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A Subalgebra Intersection Property for
Congruence Distributive Varieties

Matthew A. Valeriote

Abstract. We prove that if a finite algebra A generates a congruence distributive variety, then the subal-

gebras of the powers of A satisfy a certain kind of intersection property that fails for finite idempotent

algebras that locally exhibit affine or unary behaviour. We demonstrate a connection between this

property and the constraint satisfaction problem.

1 Introduction

By an algebraic structure (or just algebra) A we mean a tuple of the form 〈A, F〉, where

A is a non-empty set and F is a set (possibly indexed) of finitary operations on A. A

is called the universe of A, and the functions in F are called the basic operations of

A. This definition is broad enough to encompass most familiar algebras encountered

in mathematics but not so broad that a systematic study of these structures cannot

be undertaken. Since the start of this study in the 1930’s it has been recognized that

two important invariants of any algebra are its lattice of subuniverses and its lattice

of congruences. In this paper we demonstrate, for certain finite algebras, a connec-

tion between the behaviour of their congruences and the subalgebras of their finite

powers.

The link between universal algebra and the constraint satisfaction problem that

has been developed over the past several years, starting with the ground breaking

paper by Feder and Vardi [8] and continuing with the work of Jeavons, Bulatov,

Krokhin, and others, has brought to light a number of questions that are of inter-

est to algebraists, independent of their connection with the constraint satisfaction

problem. The properties of subalgebras of finite algebras that we study in this paper

have a direct connection with the constraint satisfaction problem. They also tie in

with a classic result of Baker and Pixley [1] and the more recent work on the local

structure of finite algebras developed by Hobby and McKenzie [10]. In particular,

the main result of this paper, Theorem 2.9, suggests an alternate characterization of

some familiar classes of locally finite varieties in terms of intersections of subalgebras.

To conclude this section, we recall some of the basic definitions that will be used

throughout this paper. Standard references for this material are [6] and [16].
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Definition 1.1 Let A = 〈A, F〉 be an algebra.

(i) A subuniverse of A is a subset of A that is closed under the operations in F. An

algebra B is a subalgebra of A if its universe is a non-empty subuniverse B of A

and its basic operations are the restrictions of the basic operations of A to B.

For K a class of algebras, S(K) denotes the class of all subalgebras of members

of K.

(ii) A congruence of A is an equivalence relation θ on A that is compatible with the

operations in F. The set of all congruences of A, ordered by inclusion, is called

the congruence lattice of A and is denoted Con A.

If the basic operations of the members of a class K of algebras all have similar in-

dices, then it is possible to define the notion of a homomorphism from one member

of K to another and of a homomorphic image of a member of K. Cartesian products

of similar algebras can also be defined in a standard manner. H(K) will denote the

class of all homomorphic images of K while P(K) will denote the class of cartesian

products of members of K.

A fundamental theorem of universal algebra, due to G. Birkhoff, states that a class

of similar algebras is closed under the operations of H, S and P if and only if the class

can be defined via a set of equations. Such a class of algebras is known as a variety.

For K a class of similar algebras, V(K) denotes the smallest variety that contains K.

It follows from the proof of Birkhoff ’s theorem that this class coincides with the class

HSP(K).

2 An Intersection Property

Definition 2.1 Let n > 0 and Ai be sets for 1 ≤ i ≤ n. For k > 0 and B, C ⊆∏
1≤i≤n Ai we say that B and C, are k-equal, and write B =k C if for every subset I of

{1, 2, . . . , n} of size at most k, the projections of B and C onto the coordinates I are

equal.

If B =k

∏
1≤i≤n Ai , then we say that B is k-complete with respect to

∏
1≤i≤n Ai .

Note that being 1-complete with respect to
∏

1≤i≤n Ai is equivalent to being sub-

direct.

Definition 2.2 Let A be an algebra and k > 0.

(i) For n > 0 and B a subalgebra of An, we denote by [B]k the set of all subuniverses

C of An with C =k B.

(ii) We say that A has the k-intersection property if for every n > 0 and subalgebra

B of An,
⋂

[B]k 6= ∅.

(iii) We say that A has the strong k-intersection property if for every n > 0 and subal-

gebra B of An,
⋂

[B]k =k B.

(iv) We say that A has the k-complete intersection property if
⋂

[An]k 6= ∅ for every

n > 0.

The following proposition lists some elementary facts about the above properties.

Note that if A = 〈A, F〉 is an algebra and G is a subset of the derived operations of A,
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then the algebra B = 〈A, G〉 is known as a reduct of A.

Proposition 2.3 Let A be an algebra and k > 0.

