
11 
The spin of the nucleon: polarized 

deep inelastic scattering 

11.1 Introduction 

The static or low energy properties of the 'lighter' baryons (the nucleons 
and the hyperons and their resonances) are quite well explained in the 
constituent quark model, in which a baryon is visualized as made up of 
three constituent quarks (up, down and strange) with masses typically of 
about one third of the nucleon mass (see, for example, Close, 1979). In this 
picture the properties of the baryons are calculated using a non-relativistic 
Schrodinger equation or some more sophisticated version thereof. But the 
essential point for our discussion is that an unexcited baryon corresponds 
to the ground state of the three-particle system in which all the quarks 
are in relative s-states with zero orbital angular momentum and with no 
explicit role being played by any gluonic degrees of freedom. 

As a consequence the spin of the baryon is equal to the sum of the 
spins of its constituent quarks. For a baryon moving along the Z -axis 
with helicity A= 1/2 one would thus expect to have 

'""'squarks = 1 
~ z 2' (11.1.1) 

where the sum is over the flavours of quark present in the baryon. 
At the other end of the scale, for high energy interactions involving 

large momentum transfers, a baryon is visualized as made up of point­
like constituents, partons, consisting of quarks and gluons. The partonic 
quarks have the same internal quantum numbers as the constituent quarks, 
but very different effective masses (mu ~ 4 MeV jc2, rna ~ 7 MeV jc2, 

ms ~ 125-150 MeV jc2). The gluons are massless and mediate the strong 
force between the quarks. Originally this was a purely phenomenological 
picture but was later subsumed into the beautiful gauge theory of strong 
interactions, QCD (see, for example, Leader and Predazzi, 1996). 
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11.2 Deep inelastic scattering 299 

The precise relation between constituent quarks and partonic quarks is 
not known and, as we shall see, experiments on polarized deep inelastic 
scattering (DIS) raise intriguing questions as to how the spin of a baryon 
is related to the spins of its partonic quarks. In particular the analogue of 
(11.1.1) is now known to be significantly violated. 

This experimental discovery of the European Muon Collaboration 
(EMC) at CERN in 1988 (Ashman et al., 1988, 1989) came as a great 
surprise and catalysed a major programme of experimental investigation 
and a host of papers on the theoretical aspects of the problem, with some 
results as surprising as the experimental one had been. 

Since high energy large-momentum-transfer interactions between 
baryons are determined by the QCD-controlled interaction of their con­
stituents it is clearly of the greatest importance to know what the structure 
of a baryon is in term of its partonic quarks and gluons. This structure 
cannot be studied easily by theoretical methods since it involves the non­
perturbative regime of a strong interaction field theory. Consequently 
one relies on information gleaned from experimental studies in which 
the hadron is probed by hard photons or W and Z bosons. The prime 
example is DIS, to which we now turn. 

11.2 Deep inelastic scattering 

Deep inelastic lepton-hadron scattering has played a seminal role in 
the development of our present understanding of the substructure of 
elementary particles. The discovery of Bjorken scaling in the late 1960s 
provided the critical impetus for the idea that elementary particles contain 
almost point-like constituents and for the subsequent invention of the 
parton model, in which the reaction (Fig. 11.1) 

(11.2.1) 

Fig. 11.1. Feynman diagram for inelastic lepton-nucleon scattering 
lN ~ lX. 
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300 11 The spin of the nucleon 

Fig. 11.2. Partonic interpretation of the lower part of the diagram in 
Fig. 11.1. 

is viewed, as shown in Fig. 11.2, as the interaction of a hard virtual photon 
with a parton constituent of the nucleon. ('Hard' will mean Q2 = -q2 ~ 
M2, where M is the nucleon mass.) 

DIS continued to play an essential role in the period of consolida­
tion that followed, in the gradual linking of partons and quarks, in the 
discovery of the existence of missing constituents, later identified as glu­
ons, and in the wonderful confluence of all the different parts of the 
picture into a coherent dynamical theory of quarks and gluons-quantum 
chromodynamics (QCD). 

In more recent times the emphasis has shifted to the detailed study of 
the x-dependence of the parton distribution functions and to the study 
of their Q2-evolution, probably the most direct test of the perturbative 
aspects of QCD. 

Polarized DIS, involving the collision of a longitudinally polarized lep­
ton beam on a polarized target (either longitudinally or transversely po­
larized) provides a different, complimentary and equally important insight 
into the structure of the nucleon. Whereas ordinary DIS probes simply 
the number density of partons with a fraction x of the momentum of the 
parent hadron, polarized DIS can partly answer the more sophisticated 
question about the number density of partons with given x and given spin 
polarization, in a hadron of definite polarization. 

But what is quite extraordinary and unexpected ab initio is the richness 
and subtlety of the dynamical effects associated with the polarized case. 
Whereas the unpolarized scaling functions F1,2(x) have a simple inter­
pretation in the naive parton model (where the nucleon is considered as 
an ensemble of essentially free massless partons) and a straightforward 
generalization in the framework of perturbative QCD, the spin-dependent 
scaling functions g1,2(x) are much more subtle, each fascinating in its 
own way. The function g1(x), which, at first sight, seems trivial to deal 
with in the naive parton model, turns out to have an anomalous gluon 
contribution associated with it, within perturbative QCD. In addition the 
first moment of g1(x) turns out to be connected with an essentially non­
perturbative aspect of QCD, the axial ghost that is invoked to resolve the 
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U(1) problem of the mass of the rf'. And gz(x) turns out not to have any 
interpretation at all in purely partonic language. 

What is also fascinating is the extraordinary interplay of theory and 
experiment in the study of g1(x). For a long time the theory of g1(x) 
remained comfortably at the level of the naive parton model. Then, in 
1988, came the disturbing result of the EMC, which differed significantly 
from the naive theoretical predictions. These results could be argued to 
imply that the expectation value of the sum of the spins carried by the 
quarks in a proton, (SJuarks), was consistent with zero rather than with 
1/2 as given in the quark model, suggesting a 'spin crisis in the parton 
model' (Leader and Anselmino, 1988). This led to an intense scrutiny of 
the basis of the theoretical calculation of g1(x) and the discovery of the 
anomalous gluon contribution (Efremov and Teryaev, 1988). (As often 
happens in theoretical physics it turns out that such an effect had already 
been studied to some extent in a largely overlooked paper of 1982 (Lam 
and Li, 1982).) So surprising was this discovery that the calculation was 
immediately checked by three different groups (Altarelli and Ross, 1988; 
Carlitz, Collins and Mueller, 1988; Anselmino and Leader, 1988), who all 
arrived at the same result. (Somewhat fortuitously, as it turns out, as was 
demonstrated in Carlitz et al.) 

In the modified theoretical picture, the quantity ~I:= 2(SJuark), whose 
value had to be consistent with zero as a consequence of the EMC 
experiment, is replaced by the linear combination (for three flavours) 
~I: - (3as/2n)~g, where ~g = J~ dx~g(x) and ~g(x) is the polarized 
gluon number density. 

It has to be stressed that as a consequence of QCD a measurement of 
the first moment of g1(x) does not measure the z-component of the sum of 
the quark spins. It measures only the superposition (1/9) [~I:- 3a5~g/2n] 
and this linear combination can be made small by a cancellation between 
quark and gluon contributions. Thus the EMC results cease to imply that 
~I: is small. 

The function gz(x), however, does not have any simple interpretation 
in the naive parton model and it is a triumph of perturbative QCD 
that one can derive a sensible, gauge-invariant, result for it in the QCD 
field-theoretic model (Efremov and Teryaev, 1984). 

