is normal and ε > 0, then there exists a diagonal operator N ∈
SC such that σ(N) = σ(T) and ∥T − N∥ < ε.

3.2 Irreducible approximation

We conclude this paper with an application of Theorem 1.6 to the irreducible approx-
imation in SC .

By a classical approximation result of P. R. Halmos [21], the set of irreducible
operators is a dense Gδ set and hence a topologically large subset of B(H). H. Radjavi
and P. Rosenthal [36] gave a short proof of the density of irreducible operators in
B(H). It can be seen from their proof that each operator has an arbitrarily small
compact perturbation which is irreducible (see [23, Lemma 4.33]).

In a recent paper [31], T. Liu, J. Y. Zhao, and the last author studied irreducible
approximation of c.s. operators and obtained the following result.

Theorem 3.5 [31, Theorem 2.1] Let T ∈ SC and T = A+ iB, where A, B are self-adjoint.
If A or B is diagonal, then, given ε > 0, there exists K ∈ SC with ∥K∥ < ε such that T + K
is irreducible.

In addition, it can be required that K lies in the Schatten p-class and ∥K∥p < ε.
Using the preceding result, it was proved in [31] that each c.s. operator has a small
perturbation being irreducible. Moreover, the following question was raised:

Is every complex symmetric operator a compact perturbation or a small compact
perturbation of irreducible ones?

Using Theorems 1.6 and 3.5, one can see the following result, which combining
Halmos’ result shows that those irreducible ones in SC constitute a dense Gδ subset of
SC .

Corollary 3.6 Given T ∈ SC , p ∈ (1,∞) and ε > 0, there exists a compact operator K ∈
SC with ∥K∥p < ε such that T + K is irreducible.
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