(i) The strong k-intersection property implies the k-intersection property, which im-

plies the k-complete intersection property.

(ii) If A fails one of these properties, then any reduct of it does as well.

(iii) If A has a constant term, then A satisfies the k-intersection property.

(iv) If A satisfies the k-intersection property, then so does every algebra in HSP(A). If

A satisfies the k-complete intersection property, then so does every quotient and

cartesian power of A.

Proof The proofs of these claims are elementary and are left to the reader.

Example 2.4 (E. Kiss) Define A to be the algebra on {0, 1, 2} with a single ternary

basic operation p(x, y, z) defined by: p(x, y, y) = x · y and p(x, y, z) = z otherwise,

where x · y is the operation:

· 0 1 2

0 0 1 0

1 0 1 1

2 2 2 2

.

It can be shown directly, or by using results from [14], that A satisfies the 2-

complete intersection property. Since A has a two element subalgebra (with universe

{0, 1}) that is term equivalent to a set, then this example demonstrates that the class

of algebras that satisfy the k-complete intersection property for some k ≥ 2 is not

closed under taking subalgebras.

The following proposition exhibits some relevant examples.

Definition 2.5 (i) For k > 2, a k-ary function f on a set A is a near unanimity

function if for all x, y ∈ A, the following equalities hold:

f (x, x, . . . , x, y) = f (x, x, . . . , x, y, x) = · · · = f (y, x, . . . , x) = x.

A k-ary term t of an algebra A is a near unanimity term of A if the function tA

is a near unanimity function on A.

(ii) A function f on a set A is idempotent if for all x ∈ A,

f (x, x, . . . , x) = x.

An algebra A is idempotent if all of its term operations are idempotent. The

idempotent reduct of an algebra A is the algebra with universe A and with basic

operations the set of all idempotent term operations of A.

Note that if A is an idempotent algebra and α is a congruence of A, then every α-

class is a subuniverse of A. In fact, this property characterizes the idempotent algebras

(just apply it to the congruence 0A).
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Proposition 2.6 (i) If A has a k-ary near unanimity term (for k > 2), then it

satisfies the strong (k − 1)-intersection property.

(ii) If A is the idempotent reduct of a module or is term equivalent to a set, then A fails

the k-complete intersection property for every k > 0.

(iii) If A is the 2 element meet semi-lattice, then it fails the strong k-intersection prop-

erty for all k > 0.

Proof The first claim is a direct consequence of a result of Baker and Pixley. From

[1, Theorem 2.1] it follows that if A has a k-ary near unanimity term and B is a

subalgebra of An then the only subuniverse of An that is (k − 1)-equal to B is B.

Suppose that A is the idempotent reduct of the module M over the ring R and let

k > 0. Consider the submodule E of Mk+1 with universe

{(m1, . . . , mk+1) :
∑

1≤i≤k+1

mi = 0}.

Let c ∈ M with c 6= 0 and define O to be the set {(m1, . . . , mk+1) :
∑

1≤i≤k+1 mi = c}.

Then O is a coset of E in Mk+1 that is disjoint from E. It is not hard to see that E =k O

as subsets of Mk+1, and that in fact they are both k-complete. It is also straightforward

to show that E and O are subuniverses of Ak+1, since A is the idempotent reduct of

M. From this it follows that A fails the k-complete intersection property. Since any

reduct of A also fails this property, then it follows that any algebra term equivalent to

a set also fails this property.

Let S be the 2 element meet semi-lattice on {0, 1} and k > 1. Let S1 = Sk \ {σ :

σ is a co-atom of Sk} and S2 = Sk \ {〈1〉} (where 〈1〉 is the top element of Sk). It is

not hard to show that both S1 and S2 are subuniverses of Sk and that both are (k−1)-

complete. The intersection of S1 and S2 is not (k − 1)-complete since it contains no

co-atom of Sk nor the element 〈1〉.

In this paper, for finite idempotent algebras, we will correlate these intersection

properties with some more familiar properties of finite algebras.

Definition 2.7 An algebra A is said to be congruence distributive if its congruence

lattice satisfies the distributive law. A class of algebras is congruence distributive if all

of its members are.

For k > 0, A is in the class CD(k) if it has a sequence of ternary terms pi (x, y, x),

0 ≤ i ≤ k that satisfies the identities:

p0(x, y, z) = x pi(x, x, y) = pi+1(x, x, y) for all i even

pk(x, y, z) = z pi (x, y, y) = pi+1(x, y, y) for all i odd.

pi(x, y, x) = x for all i

Note that an algebra is in CD(1) if and only if it has size 1 and is in CD(2) if and

only if it has a ternary near unanimity term (a majority term). A sequence of terms

of an algebra A that satisfies the above equations will be referred to as Jónsson terms

of A. The following celebrated theorem of Jónsson relates congruence distributivity

to the existence of Jónsson terms.
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Theorem 2.8 (Jónsson) An algebra A generates a congruence distributive variety if

and only if A is in CD(k) for some k > 0.