In the following we shall concentrate almost exclusively on the polarized 
case. A good survey of the unpolarized case can be found in the review by 
Altarelli (1982) or, at a more introductory level, in Leader and Predazzi 
(1996). 

For lack of space we shall also restrict our discussion almost entirely 
to neutral current interactions of the type (11.2.1), where the lepton is an 
electron or muon and the particle exchanged between the lepton and the 
hadron is a virtual photon. For very large Q2, Z 0-exchange must also be 
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taken into account, but for the spin-dependent case of interest the present 
generation of experiments does not require that. Also of importance are 
the charged current reactions of the type.1 

z- +N-+ v1 +X, (11.2.2) 

which will be studied by the HERMES group at HERA. For a detailed 
discussion of these matters and the extension to nuclear targets, the reader 
should consult the review article of Anselmino, Efremov and Leader 
(1995). 

Finally, a word about notation. In this chapter, in order to follow the 
convention in the literature, the covariant spin vector Y J.l (Section 3.4) for 
a spin-1/2 particle will be normalized in such a way that 

g;2 = -1. (11.2.3) 

Then for a fermion or antifermion of mass m and given Y one has 
from subsections 4.6.2 and 4.6.3 the following useful results: 

u(p, Y)yllysu(p, Y) = -v(p, Y)yllysv(p, Y) 
=2mYil 

and for a massless fermion of helicity A.= ±1/2 

u(p, A.)yllysu(p, A.) = -v(p, A.)yllysv(p, A.) 

=4A.pll. 

11.3 General formalism and structure functions 

(11.2.4) 

(11.2.5) 

Consider the reaction Fig. 11.1 in the Lab frame, where the proton is at 
rest. For the initial and final lepton momenta we write 

kll=(E,k) k'll=(E',k') (11.3.1) 

and for the initial nucleon momentum 

pll = (M,O). (11.3.2) 

Then the differential cross-section to find the scattered lepton in solid 
angle dQ with energy in the range (E',E' +dE') can be written (see, for 
example, Leader and Predazzi, 1996) 

d2(J a2 E' 
dQdE' = 2Mq4 ELJ.lV WJ.lV, (11.3.3) 

1 For spin-dependent measurements it has not been possible up to now to contemplate using a 
neutrino beam, because of the impossibility of polarizing the huge target needed. See, however, 
Section 11.10. 
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where q = k-k' and a is the fine structure constant. In (11.3.3) the leptonic 
tensor Ll'v is given by QED as 

Ll'v(k,s;k',s') = [u(k',s')yl'u(k,s)]* [u(k',s')yvu(k,s)], (11.3.4) 

where s is the lepton covariant spin vector. It can be split into symmetric 
(S) and antisymmetric (A) parts under fl, v interchange and, after summing 
over the spin of the final lepton, takes the form 

where 

L~j = kl'k~ + k~kv - gf.lv(k · k'- m2) 

L~~)(k, s; k') = mro f.lvrxfJSrx(k- k')P. 

( 11.3.5) 

( 11.3.6) 

(11.3.7) 

The hadronic tensor W~'v' which contains the strong interaction dynam­
ics, can be written in terms of four scalar inelastic form factors, Wt,2 and 
Gt,2, functions at most of q2 and P · q: 

with 

( 11.3.8) 

2~ W~~l(q;P) = ( -gf.lv + q~;v) Wt(P. q,q2) 

+ [(P~'- pq~qq~') (Pv- pq~qqv)] W2(:2q,q2) 

(11.3.9) 

2~ w~~l(q;P,Y) = Ef.lvrt.Mrt. { MYfJGt(P 0 q,q2) 

+ [(P . q)Yf3- (Y. q)Pf3] G2(P ~/' q2)} 
(11.3.10) 

Putting eqns (11.3.8) and (11.3.5) into (11.3.3) one finds 

d2a a2 E' __ = ___ [L(S)WI'v(S) -L(A)WI'v(A)]. 
dO.dE' M q4 E f.lV f.lV 

(11.3.11) 

Note that only the antisymmetric part W~~) depends on the nucleonic 
spin and that the cross-section (11.3.11) is independent of the nucleon 
spin if the lepton is unpolarized. 

The spin-independent inelastic form factors W1,2 and the spin-dependent 
ones Gt,2, which can be measured experimentally, are written in terms of 

https://doi.org/10.1017/9781009402040.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.011


304 11 The spin of the nucleon 

scaling functions F1,2 and g1,2 as follows: 

v W2(P · q, Q2) = F2 (11.3.12) 

v(P · q)G2(P · q, Q2) = g2, (11.3.13) 

where v is the energy of the virtual photon in the Lab, 

v =E-E1• (11.3.14) 

The structure functions F1,2 have played a seminal role in the history 
of elementary particle physics. They are, in principle, functions of the two 
variables, P · q and Q2 or, equivalently, of Q2 and 'Bjorken-x' (we shall 
sometimes write XBj for clarity), 

Q2 Q2 
x=--=--

- 2P ·q 2Mv' 
(11.3.15) 

and were expected to decrease rapidly as Q2 increases at fixed x as a 
consequence of the inability of an extended object - the proton - to 
absorb very large momentum transfers. The discovery of 'Bjorken scaling', 
i.e. that F1,2(Q2,x) are almost independent of Q2 in the Bjorken limit 
Q2 ~ oo, x fixed, catalysed the invention of partons, hard point-like 
constituents within the proton, and led eventually to the invention of 
QCD. 

The spin-dependent structure functions g1,2 are much more difficult 
to measure, requiring polarized beams and targets, but, as mentioned in 
Section 11.2, tremendous progress has been made in the last decade, largely 
as a consequence of the stimulus provided by the remarkable results of 
the EMC collaboration at CERN. 

The most direct way to measure g1,2 is to utilize a longitudinally 
polarized beam and a nucleon target polarized either along the direction 
of the lepton beam or transversely to it and in the scattering plane. In 
each case one measures the cross-section difference upon reversal of the 
nucleon spin. Indicating lepton and nucleon spin directions by ~ and => 

respectively, one has 

d2a: d2a: 4oc2E' 
----- Q2EMv [(E + E1 cos O)g1- 2xMg2] (11.3.16) 
dO.dE I dO.dE I 

d2a--->fi d2a--->lJ. 8oc2(E1) 2 ( v ) . 
dO.dEI- dO.d£1 =- Q2Mv2 2Egl + g2 smOcos<f> (11.3.17) 

where e is the Lab scattering angle of the lepton. Since e is typically a few 
milliradians, it is much more difficult to make an accurate determination of 
the left-hand side of (11.3.17) than that of (11.3.16). The final-state-lepton 
azimuthal angle 4> is defined in Fig. 11.18. 
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Because of the relative magnitudes of the coefficients of g1 and g2 in 
(11.3.16) and (11.3.17) it is usually assumed that the left-hand side of 
(11.3.16) is essentially a measurement of g1 whereas the left-hand side of 
( 11.3.17) largely determines g2. Only in the past year or so has it become 
possible to extract g1 and g2 from measurements of both these types 
of cross-section difference at the Stanford linear collider (see Abe et al., 
1997b, c; Anthony et al., 1999). 

In the following we shall first consider what is known theoretically 
about g1,2 and then turn to consider the experimental situation. Note, in­
cidentally, that (11.3.16) and (11.3.17) are not the only possible measurable 
quantities. For a more general approach, see Anselmino (1979). 

11.4 The simple parton model 

We shall sketch briefly how one derives parton-model expressions for 
g1,2· For a very detailed and historical treatment see Leader and Predazzi 
(1996). 