The proof of this theorem can be found in any standard reference on universal

algebra, for example [6]. Some of the results contained in this paper deal with local

invariants of finite algebras developed by Hobby and McKenzie that form part of

Tame Congruence Theory. Details of this theory may be found in [10] or [7]. In this

paper we will only introduce some of the basic terminology of the theory and will

omit most details.

In Tame Congruence Theory, five local types of behaviour of finite algebras are

identified and studied. The five types are, in order:

1. the unary type,

2. the affine or vector-space type,

3. the 2 element Boolean type,

4. the 2 element lattice type,

5. the 2 element semi-lattice type.

For 1 ≤ i ≤ 5, we say that an algebra A omits type i if, locally, the corresponding type

of behaviour does not occur in A. A class of algebras C is said to omit type i if all

finite members of C omit that type. Then typ(A) denotes the set of types that occur

in A and typ(C) denotes the union of typ(A) over all finite A ∈ C.

If A is a finite simple algebra then one can speak of its type (rather than its type

set), since it is shown by Hobby and McKenzie that the local behaviour of a finite

simple algebra is uniform. So, for A finite and simple, typ(A) = {i} for some i and

we say that A has type i.

The following theorem is the main result of this paper and will be proved over the

next two sections.

Theorem 2.9 Let A be a finite algebra.

(i) If A generates a congruence distributive variety then it satisfies the 2-complete in-

tersection property.

(ii) If A is idempotent and satisfies the k-intersection property for some k > 0 then

HSP(A) omits types 1 and 2.

(iii) If A is idempotent and satisfies the strong k-intersection property for some k > 0

then HSP(A) omits types 1, 2 and 5.

3 Omitting Types

Consider the usual ordering on the set of possible types of a finite algebra, i.e.,

1 < 2 < 3 > 4 > 5 > 1.

This order corresponds to the relative strength of the set of operations on the alge-

bras associated with each of the five different local types. For example the 2 element

Boolean algebra has a lattice reduct and a vector space reduct, hence 2, 4 < 3.

The following proposition is a generalization of [4, Proposition 4.14] in the type 1

case. It also generalizes the corresponding type 1, 2 result worked out with B. Larose.
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An algebra is strictly simple if it is simple and has no proper subuniverse with more

than 1 element.

Proposition 3.1 Let A be a finite idempotent algebra. If i is in typ(HSP(A)), then for

some j ≤ i there is a finite strictly simple algebra of type j in HS(A).

Proof Suppose that i ∈ typ(HSP(A)). If i = 3, then there is nothing to prove, since

HS(A) contains a strictly simple algebra. If i 6= 3, we first show that the variety

generated by A contains a strictly simple algebra of type j for some j ≤ i. Since

i ∈ typ(HSP(A)), we can find a finite B ∈ HSP(A) of minimal size whose type set

contains j for some j ≤ i. By the minimality of |B|, it follows that there is some

congruence 0B ≺ β of B with typ(〈0B, β〉) = j.

Let C ⊆ B be a nontrivial β-class. Since A, and hence B, is idempotent, C is a

subuniverse of B. If j = 2 (or 1) then β is an abelian (or strongly abelian) congruence

and so the algebra C is abelian (or strongly abelian). Unless C = B we obtain a

contradiction to the minimality of |B|, and so we have that β = 1B and hence that B

is a finite simple abelian (or strongly abelian) algebra. It is now elementary to show

that HS(B) contains a strictly simple algebra of type 2 or 1, but it follows by the main

result of [18] that B itself is strictly simple.

The remaining cases are when j = 4 or 5. Let N = {0, 1} be a 〈0B, β〉-trace

of B contained in C; let ν be the congruence of C generated by N2, and let µ be a

congruence of C that is covered by ν. We claim that typ(〈µ, ν〉) ≤ j. Let M be a

〈µ, ν〉-trace. Then there is a unary polynomial p(x) of C that maps N into M with

(p(0), p(1)) /∈ µ. As p is the restriction to C of some unary polynomial p ′(x) of B, it

follows that N ′
= {p(0), p(1)} is a 〈0B, β〉-trace contained in M.

As C is a subuniverse of B, the polynomial clone of C|N ′ is contained in the poly-

nomial clone of B|N ′ . We can rule out typ(〈µ, ν〉) = 2 or 3 since in either case, M

supports a polynomial that maps p(0) to p(1) and p(1) to p(0). In the type 3 case,

the trace M consists of exactly two elements (and so is equal to N ′) and has a unary

polynomial that acts as boolean complementation. If typ(〈µ, ν〉) = 2, then C|M has a

Mal’cev polynomial d(x, y, z) and the unary polynomial d(p(0), x, p(1)) has the de-

sired property. In either case, the restriction of this polynomial to N ′ belongs to the

polynomial clone of C|N ′ but cannot be contained in the polynomial clone of B|N ′ ,

since typ(〈0B, β〉) = 4 or 5. So, if j = 4, then typ(〈µ, ν〉) ≤ j.

Finally, if j = 5 then typ(〈µ, ν〉) cannot equal 4 since then both traces M and N ′

consist of exactly two elements (and so are equal), and hence B|N ′ would support

both lattice meet and join operations, contrary to j = 5. Note that the essential

fact used in this part of the argument is that C is a subuniverse of B that contains a

〈0B, β〉-trace.

We have established that typ(〈µ, ν〉) ≤ j, and so by the minimality of B we con-

clude that C = B, implying that B is a simple algebra of type j.

By the previous argument and the minimality of B we can conclude that no proper

subuniverse of B contains a B-minimal set, and so the subuniverse generated by any

B-minimal set is B. From this it follows that every two-element subset of B is a B-

minimal set. To see this, let a 6= b in B. Since B is simple of type 4 or 5, then there

is a B-minimal set {0, a} for some element 0 ∈ B. We have just concluded that

{0, a} generates all of B, and so there is a term t(x, y) of B with t(0, a) = b. Since
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B is idempotent, we have that t(a, a) = a, and so the polynomial t(x, a) maps the

minimal set {0, a} to the set {a, b}, establishing that {a, b} is a B-minimal set. Thus,

B is strictly simple.

So, we have established that for some j ≤ i, HSP(A) contains a strictly simple

algebra of type j. If j = 3 or 4, then we can use [10, Lemma 14.4] to conclude

that HS(A) contains a strictly simple algebra of type j. The following elementary

argument handles all cases including these two but makes use of the idempotency of

A. It is essentially the argument found in the proof of [4, Proposition 4.14]. To show

that HS(A) contains a strictly simple algebra of type j for some j ≤ i, let n > 0 be

minimal with respect to the property that HS(An) contains such an algebra. We wish

to show that n = 1. Assume that n > 1 and let B ⊆ An be a subuniverse of An and θ
a congruence of B with S = B/θ a strictly simple algebra of type j ≤ i.

By the minimality of n it follows that the projection of B onto its first coordinate

is a subalgebra A ′ of A that contains more than one element. For each a ∈ A ′, let Ba

be the subset of B consisting of all elements whose first coordinate is equal to a. Since

B is idempotent, it follows that Ba is a subuniverse of B. If for some a ∈ A ′, Ba is not

contained in a θ-block, then modulo the restriction of θ to Ba, we obtain a nontrivial

subuniverse of S. Since S is strictly simple, we have that S must be a quotient of Ba,

contradicting the minimality of n.

So each Ba is contained in some θ-block. Thus, the kernel of the projection of B

onto A ′ is a congruence contained in θ. From this it follows that A ′ has a quotient

isomorphic to S. This final contradiction concludes the proof of this proposition.

Theorem 3.2 of [2] provides examples that show the necessity of idempotency in

the previous proposition. Another example due to McKenzie can be found described

in [13], in which E. Kiss observes that if A is a finite algebra that generates a congru-

ence modular variety then the type set of the variety coincides with the set of types

that appear in the subalgebras of A.

Corollary 3.2 Let A be a finite idempotent algebra, and let T be some set of types

closed downwards with respect the ordering on types. Then HSP(A) omits the types in

T if and only if HS(A) does. In particular, HSP(A) omits types 1 and 2 if and only if

HS(A) does.

If HSP(A) fails to omit the types in T, then for some j ∈ T there is a strictly simple

algebra in HS(A) of type j.

Corollary 3.3 Let T be a set of types closed downwards with respect to the ordering on

types. The problem of determining which finite idempotent algebras generate varieties

that omit the types in T can be solved in polynomial time as a function of the size of the

algebra.

Proof Given T and a finite idempotent algebra A, to determine if HSP(A) omits the

types in T it suffices to determine whether HS(A) contains a strictly simple algebra

of type j for some j ∈ T. If this occurs, then there is some 2-generated subalgebra

of A whose type set includes j since every strictly simple algebra is 2-generated. The

paper [2] provides a polynomial time algorithm to determine the type set of a given

finite algebra and so to test whether HSP(A) omits the types in T we need only apply

this algorithm to all 2-generated subalgebras of A.
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This result is used in a paper with Ralph Freese [9] that, among other things, es-

tablishes that there is a polynomial time algorithm to determine if a finite idempotent

algebra generates a congruence modular, distributive, or permutable variety.