In an infinite momentum frame S00 , i.e. a Lorentz frame where the 
nucleon is moving very fast, the latter is visualized as made up of fast­
moving constituents (partons) and the collision of the projectile with a 
constituent is treated in an impulse approximation, as if the constituent 
were a free particle. 

If in this reference frame we imagine taking a snapshot of the target 
as seen by the projectile we may see a set of constituents of mass mj and 
momenta Pj and we may ask for how long this fluctuation or virtual state 
will exist. Its lifetime, rv, by the uncertainty principle is likely to be of 
order (~E)-1, 

1 1 
TV C:::::- = , (11.4.1) 

~E Ev-EN 

where Ev is the energy of the virtual state and EN the energy of the 
nucleon, in the given reference frame. 

The impulse approximation will be valid when: 

(1) the time of interaction Tint between the projectile and the constituent 
is much smaller than rv, so that the constituent is basically free during 
the period of its interaction with the projectile, and 

(2) the impulse given to the constituent is so large that after interaction 
its energy is much larger than the binding energy, and so it continues 
to behave as a free particle. 

The second condition is automatically satisfied in the deep inelastic regime 
since a very large momentum is imported to the struck constituent. The 
first can be shown to be satisfied if the energy of internal motion of the 
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constituents is limited, say O(M), where M is the mass of the nucleon, 
and one avoids events where xis very small. 

In the impulse approximation the interaction of the projectile with 
the nucleon is simply an incoherent sum over its interactions with the 
individual constituents. 

Let nq(p, s; .9')d3p be the number of quark-partons q, charge eq, with 
momentum in the range p - p + dp and with covariant spin vector sll 
inside a nucleon of four-momentum Pll with covariant spin vector .9"11, as 
seen in the frame S00 • 

Then one finds the rather intuitive result1 

W~~l(q;P,Y') = Le~ j d3p (~0 ) l5(2p · q- Q2) 
q,s q 

xnq(p, s; .9')w1~l(q ;p, s) (11.4.2) 

where e~w11vl5(2p · q - Q2) is the analogue of W11v for the interaction of 
a hard photon with a 'free' quark-parton, as shown in Fig. 11.3. The 
factor Po/ Eq, where Eq is the energy of the struck quark, arises from the 
relativistic normalization of the states. 

Since the parton in Fig. 11.3 is treated as an elementary, point-like 
charged fermion we can calculate w11v using QED, and the strong interac­
tion dynamics is then hidden in the parton number-density or distribution 
functions in ( 11.4.2). 

Note that since the whole approach only makes sense if the partons 
can be considered as essentially free, any result that turns out to depend 
critically on the parton mass must be treated with suspicion, because the 
mass of a constituent reflects its binding energy. Indeed, we shall see in a 
moment that for this very reason g2 cannot be calculated reliably in the 
parton model (Anselmino, Efremov and Leader, 1995). 

Now we consider the calculation ofwi~l, describing as mentioned above 
the interaction of the hard photon with a quark of given flavour depicted 
in Fig. 11.3. The final state quark is a 'free' quark and is on the mass 
shell: (p'f = m~. In the impulse approximation also the initial quark is 

p'= p+q 

Fig. 11.3. Point-like interaction of a hard photon with a quark. 

1 An analogous result holds for the symmetric, spin-independent, part. 
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considered to be free and to have the same mass. But to see the potential 
danger of this assertion, let us put p2 = m2, where for the moment we 
allow m2 f. m~ in order to represent the fact that the initial quark is really 
a bound quark. Aside from this we treat the incoming quark as free, i.e. 
its wave function is taken as the usual free-particle Dirac spinor u(p, s) for 
a particle of mass m. 

One then finds 

Wllv(q;p,s) = ~ Tr [(1 +Yst)(;J+m)yll(p+ fi+mq)Yv] 

from which one obtains 

w~~l(q;p,s) = (2ellvap)(mqsa) [ (1- ~) pP- ~ qP]. 

(11.4.3) 

(11.4.4) 

Equation (11.4.4) is extremely revealing. We see immediately that for a 
general sll the result is not gauge invariant (qllw~~) f. 0) unless m = mq. 
Moreover, the offending term, when m f. mq, is not small in an infinite­
momentum frame (where the impulse approximation is supposed to be 
most justifiable) even if m - mq is small. 

However, in the special case of longitudinal (L) polarization, if the 
quark has high momentum so that mq/Pz ~ 1, the product mqs{--+ ±pP 
(see Section 3.4) and the non-gauge-invariant term vanishes because of the 
antisymmetric ellvaf3 in (11.4.4). Let us therefore choose y;P in (11.4.2) to 
correspond to a nucleon of definite helicity and sa in (11.4.4) to correspond 
to a quark of definite helicity. 

Then, putting (11.4.4) into (11.4.2) and integrating over the assumed­
negligible quark transverse momentum, one finds, on comparing (11.4.2) 
and (11.3.10), that for a proton 

g1(x, Q2) = ~ L e~ [~q(x) + ~q(x)] (11.4.5) 
q 

where 

~q(x) = q+(x)- q_(x) (11.4.6) 

and q+ are the number densities of quarks with momentum fraction x 
and wTth helicity A. = ±1/2 respectively inside a proton of momentum P 
with helicity A=+ 1/2. 

In terms of the original parton densities, 

qA,(x) = P j d2p_l_nq(p, A.; A = 1/2) 

and the usual, unpolarized, number density is then 

q(x) = q+(x) + q_(x). 

(11.4.7) 

(11.4.8) 
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Note that in (11.4.5) the sum is over all quarks and antiquarks. For 
antiquarks one commonly uses the notation dq(x). 

The result for g1 seems to be unambiguous - it is not sensitive to the 
value of the quark mass. Yet, as we shall see later, (11.4.5) is not the full 
story because of the axial anomaly. 

Quite the opposite happens for g2 where the transverse spin is relevant. 
There is an extreme sensitivity to whether m equals mq and one cannot 
expect to make a reliable calculation of g2(x) in the parton model. 

One can put the case even more forcefully. The whole point of quarks is 
that, in their point-like interaction with a hard photon, they produce the 
large momentum-transfer reactions that we are trying to generate for the 
photon-hadron interactions. But even if we define the model by insisting 
that m = mq, comparing the expression (11.4.4) with the general structure 
of ws~) for a spin-1/2 particle (11.3.10), we see that 

(11.4.9) 

Thus the hard-photon-free-quark interaction does not possess the cross­
section asymmetry that we are seeking to explain in the photon-hadron 
interaction. It is clearly unrealistic therefore to try to produce such an 
asymmetry from quark-partons. 

Of course the parton model predates QCD and, as treated above, is 
rather simplistic. Its value lies in the intuitive nature of its expressions 
in terms of parton number densities. When interactions come into play 
Bjorken scaling is broken and the main effect is that gluons become im­
portant and the parton densities get replaced by Q2-dependent densities 
dq(x, Q2), whose Q2-dependence or evolution can be handled perturba­
tively. 

We turn now to a more serious approach to the subject in the framework 
of field theory. 

11.5 Field-theoretic generalization of the parton model 

Historically there have been two approaches to DIS in QCD. The earlier 
one, the operator product expansion (OPE), concentrated on current com­
mutators and their behaviour on the light-cone; the newer deals directly 
with Feynman diagrams. The latter is the more general and reproduces the 
OPE results wherever they are supposed to be valid. Neither is a complete 
scheme; in each, one has to make certain reasonable-sounding assump­
tions about the behaviour of non-calculable hadronic matrix elements of 
operators. 

Because of its greater generality we shall base our treatment on the 
Feynman diagram field-theoretic approach. 
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v 

a k 

Fig. 11.4 Feynman diagram for y*p-+ anything. The virtual photon has 
Lorentz index v and momentum q; the proton has momentum P. 

309 

The parton model, viewed as an impulse approximation, long predates 
QCD. Once QCD is accepted as a theory of the strong interactions it 
is clearly important to reformulate and extend the parton model using a 
field-theoretic framework. 

We shall illustrate how this is carried out for the simplest case of deep 
inelastic scattering. For this purpose the role of the leptons is superfluous 
so we consider the reaction 

y*(q) + p(P)-+ anything 

where the virtual photon has Lorentz index v. The Feynman amplitude 
for this is shown in Fig. 11.4, where the amplitude has been split into 
a soft part controlling the emission of a quark from the proton and a 
hard part where the hard photon interacts with the quark. Note this is a 
Feynman diagram, not a probabilistic parton diagram. For simplicity we 
ignore flavour and colour; they may be dealt with trivially. 

The soft vertex for the emission of a quark with Dirac spinor index 
a is called Aqrx(k,X;P) and is defined to include the propagator for the 
quark of momentum k. The symbol x on the quark line indicates that no 
propagator is to be inserted in the expression for the Feynman amplitude. 

It will help to think of Aq(k,X;P) as a column spinor. The Feynman 
amplitude is then 

(11.5.1) 

where, since it is inessential for our discussion, we have put the quark 
charge equal to unity. 
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A cross-section would involve the modulus squared of Mil summed over 
all states X, and over the helicity A of the final state quark and integrated 
over the momentum p. However, because our virtual y is actually attached 
to a lepton, we must sum over the Lorentz index v. Hence we need to 
consider 

wllv = L L j d3p 3Mil* Mv(2n)4b4(p + Px- q- P). 
Jc X 2E(2n) 

(11.5.2) 

Since Mil is a number we can replace the complex conjugate by the 
hermitian conjugate t, so that 

wllv = L L j d23p Al( -iyllt)youJc(p)uJc(p)(iyv)Aq 
1c X E 

X 2nb4(p + Px- q- P) 

= 2n;; j ~: Aly0(-iyll) { ~ UJc(p)uJc(P)} (iyv)Aq 

x b4(p + Px- q- P) (11.5.3) 

where we have used y0yllty0 = yll. Carrying out the sum on A, we can now 
write (11.5.2) in the form 

wllv = 2n J ~: { z;AqpAqab4(p + Px- q- P)} 0"~: (11.5.4) 

where, obviously, Aq = A~ y0 and the hard, short-distance, piece is 

( 11.5.5) 

The structure involving the soft vertices is written conventionally1 as 

""'- 4 <Pap(k = p- Q;P) = L...,AqpAqab (p + Px- q- P). (11.5.6) 
X 

Note that the back-to-front convention for the Dirac indices a, f3 allows 
(11.5.6) to be written in matrix form 

llV _ 2 J d3P rn fPilV 
W - n 2E -vapco f3a 

= 2n j ~: Tr (ctJ@"Ilv) (11.5.7) 

where <D and @"llv are 4 x 4 matrices in Dirac spinor space. 

1 Sometimes in the literature ell is defined with a factor (2n)4 on the right-hand side of (11.5.6). 
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Finally we convert to J d4p by using 

j ~; = j d4pfJ(p2 - m~)e(E- mq) (11.5.8) 

so that (11.5.7) can be written 

wJLv = j d4p Tr (<I>Eilv) (11.5.9) 

where, restoring the charge eel of the quark of flavour f, 

EJLv = (eelf2nb(p2 - m~)8(E- mq)rffJLv 

= -(iylleel) [<1 + mq)2nfJ(p2 - m~)e(E- mq)] (iyv eel). 
(11.5.10) 

We shall now see that EJLv is the discontinuity of the Feynman amplitude 
in Fig. 11.5, with external spinors and polarization vectors removed. For 
the latter amplitude has the form 

(11.5.11) 

and using 

2 \ . = P ( 2 
1 

2 ) - inb(p2 - m~) 
p - mq + ZE p - mq 

(11.5.12) 

one will obtain a result for EJLv, if one makes the following replacement 
in the propagator in MJLv : 

----,.----1,..------,--- ~ ( 1 - 1 ) 8(E - m ) 
p2 - m~ + iE p2 - m~ - iE p2 - m~ + iE q 

= 2inb(p2 - m~)8(E- mq). (11.5.13) 

v Jl 

p 

a k k f3 

Fig. 11.5. Amputated Feynman diagram for y*q - y*q. The virtual 
photon has Lorentz index v and momentum q; the quark has momentum 
k. 
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11.5 Field-theoretic generalization 313 

and '¥ a(O) should be considered as column vectors in colour space. The 
combination in ( 11.5.6) is a colour singlet. Then 

<l>ap = L 64(p- Px- q- P)(PI'fp(O)IX)(XI'I'a(O)IP) 
X 

= L J d4z eix·(p+px-q-P) 

x (2n)4 

X (P l'f p(O)IX) (XI'¥ a(O)IP). (11.5.16) 

Using translational invariance this becomes 

<l>ap = j (~:~4 eiz·(v-ql~(PI'I'p(O)IX)(XI'I'a(z)IP) 
so that, using completeness, the sum over X can be carried out, yielding 
the final result 

<l>ap(P,Y,K) = j (~:~4 eik·z(P,YI'¥p(O)'¥a(z)IP,Y) (11.5.17) 

where we have specified the proton state more precisely by including its 
covariant polarization vector f!ll1, and we have used k = p- q. 

Thus <l> is expressed as a matrix element of a bilocal operator. It contains 
all the non-perturbative information about the state of a quark inside a 
proton in a given spin state. <l> is, at this stage, much more general than in 
the parton model, and if we expanded it in terms of a set of specific Dirac 
matrices, it would be hopeless to try to learn about the coefficient functions 
from experiment. To reach a manageable structure one has to make the 
key assumption that <l> decreases rapidly with increasing virtuality of the 
quark, i.e. as lk2

1 increases, and also decreases rapidly as IP · kl increases. 
These conditions guarantee that the dominant part of the k-integration 
region corresponds to the collinear situation kl1 oc Pl1. We shall see later 
how these conditions are utilized to recover a structure recognizable as 
the parton model. 

<l> is sometimes called the quark-quark correlation function. In reality 
it is the unnormalized density matrix of a virtual quark inside a proton. 
This can be seen by considering the expression for the cross-section of 
the process y* + q(k) ----+ y* + q(k), with the initial virtual quark in an 
arbitrary state of polarization. One obtains the expression ( 11.5.14 ), of 
course without the d4k integration, with <l> replaced by the density matrix 
of the initial quark. 

The quark density matrix <l> was introduced in a seminal paper by 
Ralston and Soper (1979) and was generalized and much utilized by 
Efremov, Teryaev and collaborators (e.g. Efremov and Teryaev, 1984) and 
more recently by Mulders and collaborators (e.g. Mulders, 1997). The 
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p 

a 

sllv 
{Ja 

<I>a{J 

Fig. 11.8. Generalized version of Fig. 11.7. 

p 

most complete discussion of <I> and the analogous function for gluons can 
be found in the Ph.D. thesis of Boer (1998). See also Anselmino, Efremov 
and Leader (1995), Section 10 and Appendices B and C. 