Theorem 3.4 Let A be a finite idempotent algebra. If 1 or 2 ∈ t y p{HSP(A)}, then

for every k > 0, A fails the k-intersection property. In fact, some subalgebra of A fails

the k-complete intersection property for all k > 0.

Proof If 1 or 2 appears in the type set of the variety generated by A, then by Corol-

lary 3.2, there is a finite strictly simple abelian algebra S in HS(A). By a result of

A. Szendrei [17], if S is of type 1, then S is term equivalent to a set. On the other

hand, she shows that if S is of type 2, then S is term equivalent to the idempotent

reduct of a module M over some finite ring R. Part (ii) of Proposition 2.6 can be

used to conclude that in either case, S fails the k-complete intersection property for

all k > 0.

Since S is in HS(A), S is isomorphic to a quotient of some subalgebra B of A.

From Proposition 2.3 it follows that for all k > 0, B fails the k-complete intersection

property and A fails the k-intersection property.

Theorem 3.5 If A is a finite idempotent algebra with 1, 2 or 5 ∈ typ{HSP(A)}, then

for all k > 0, A fails the strong k-intersection property. In fact, there is some subalgebra

of B of A such that for all k > 0, the intersection of all k-complete subuniverses of Bk+1

fails to be k-complete.

Proof The previous theorem handles the case when 1 or 2 appears in the type set

of the variety generated by A. If HSP(A) omits types 1 and 2 but 5 appears, then by

Proposition 3.1 HS(A) contains a strictly simple idempotent algebra S of type 5. Ac-

cording to Szendrei’s characterization of idempotent strictly simple algebras found in

[17], it follows that S is term equivalent to the 2 element meet-semilattice 〈{0, 1},∧ 〉.
Using Proposition 2.3(iv), the result then follows from part (iii) of Proposition 2.6.

4 Congruence Distributive Varieties

In order to prove part (i) of Theorem 2.9 it suffices to consider finite algebras whose

basic operations consist of a sequence of Jónsson terms. This follows from part (ii)

of Proposition 2.3. So, for this section, let A be a finite algebra whose only basic

operations consist of pi (x, y, z) for 0 ≤ i ≤ n and which satisfy the Jónsson identities:

p0(x, y, z) = x pi (x, x, y) = pi+1(x, x, y) for all i even

pn(x, y, z) = z pi(x, y, y) = pi+1(x, y, y) for all i odd

pi (x, y, x) = x for all i

Definition 4.1 For 1 ≤ j ≤ n, and X ⊆ A, define J j(X) to be the smallest subuni-

verse Y of A containing X and satisfying the following:

• for all u ∈ A and c ∈ Y , p j(u, u, c) ∈ Y , if j is odd
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• and p j(u, c, c) ∈ Y if j is even.

Call J j(X) the j-th Jónsson ideal of A generated by X.

A subset of the form J j (X) is called a j-Jónsson ideal. Call the algebra A j-minimal

if it contains no proper non-empty j-Jónsson ideal.

Proposition 4.2 For each a ∈ A, J1({a}) = A and hence A is 1-minimal. For

every X ⊆ A, Jn(X) is the subuniverse of A generated by X. In particular, for a ∈ A,

Jn({a}) = {a}.

We prove something more general than is needed to establish part (i) of Theo-

rem 2.9. Let V be the variety generated by A.

Lemma 4.3 Let m > 0 and Ai be finite members of V for 1 ≤ i ≤ m. Let 1 ≤
j < n and assume that for each i, Ai is j-minimal. Let B be a 2-complete subalgebra

of
∏

1≤i≤m Ai . If for each i, Ji is a ( j + 1)-Jónsson ideal of Ai , then B ∩
∏

1≤i≤m Ji is a

2-complete subuniverse of
∏

1≤i≤m Ji . In fact, for every 1 ≤ u < v ≤ m and a ∈ Au,

b ∈ Av there is σ ∈ B with σ(u) = a, σ(v) = b and σ(i) ∈ Ji for all i /∈ {u, v}.

Proof We prove this by induction on m. By 2-completeness, the property holds for

m = 2. Assume the property holds for m and let B be a 2-complete subalgebra of∏
1≤i≤m+1 Ai . By symmetry it suffices to show that if a ∈ A1 and b ∈ A2, then there

is some σ ∈ B with σ(1) = a, σ(2) = b and σ(i) ∈ Ji for all i > 2.