In the above discussion we used, for pedagogical purposes, the simplest 
possible diagram (Figs. 11.4 and 11.5) for the hard part of the scattering 
y* + q ~ q. If one allows a more general perturbative QCD amplitude 
for the hard scattering, then the result ( 11.5.14) corresponding to Fig. 11.7 
generalizes to 

(11.5.18) 

corresponding to Fig. 11.8, in which Sff~ is the Feynman amplitude for 
y•v + q ~ y*Jl + q, with external spinors and polarization vectors removed 
and with the replacement (11.5.13) made in the propagators. 

We turn now to the question of reducing the general field-theoretic form 
(11.5.9) to the standard parton-model picture for polarized DIS. 

Firstly, the hadronic tensor WJ1v is defined in such a way that for a 
quark of flavour f whose charge, in units of e is ef, 

WJlv = - 1-wJlv = - 1- jd4k Tr (<I>S 11v) (11519) 
2ne2 2ne2 · • 

(b) 

Fig. 11.9. Born diagrams for 'hard' y* q interaction. 
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11.5 Field-theoretic generalization 315 

The parton model usually emerges upon making the following approx­
imations. 

(1) The y*q interaction is given its simplest form, as shown in Fig. 11.9. 
In the following we calculate only with the uncrossed Born diagram 
(a). The result for the crossed diagram is obtained at the end by the 
replacement XBj ~ -XBj in the hadronic matrix elements connected 
with <l>a:p and is simply to be added to the uncrossed result. In order 
to isolate the antisymmetric part of w.uv we make the replacements in 
(11.5.10) 

yVyPyll ~ ~ (yVyPyll _ yllyPyV) = -iE/lVP(Jy(JyS 

yVy/1 ~ ~ (yVy/1 _ yllyV) = iO"/lV 

and recalling (11.3.8) we find 

(11.5.20) 

(11.5.21) 

w~~) = ei J d4k <5 [(k + q)2 - m~] [c/lVP(J(qP + kP) Tr (y(Jys<l>) 

-mq Tr (0"11v<l>)]. (11.5.22) 

(2) One assumes that the soft matrix element cuts off rapidly for k2 off 
the mass shell k2 = m~, and for kll non-collinear with respect to the 
hadron momentum Pll. This is implemented as follows. Consider a 
reference frame where the hadron is moving at high momentum along 
OZ, so that 

pll = (E,O,O,P) with E ~ P (11.5.23) 

is a 'large' 4-vector. We introduce a 'small' null vector 

nil= -- 0 0 ---( 1 1 ) 
P+E' ' ' P+E 

(11.5.24) 

such that 

n · P = 1 (11.5.25) 

One can then write for kll 

(11.5.26) 

where 

kj = (0, kr, 0). (11.5.27) 

In view of the assumption about <!> we can say that 

(11.5.28) 
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It should be noted that some care is necessary in deciding whether the ap­
proximation (11.5.28) is adequate. We shall see that this depends crucially 
upon whether we are considering a nucleon with longitudinal (L) or with 
transverse ( T) polarization. 

11.5.1 Longitudinal polarization: the quark contribution to g1(x) 

For the study of g1 we consider a nucleon with helicity .A= ±1/2 and it 
is sufficient to approximate (11.5.22) by putting 

(q +k)P ~ qP + (k. n)PP (11.5.29) 

and dropping the term proportional to the quark mass mq. Then writing 

qP + (k · n)PP = j dx t5(x- k · n)(q + xP)P (11.5.30) 

we can take the integration over d4k in (11.5.22) through to obtain the 
antisymmetric component 

2 
(A) - ef J b(x- XBj) p u 

WJLv - 2EJLvpu dx 2P . q (q + xP) A (x), (11.5.31) 

where (using !/L to denote longitudinal spin) 

J d4k . 
Au(x) = (2n)4 d4zt5(x- k · n)e1k·z (P, !/ Li1J'(O)yuys1p(z)IP, !/ L) 

= j ~~ ei2x(P, !/LI1J'(O)yuys1p(.An)IP, f/L) (11.5.32) 

is a pseudovector which can depend only upon the vectors PJL, nil and 
vll = EJLrxPy !/ rxPpny and the pseudovector f/Jl and which must be linear in 
f/Jl. Given that !/ · P = 0 the only possibilities are g;u and (n · !/)Pu. 
Note that with the normalization 

(PIP') = (2n)32Et5 3(P- P') (11.5.33) 

Au(x) has dimensions [M]. 
Recall that for a nucleon with 4-momentum given by (11.5.23) 

f/ll(.A) = ~(P,O,O,E) !/2 = -1, (11.5.34) 

where .A is the helicity (.A= ±1/2), so that 

f/ll(.A) = ~(Pil- M 2nll) (11.5.35) 

and we may take 

(11.5.36) 
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i.e. M 9"1l(A.) is a 'large' vector. In view of (11.5.36) the structures (n · 9")pt1 

and 9"u(A.) are equivalent in leading order and the only possibility is then 
(the factor 4 is for later convenience) 

(11.5.37) 

where the dimensionless longitudinal distribution function is given by 

4h ( ) = nuAu(x) = J d-r: hxh- ( ) 
L X 2A 2n e L 7: • (11.5.38) 

Here 

(11.5.39) 

Substituting into (11.5.31) and adding the contribution from the crossed 
Born diagram, Fig. 11.9(b ), yields 

W~~)(L) = e} p~ q [hL(XBj) + hL(-XBj)] EJivpuqP 9"u(A). (11.5.40) 

Note that the term xPP in (11.5.31) does not contribute on account of 
(11.5.36). Consequently (11.5.40) is gauge invariant, qllW~~) = 0. Note that 
(11.5.36), which holds only for longitudinal spin, is crucial for the gauge 
in variance. 

Comparing with (11.3.10) in the approximation g'JI oc PJI we obtain, 
for the contribution of a quark of flavour f, 

(11.5.41) 

If one treats the quark fields in (11.5.39) as free fields and regards the 
nucleon as an assemblage of free partons one finds 

h{(-x) = ~iit(x) (11.5.42) 

so that (11.5.41) reproduces the simple parton-model result for g1(x) in 
(11.4.5). Equation (11.5.41) provides a field-theoretic generalization of the 
parton-model result. 

In the above we have been a little careless in not mentioning that most 
of the operators that appear require to be renormalized. That involves 
choosing a renormalization scale f.l, and the matrix elements of the opera­
tors then depend upon f.l. Physical, measurable quantities, of course, must 
not depend upon f.l. 

Although we shall be interested mainly in g1, it is instructive to compare 
the case above with the case of transverse polarization, which involves g2. 
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318 11 The spin of the nucleon 

Fig. 11.10 Contribution to y*p - y*p involving quark-quark-gluon 
correlations. 

11.5.2 Transverse polarization: g2(x) 

In order to see the essential difference between the longitudinal and 
transverse spin case, firstly consider again the result ( 11.5.40). In the CM 
of the y• -nucleon collision, for the longitudinal case we have, as far as 
magnitudes are concerned, 

P ·q = Mv 

so that for the large components of W~~l(L), 

IW}~l(L)I = O(v/M) 

(11.5.43) 

(11.5.44) 

assuming that lhL(x)l = 0(1). In the transverse spin case the analogue 
of (11.5.32) can only be proportional to 9"T, since n · 9"r = 0, and will 
produce a result like (11.5.40) with 9"(A.)--+ 9"r. Given that IY'rl = 0(1) 
one has, for the 'large' components, only 

I W~~l(L)I = 0(1). (11.5.45) 

This immediately suggests that care must be exercised in neglecting non­
leading terms, e.g. in (11.5.26). 