Define Ba to be the set of σ ∈ B with σ(1) = a, and σ(i) ∈ Ji for 2 < i ≤ m + 1.

Note that Ba is a subuniverse of B and is non-empty since, if c ∈ Jm+1, then by

induction there is some µ ∈ B with µ(1) = a, µ(m + 1) = c and µ(i) ∈ Ji for

2 < i ≤ m.

Let I be the projection of Ba onto the coordinate 2. We claim that I is a j-Jónsson

ideal of A2. Since I is non-empty and A2 is assumed to be j-minimal it follows that

I = A2. Our result follows from this. To prove the claim we need to show that if c ∈ I

and u ∈ A2, then p j(u, u, c) ∈ I if j is odd and p j(u, c, c) ∈ I if j is even.

Let σ ∈ Ba with σ(2) = c. By induction there is an element µ ∈ B with µ(1) = a,

µ(2) = u, and µ(i) ∈ Ji for all 2 < i < m + 1. Let σ(m + 1) = v ∈ Jm+1 and

µ(m + 1) = z ∈ Am+1. Let ν ∈ B be any element with ν(i) ∈ Ji for 2 < i < m + 1

and with ν(2) = u and ν(m + 1) = v if j is odd and ν(2) = c and ν(m + 1) = z if j

is even. By induction, such an element exists.

We claim that the element τ = p j (µ, ν, σ) ∈ Ba. This will complete the proof,

since then τ(2) ∈ I and by design τ(2) = p j(u, u, c) if j is odd and τ(2) = p j(u, c, c)

if j is even. Using the identity p j(x, y, x) = x it follows that τ(1) = a. For 2 < i <
m + 1, τ(i) = p j (x, w, y) for some elements x, w, and y ∈ Ji and so belongs to Ji .

τ(m + 1) = p j(z, v, v) = p j+1(z, v, v) ∈ Jm+1 if j is odd and τ(m + 1) = p j(z, z, v) =

p j+1(z, z, v) ∈ Jm+1 if j is even. So, in either case we have established that τ ∈ Ba.

Theorem 4.4 Let m > 0 and Ai be finite members of V. Then the intersection of all

2-complete subuniverses of
∏

1≤i≤m Ai is non-empty.

Proof We prove this by induction on the sum s of the cardinalities of the Ai ’s . For

s = m the result holds trivially since then each Ai has size 1. Assume that s > m and
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that we have established the result for all smaller sums. As noted earlier, each Ai is

1-minimal, and so we can choose j ≤ n maximal with the property that each Ai is

j-minimal. Since all n-minimal algebras in V have cardinality 1, we have that j < n.

For each 1 ≤ i ≤ m, let Ji be a ( j + 1)-Jónsson ideal of Ai so that at least one of the

Ji is proper, say | J1| < |A1|. By induction, the intersection C of all 2-complete sub-

universes of
∏

1≤i≤m Ji is non-empty. If D is a 2-complete subalgebra of
∏

1≤i≤m Ai ,

then by the previous lemma D∩
∏

1≤i≤m Ji is a 2-complete subuniverse of
∏

1≤i≤m Ji ,

since each Ai is j-minimal. Then C ⊆ D ∩
∏

1≤i≤m Ji ⊆ D. This completes the

proof.

Corollary 4.5 If A is a finite algebra that generates a congruence distributive variety,

then A satisfies the 2-complete intersection property.

Corollary 4.6 Let m > 0 and Ai be (n− 1)-minimal finite members of V for 1 ≤ i ≤
m. Then

∏
1≤i≤m Ai is the only 2-complete subuniverse of

∏
1≤i≤m Ai .

Proof For each 1 ≤ i ≤ m, choose an element ai ∈ Ai . Since each Ai is (n − 1)-

minimal and each {ai} is an n-Jónsson ideal then by the lemma we conclude that

every 2-complete subuniverse of
∏

1≤i≤m Ai contains the element (a1, . . . , am). Since

the ai were chosen arbitrarily, the result follows.

5 Connections with the Constraint Satisfaction Problem

The class of constraint satisfaction problems provides a framework in which a wide

number of familiar complexity classes can be specified. There are a number of ex-

cellent surveys of this class, in particular [4]. Starting with the paper by Feder and

Vardi [8] and continuing with the work of Jeavons, Bulatov, Krokhin, and others ([5]

for example) an interesting connection has been developed between the constraint

satisfaction problem (CSP) and universal algebra. In this section we will give a brief

overview of the constraint satisfaction problem and then tie in the results from the

previous sections with the CSP.