Secondly, note that in (11.5.29) the term (k · n)PJ.I of (11.5.26) did not 
contribute because of the fact that, in leading order, PJ.t oc 9"J.1(A.). In the 
transverse case this will not happen and the analogue of (11.5.40) will 
contain a term Ej.tvpaprr 9"~ in w~~l(T), which (analogously to the parton 
model case (11.4.4) when m =f. mq) is not gauge invariant. 

We must therefore return to (11.5.10) and improve upon approximation 
(11.5.28). However, it will then turn out that a more complicated, non­
parton-model, diagram involving gluon exchange, Fig. 11.10, contributes 
to the same order. 

Amazingly, as was shown by Efremov and Terayev (1984) this diagram 
just cancels the unwanted contribution from the (k · n)f and mass terms 
of the handbag diagram and the final result is gauge invariant. Essential 
in this proof is the use of the equations of motion for the quark field. 
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The analysis to show the cancellation is rather complicated and is carried 
out, for example, in Appendix C of Anselmino, Efremov and Leader 
(1995). It is helpful in this to utilize a definite QCD gauge A~(x) · nJ.l = 0, 
where A~(x) is the gluon vector potential of colour a. We shall only state 
the result here. It is the exact analogue of (11.5.40), namely, including the 
contribution of the crossed Born diagram in Fig. 11.9: 

W~~)(T} = e] P~ q [fr(XBj) + fr(-XBj)] eJ.lvpuqP Y'r (11.5.46) 

where the analogue of (11.5.37) is 

Au(x, T) = 4Mfr(x)9"r (11.5.47) 

with 
(11.5.48) 

Here 
- 1 f r('r:) = M (P, Y'rll/J(O)ys .f r1J'Cr:n)IP, Y'r ). (11.5.49) 

Comparing (11.5.46) with (11.3.10), for the case of transverse polarization 
we obtain for the contribution of a quark of flavour f, 

e2 
g1(x) + g2(x) = £ [f~(x) + f~(-x)J. (11.5.50) 

Although the surviving contribution comes from the 'handbag' diagram, 
it does not, in fact, have any simple parton interpretation. This looks 
mysterious given that (11.5.49) only involves quark fields. The subtle point 
is that (11.5.49) vanishes if the fields are treated as free fields and the 
nucleon as an assemblage of parallel moving quarks. 

It is possible to obtain a non-zero result for g1(x) + g2(x) if the partons 
are allowed to have transverse momentum kr, but the result then depends 
upon the specific assumption about the kr behaviour and is outside the 
traditional parton-model form. 

11.6 Moments of the structure functions, sum rules and the spin crisis 

Because of their relationship to the absorptive part of the scattering 
amplitudes for virtual Compton scattering one knows that g1,2(x) = 0 
for lxl > 1 and that g1,2( -x) = g1,2(x). Consequently if we define the 
nth moment of g1,2(x) by JJ dx xn-lg1,2(x)dx and we substitute the field­
theoretic expressions from (11.5.40), (11.5.38), (11.5.46) and (11.5.48), we 
can extend the integration region to -oo ~ x ~ oo so that integration over 
x in (11.5.38) and (11.5.48) will produce a <>-function b(o). Subsequently 
performing the integral over 't will turn the bilocal operator products in 
(11.5.39) and (11.5.49) into a product of local operators. (Note that we are 
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interchanging orders of integration so some care may be needed regarding 
convergence questions.) Powers of x can be turned into derivatives with 
respect to r. Proceeding in this way one ends up with expressions for the 
odd moments of g1,2(x) and the even moments of what can be considered 
the valence parts of g1,2(x), in terms of hadronic matrix elements of local 
operators (Efremov, Leader and Teryaev, 1997). 

The most important result of the latter type is the so-called ELT sum 
rule, involving the valence parts (V) of g1 and g2: 

fo 1 [gl(x) + 2g2(x)] xdx = 0 (11.6.1) 

This is unusual in that, like the Bjorken sum rule to be discussed below, 
it is a rigorous result. Testing the sum rule requires data on both protons 
and neutrons. Unfortunately the data on g2(x) are not yet accurate enough 
for a significant test. 

In the operator product approach one begins with an expression for 
W11v in terms of the commutator of electromagnetic currents, which can 
be deduced from the Feynman diagram Fig. 11.1 to be 

W 11v(q;P,Y) = ;n j d4xeiq·x(P,YI[J11(x),lv(O)]IP,Y) (11.6.2) 

and which implies that it is, up to a numerical factor, the imaginary part 
of the tensor T,uv that appears in the expression E.u* T 11vEv for the forward 
virtual-photon Compton scattering amplitude. 

The behaviour of W11v in the deep inelastic limit is controlled by the 
behaviour of the product of currents near the light cone x 2 = 0 and can 
be derived from Wilson's operator product expansion. A lengthy analysis 
is needed involving the use of dispersion relations for forward virtual 
Compton scattering and leads to expressions for the odd moments only. 

In either approach, keeping only the leading twist 1 operators, which 
give the dominant contribution in the Bjorken limit, the final result for 
the moments has the form 

11 dxxn-lg1(x,Q2) = ~ Lbia~E1,i(Q2,g) 
l 

n = 1,3,5,... (11.6.3) 

and 

fo 1 dxxn-lg2(x,Q2) = 1 ~ n Lbi [a~E1)Q2,g)- d~E2)Q2,g)] 
l 

n = 3, 5, 7,... (11.6.4) 

1 Twist is defined as the mass dimension of an operator minus its spin. 

https://doi.org/10.1017/9781009402040.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.011


11.6 Moments of the structure functions 321 

where the b; are numerical coefficients, the Ei(Q2,g) are coefficient func­
tions that can be calculated perturbatively in the strong coupling constant 
g and the a~ and d~ are related to the hadronic matrix elements of the local 
operators. The label i indicates what kind of operator is contributing: for 
flavour-non-singlet operators, only quark fields and their covariant deriva­
tives occur and i = 1, ... , 8 corresponds to the components of an SU(3) 
octet of flavours; for the flavour-singlet case, i = \f or G corresponds 
to flavour-singlet combinations of quark operators or gluon operators 
respectively (and their covariant derivatives). 

For details and for a discussion of the tantalizing question whether it 
is permissible to put n = 1 in (11.6.4), thereby obtaining the Burkhardt­
Cottingham sum rule 

fo1 
dx g2(x, Q2) = 0 (11.6.5) 

the reader may consult Anselmino, Efremov and Leader (1995). The data 
on g2(x, Q2) are not yet accurate enough for a significant test of (11.6.5). 

Here we shall concentrate on the very interesting question of the first 
moment of g1(x, Q2), because it is related to the puzzle about the spin 
content of the nucleon. In this case (11.6.3) can be written, for the proton, 
as 

rf(Q2) = fol dxgf(x, Q2) ( 11.6.6) 

= / 2 [ (a3 + :;) ENs(Q2) + ~ao(Q2)Es(Q2 )] (11.6.7) 

where the non-singlet and singlet coefficient functions have the expansion1 

ENs(Q2) = 1- OCs- (3.58) (OCs)2 
n 3.25 n 

(11.6.8) 

Es(Q2) = 1- OCs - ( 1.10 ) (OCs)2 
n -0.07 n 

( 11.6.9) 

where ocs = ocs(Q2) is the running QCD coupling and the upper and 
lower numbers correspond to taking either three flavours of quark or four 
flavours if one includes the charm quark. 

In the above, a3 and as are measures of the proton matrix elements of 
an SU(3) flavour octet of quark axial-vector currents: 

j = 1, ... ,8 (11.6.10) 

1 These coefficients are 'scheme dependent" (see Section 11. 7) and the result quoted corresponds to 
the MS scheme. 
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where 

( 11.6.11) 

Here the AJ are the usual Gell-Mann matrices and 1p is a column vector 
in flavour space, 

(11.6.12) 

The coefficient ao in ( 11.6. 7) is a measure of the flavour-singlet operator. 
Now in (11.6.3), for n ~ 2 there are both gluonic and quarkonic flavour­
singlet operators but for n = 1, the case we are now considering, the OPE 
has only one operator, the quark flavour-singlet current 

Jo -
s11 = 1JJY 11 Ys1JJ (11.6.13) 

and ao is defined by 

(11.6.14) 

The absence of a gluonic operator in the first moment of g1 will turn out 
to be a non-trivial issue. 

To the extent that flavour SU(3) is a global symmetry of the strong 
interactions the non-singlet octet of currents will be conserved currents, 
and this will lead to the a1 (j = 1, ... , 8) being independent of Q2. The 
singlet current is not conserved, as a consequence of the axial anomaly 
(Adler, 1969; Bell and Jackiw, 1969), so that a0 depends on Q2. (This will 
be discussed in subsection 11.6.2.) 

Now what is remarkable is that the octet of axial-vector currents 
(11.6.11) is precisely the set of currents that controls the weak /]-decays 
of the neutron and of the spin-1/2 hyperons. Consequently a3 and as can 
be expressed in terms of two parameters F and D measured in hyperon 
/]-decay (see, for example, Chapter 4 of Bailin, 1982): 

a3 = F + D = gA = 1.2573 ± 0.0028 ( 11.6.15) 

~as= ~(3F- D)= 0.193 ± 0.008. (11.6.16) 

It follows that the measurement of 1f(Q2) in polarized DIS can be 
interpreted, via (11.6.7), as a measurement of ao(Q2). 

The determination of f'f(Q2) is not entirely straightforward, firstly since 
extrapolations of the data on g1 (x, Q2) have to be made to the regions 
x = 0 and x = 1 in calculating the integral in ( 11.6.6) and secondly 
because the data at different x-values correspond to different ranges of 
Q2. At present the value of if at Q2 = 10 (GeV jc)2 is believed to lie in 
the range 

0.130 :<;; 1f(Q2 = 10 (GeV jc)2) :<;; 0.142 (11.6.17) 
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which leads to 

0.22::::; ao(Q2 = 10 (GeV /c)2)::::; 0.34. (11.6.18) 

In the famous EMC experiment the measured value of ao was consistent 
with zero and led to a 'crisis in the parton model' (Leader and Anselmino, 
1988). The present value measured of a0 is still disturbingly small. 

Before turning to discuss this intriguing question, note that in going 
from the case of a proton to a neutron, as and ao in (11.6.7) remain 
unchanged whereas a3 reverses its sign. Consequently one has the Bjorken 
sum rule: 

(11.6.19) 

This is considered to be a very fundamental result. Moreover the right­
hand side is known to great accuracy (see (11.6.15)) and much effort has 
gone into trying to test (11.6.19). Up to the present (11.6.19) seems to be 
well satisfied by the data, as will be discussed in Section 11.8. 

11.6.1 A spin crisis in the parton model 

In the naive parton model the nucleon is simply an ensemble of free, 
parallel-moving quarks. The picture can be recovered by putting the QCD 
coupling g equal to zero. In that case the quark fields in JgJl in (11.6.13) 
and (11.6.11) become free fields, and treating the nucleon state in (11.6.14) 
as a superposition of free-quark states one easily finds that 

ao = dL = fo 1 dL(x)dx (11.6.20) 

where 

dL(x) = du(x) + du(x) + L1d(x) + L1d(x) + ds(x) + ds(x). (11.6.21) 

Now given the physical significance of the number densities q+(x) dis­
cussed in Section 11.4 it is clear that the integral in (11.6.20) is just twice 
the expectation value of the sum of the z-components of the quark and 
antiquark spins, i.e. 

ao = dL = 2 \ s;uarks) ' (11.6.22) 

which implies, if we adopt (11.1.1) uncritically, that we expect ao ~ 1. 
As mentioned, the EMC experiment found ao compatible with zero 

provoking a 'crisis in the parton model' and the present value, given in 
(11.6.18), is still small compared with naive expectations. It is not clear 
how to quantify the extent to which we expect ao to differ from its naive 
value, but it is generally felt that the small value in (11.6.18) is not in 
accord with intuition. 
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We shall see in the next section that (11.6.20) and hence (11.6.22) are, 
surprisingly, not correct in the interacting theory. 

11.6.2 The gluon anomaly 

Consider the axial current 

(11.6.23) 

made up of quark operators of definitive flavour f (an implicit colour sum 
is always implied). From the free Dirac equation of motion one finds that 

(11.6.24) 

where mq is the mass of the quark of flavour f. In the chirallimit mq ---+ 0 
(11.6.24) appears to imply that J{11 is conserved. If this were really true 
then there would be a symmetry between left- and right-handed quarks, 
leading to a parity degeneracy of the hadron spectrum, e.g. there would 
exist two protons of opposite parity. However, the formal argument from 
the free equations of motion is not reliable and there is an anomalous 
contribution from the triangle diagram shown in Fig. 11.11, where two 
gluons couple to the current of (11.6.23). 

As a consequence the axial current is not conserved when mq = 0. One 
has instead, for the QCD case, 

(11.6.25) 

where (;~v is the dual field tensor 

(11.6.26) 

The result (11.6.25), which emerges from a calculation of the triangle 
diagram using mq = 0 and the gluon virtuality k2 =I= 0, is really a particular 

Fig. 11.10. Triangle diagram giving rise to the gluon anomaly. 
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limit of a highly non-uniform function. If we take mq =fo 0, k2 =fo 0 the 
right-hand side of ( 11.6.25) is multiplied by 

T m2 jk2 = 1 - q ln 
2m2 jk2 ( J1 + 4m~/k2 + 1) 

( q ) J1 +4mVk2 J1 +4m~jk2 -1 · 
( 11.6.27) 

We see that on the one hand the gluon anomaly corresponds to T ~ 1 for 
m~jk2 ~ 0. On the other hand, for on-shell gluons k2 = 0 and mq =fo 0, i.e. 
in the limit m~jk2 ~ oo the terms cancel, T ~ 0 and there is no anomaly. 
In our case the gluons are strictly speaking, bound inside the proton so 
they are off shell and k2 =fo 0 is the relevant case. 

The anomaly induces an effectively point-like interaction between 1~5 
and gluons. Using the expression given in Adler (1969), generalized to 
QCD, the matrix element of 1~5 between almost free gluons is 

(k; AilLik; A) = ;o:~ E11vp<JP E*P(A)E(J(A)T(m~jk2 ); 
this, via (3.4.28) and (3.1.80), becomes 

(k;AilLik;A) = - ;~g~luons(k,A)T(m~jk2 ), 

where A is the gluon helicity and we may take 

g~luons(k, A) ::::; Akll 

as the covariant spin vector for almost massless gluons. 