Definition 5.1 An instance of the Constraint Satisfaction Problem (CSP) is a triple

P = (V, A, C) with

• V a non-empty, finite set of variables,
• A a non-empty, finite domain,
• C a set of constraints {C1, . . . ,Cq} where each Ci is a pair (~si , Ri) with

– ~si a tuple of variables of length mi , called the scope of Ci , and

– Ri a subset of Ami , called the constraint relation of Ci .

Given an instance P of the CSP we wish to answer the following question:

Is there a solution to P, i.e., does there exist a function f : V → A such that for

each i ≤ q, the mi-tuple f (~si) ∈ Ri?

In general, the class of CSPs is NP-complete, but by restricting the nature of the

constraint relations that are allowed to appear in an instance of the CSP, it is possible

to find natural subclasses of the CSP that are tractable.
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Definition 5.2 Let A be a domain and Γ a set of finitary relations over A. CSP(Γ)

is the collection of all instances of CSP with domain A and with constraint relations

coming from Γ. Γ is called the constraint language of the class CSP(Γ).

Definition 5.3 Call a constraint language Γ globally tractable if the class of problems

CSP(Γ) is tractable, i.e., there is a polynomial time algorithm that solves all instances

of CSP(Γ). If each finite subset Γ
′ of Γ is globally tractable, then we say that Γ is

tractable.

Γ is said to be NP-complete if the class of problems CSP(Γ) is NP-complete.

A key problem in this area is to classify the (globally) tractable constraint lan-

guages. One approach to this problem is to consider constraint languages that arise

from finite algebras in the following manner.

Definition 5.4 For A a finite algebra, define ΓA to be the constraint language over

the domain A consisting of all subuniverses of finite cartesian powers of A.

We call an algebra A (globally) tractable if the language ΓA is.

The work of Jeavons and others [11] provides a reduction of the tractability prob-

lem for constraint languages to the problem of determining those finite idempotent

algebras A for which ΓA is (globally) tractable, and much work has been done on the

CSP in this algebraic setting.

One particular method for establishing the tractability of a constraint language is

via local consistency properties. While a number of useful notions of local consis-

tency have been studied, in this paper we will deal with one proposed by Bulatov and

Jeavons [4] known as finite relational width.

Definition 5.5 For k > 0, an instance P = (V, A, C) of the CSP is k-minimal if:

• every k-element subset of variables is within the scope of some constraint in C,
• for every set I of at most k variables and every pair of constraints Ci = (si , Ri)

and C j = (s j , R j) from C whose scopes contain I, the projections of the constraint

relations Ri and R j onto I are the same.

While the following definition and theorem apply to a wider class of constraint

languages, to avoid some technical matters we will only present them in the algebraic

setting.

Definition 5.6 An algebra A has relational width k if whenever P is a k-minimal

instance of CSP(ΓA) whose constraint relations are all non-empty then P has a solu-

tion. A has bounded relational width if it has relational width k for some k.

We note that if A is a finite algebra of relational width k then this property is

preserved by taking cartesian powers, subalgebras and homomorphic images and so

every finite member of HSP(A) has relational width k.

We say that two instances of the CSP are equivalent if they have the same set of

solutions.
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Theorem 5.7 (see [4]) Let A be a finite algebra.

(i) For a fixed k, any instance of CSP(ΓA) can be converted into an equivalent

k-minimal instance of CSP(ΓA) in polynomial time.

(ii) If A is of bounded relational width, then it is globally tractable.

A problem closely related to the problem of classifying the globally tractable con-

straint languages or idempotent algebras is that of classifying the constraint languages

or idempotent algebras of finite relational width.

Using a different notion of width, Larose and Zádori [15] show that if a finite

idempotent algebra has finite width, then the variety that it generates omits types 1

and 2. For this notion of width they conjecture that the converse is true. In [3], Bu-

latov establishes something similar for constraint languages having finite relational

width and also conjectures that the converse is true. He does not make explicit men-

tion of the tame congruence theoretic types, but rather makes use of a related local

analysis of finite algebras.

We can use Theorem 2.9 to prove something similar to (but implied by) the

Larose–Zádori result.

Lemma 5.8 Let A be a finite idempotent algebra. If A has relational width k for some

k > 0, then A satisfies the k-intersection property.

Proof Let n > 0 and let B be a subalgebra of An. Let PB be the instance of CSP(ΓA)

with variables xi , 1 ≤ i ≤ n, domain A and, for each subuniverse S of An with B =k S,

the constraint CS having scope (x1, x2, . . . , xn) and constraint relation S. Since each

constraint relation of PB is a non-empty subalgebra of An, then it is in CSP(ΓA). It is

not hard to check that PB is also k-minimal and so has a solution, since A is assumed

to have relational width k.

A solution of PB is an n-tuple in An that lies in each subuniverse S of An that is

k-equal to B and so is in
⋂

[B]k. This establishes that A satisfies the k-intersection

property.

Theorem 5.9 Let A be a finite idempotent algebra. If A is of finite relational width,

then HSP(A) omits types 1 and 2.

Using results from [10] we present an alternate proof of part (ii) of Theorem 2.9

and of Theorem 5.9 that avoids using the material from Section 3.

Let A be a finite idempotent algebra that has relational width k for some k > 0.

Then by Lemma 5.8 A satisfies the k-intersection property. We will use [10, Lemma

9.2] to show that V = HSP(A) omits types 1 and 2. Suppose not, and assume that

2 appears in the typeset of V. Then we can find a finite algebra C in V that has a

congruence β with 0C ≺ β and typ(〈0C , β〉) = 2. If we select some 〈0C , β〉-trace S,

then it follows that the algebra C|S is polynomially equivalent to a one-dimensional

vector space over some finite field F.

We now construct a special Mal’cev condition (see [10, Definition 9.1]) WF that

is interpretable in V but not in the variety of all F-vector spaces, and hence not in-

terpretable in HSP(CIS), the variety generated by C|S with normal indexing (see [10,

Definition 6.12]). This will contradict [10, Lemma 9.2].
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Let W = Fk+1 be the k + 1 dimension vector space over F and let E be the subspace

of W consisting of all tuples whose entries sum to 0. Let D be some disjoint coset of

E in W . Note that E and D are both k-equal to Fk+1.

Let B be the free algebra in V generated by F (so we think of the elements of F as

free generators in B). Let E ′ be the subpower of Bk+1 generated by the set E and let

D′ be the subpower of Bk+1 generated by D. The subuniverses E ′ and D ′ are k-equal

since their generators have this property.

Since A satisfies the k-intersection property, then B does, and so the intersection

of E ′ and D ′ is non-empty. Since E′ and D ′ are generated by E and D respectively,

there are two terms s and t of V that witness this, i.e., when s is applied to E and t is

applied to D we obtain the same element in Bk+1. Since the components of the tuples

in E and D are free generators of B this equality of tuples in Bk+1 translates as a set

of k + 1 equations involving the terms s and t that hold in V. This system can be

viewed as a special Mal’cev condition WF that is interpretable in V. WF cannot be

interpreted into the variety of F-vector spaces since by applying the interpretation of

s and t as idempotent F-vector space terms to the elements of E and D in W would

lead to an element in the intersection of the disjoint sets E and D.

That V omits type 1 follows from [10, Lemma 9.4] and the fact that for any fi-

nite field F, the special Mal’cev condition WF is interpretable in V but not in Sets,

the variety of all sets. What this argument actually establishes is that V satisfies the

following condition:

• for every finite field F there is a special Mal’cev condition WF that is interpretable

into V but not into the variety of all F-vector spaces,

and that this condition implies that V omits types 1 and 2. Note that this condition

is implied by (2) in [10, Theorem 9.10] and hence is equivalent to it.

6 Conclusion

Part (i) of Theorem 2.9 provides a partial converse to part (ii) of the theorem. In light

of the conjectures of Larose and Zádori and of Bulatov and the connection between

the k-intersection property and the CSP, we propose the following two conjectures.

Conjecture 1 Let A be a finite idempotent algebra such that HSP(A) omits types 1

and 2. Then for some k > 0, A satisfies the k-intersection property.

Conjecture 2 Let A be a finite idempotent algebra such that HSP(A) omits types 1,

2, and 5. Then for some k > 0, A satisfies the strong k-intersection property.

Note that Theorems 3.4 and 3.5 provide converses to these conjectures.

Question 3 Assuming that A is finite, idempotent, and generates a congruence

distributive variety, is there any relationship between the least k for which A is in

CD(k) and the least m for which A has relational width m, assuming that such an m

exists?

In connection with this question, we note that E. Kiss and the author have shown
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that if a finite idempotent algebra is in CD(3) (and so has a sequence of four Jónsson

terms), then A satisfies the strong 2-intersection property. We also show that such an

algebra has relational width |A|2 and hence is globally tractable [14].

It is not the case that every finite algebra with Jónsson terms satisfies the strong

2-intersection property. It is possible to construct a four element algebra having a

5-ary near unanimity term for which the strong 2-intersection property fails. Nev-

ertheless, by the Baker–Pixley Theorem it follows that the algebra satisfies the strong

4-intersection property and in fact, by the main result of [12] we know that the alge-

bra has relational width 4.
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