(11.6.28) 

The component of the proton wave function containing almost free 
gluons then yields a gluonic contribution to ao 

a3luons(Q2) = -3;~~G(Q2) (11.6.29) 

where 

(11.6.30) 

Here ~G(x) is the analogue for gluons of ~q(x). The concept of Q2-

dependent parton distributions such as ~G(x, Q2) is explained in Sec­
tion 11.7. The factor 3 in (11.6.29) arises from taking mu,ma,ms ~ k2, 

me, mb, mt ~ k2 so that T = 1 for mu, rna, ms and T = 0 for me, mb, mt. 
Instead of (11.6.20) we now have (Efremov and Teryaev, 1988; Altarelli 

and Ross, 1988; Carlitz, Collins and Mueller, 1988; Anselmino and Leader, 
1988) 

( 11.6.31) 

The result ( 11.6.31) is remarkable. It shows that there is a gluonic 
contribution to the first moment of g1. Moreover it is quite anomalous in 
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the sense that it look like a perturbative correction that will disappear at 
large Q2, where a8 (Q2)-----* 0, but in reality does not do so because ~G(Q2 ) 
can be shown to grow in precisely the right way to compensate for the 
decrease of a8 (Q2). It also has the fundamental implication that the small 
measured value of ao does not necessarily imply that ~~ is small. 

So, for example, we could let the quarks carry 60% of the proton's spin 
at Q2 = 10 (GeV jc)2 and the experimental value (11.6.18) would then 
imply 

2.2 ~ ~G ( Q2 = 10 (GeV /c)2) ~ 3.3. (11.6.32) 

Now similarly to (11.6.22), ~G(Q2 ) measures the contribution to the 
proton's spin arising from the spin of the gluon constituents. Bearing in 
mind (11.1.1) we have the apparently surprising result that 

(sfluons (Q2 = 10 (GeVjc)2)) ~ 2"' 3. 

However, the operator corresponding to the spin of a gluon is not a 
conserved operator, so its matrix elements depend upon the renormaliza­
tion scale (this causes the Q2-dependence) and (S;'(Q2)) does not have a 
simple physical interpretation as a fixed number. Indeed (S;'(Q2)) -----* oo 
as Q2 -----* oo and this is compensated by the fact that the gluon orbital 
angular momentum grows in the opposite sense: 

Given that gluons play no role in the low energy constituent quark 
model, it is somewhat reassuring that the above value of (Sfluons) at 
Q2 = 10 (GeV jc2 leads, via a perturbative calculation, to 

\ Sfluons(Q2 = 4A~cn)) ;S 0.6. 

Below this value of Q2 we enter the non-perturbative regime so cannot 
estimate how (Sfluons) behaves. 

In contrast to this, ~~ or (SJuarks) can be linked to a conserved oper­
ator (see Anselmino, Efremov and Leader, 1995, Section 6.3) and so are 
independent of Q2. It thus makes sense to expect that ~~ ~ 1. 

11.7 QCD corrections and evolution 

The field-theoretic approach of Section 11.5 leads to the simple parton 
model when the hard scattering amplitude E in Fig. 11.4 is treated in the 
Born approximation and the quark fields as free fields. When gluonic cor­
rections are included, problems arise from the so-called mass or collinear 
singularities linked to the effective masslessness of the partonic quarks. A 
subtle process of factorization at scale 11 (chosen for simplicity to be the 
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same as the renormalization scale) allows the singular terms to be absorbed 
into the non-calculable parton distribution functions. These then depend 
on Jl, leaving the finite terms as Q2-dependent correction terms in the 
expressions for the structure functions, which thus no longer obey exact 
Bjorken scaling. In fact they develop a slow logarithmic dependence on Q2. 

In the leading logarithmic approximation (LLA) one keeps only the most 
dominant terms, proportional to IXs In (Q2 / Jl2), and finds that the parton­
model expressions remain valid provided the replacements 

(11.7.1) 

to the Q2-dependent parton distributions are made. 
In this approximation the q(x, Q2) and ~q(x, Q2) are universal, i.e. they 

are a property of the nucleon and will appear in any hard reaction 
involving the nucleon. 

The x-dependence of the ~q(x, Q2) cannot be calculated, of course, but 
the variation with Q2 is controlled by the Gribov, Lipatov, Altarelli and 
Parisi evolution equations (Gribov and Lipatov, 1972; Altarelli and Parisi, 
1977), which have the generic form 

d 2 _ 1Xs(Q2) {1 dy { (0) 2 
dlnQ2 ~q(x,Q)-~ lx y ~Pqq (xjy)~q(y,Q) 

+~P~~~G(y, Q2)} (11.7.2) 

d 2 _ 1Xs(Q2) {1 dy { (0) 2 
dlnQ2~G(x,Q)-~ lx y ~PGq(xjy)~q(y,Q) 

+~PbOJ(xjy)~G(y, Q2)} (11.7.3) 

The ~Pi)O) are the lowest-order polarized splitting functions, first given 
for QCD in Altarelli and Parisi (1977). 

11. 7.1 Beyond leading order; scheme dependence 

When the non-dominant correction terms are included and when one works 
to order IX;, i.e. to the next-to-leading order (NLO), two new features arise. 

(1) The expression for g1(x,Q2) in (11.4.5) is modified to 

g1 (x, Q2) = ~ ~ e~ { ~q(x, Q2) + ~q(x, Q2)+ 

+ 1Xs;;2) 11; [~Cq(xjy) [~q(y, Q2) + ~q(y, Q2)] 

+ ~CG(xjy)~G(y, Q2)]} (11.7.4) 
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where the sum is over the flavours of the quarks and antiquarks and the 
coefficient functions I'!Cq, I'!Cc are related to calculable short-distance, i.e. 
hard, photon-quark and photon-gluon cross-sections. Figure 11.12 shows 
the mechanism whereby the photon couples to the gluon. The convolutions 
in (11.7.4) are often symbolized by I'!Cq ® l'!q, I'!Cc ® I'!G etc. and have 
the property that the moment of the convolution is the product of the 
moments of the functions: (f ® g)(n) = f(n)g(n)_ 

At this order the evolution equations have the form of (11.7.2) and 
(11.7.3) but the splitting functions, now calculated to higher order, have 
the form 

(0) O::s (1) 
I'!Pij = I'!Pij + 2n I'!Pij . 

All these functions are given in a very clear form in Vogelsang (1996). 
(2) The massive calculations involved are plagued by ambiguities linked 

to the renormalization of operators containing y5. In any theory requiring 
infinite renormalization the subtraction of the infinite terms is clearly de­
fined, but the handling of associated finite terms is a matter of taste, giving 
rise to a renormalization-scheme dependence of the auxiliary quantities in 
any calculation. Physically measurable quantities, like g1 for example, must 
be independent of the choice of scheme. But in NLO the coefficient func­
tions, and therefore the parton distributions, become scheme dependent 
and one must specify in what scheme one is working. 

For the unpolarized case this is straightforward and there are simple 
unambiguous ways to define the various schemes in use, DIS, MS (minimal 
subtraction), MS etc. Moreover the parton distributions in the various 
schemes differ from each other only by terms of order o::8(Q2). In the 
polarized case, because of the complexity of the calculations one often 
renormalizes using the modern dimensional regularization technique (for 
a simple introduction, see Leader and Predazzi, 1996, Vol. 2) and it then 
turns out that specifying the finite subtractions as MS or MS is not enough 

y 

Fig. 11.11 Diagram illustrating how the photon couples to the gluon in 
the nucleon. 
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- there remain ambiguities linked to the freedom in defining Ys in more 
than four-dimensions. 

The classic method of handling y5, due to 't Hooft and Veltman (1972) 
and to Breitenlohner and Maison (1977), leads to what we shall label 
the MS-HVBM scheme. But this has the undesirable peculiarity that the 
renormalized isovector current 125, see eqn ( 11.6.11 ), is not conserved. 

The main schemes in use are: 

(1) a modified MS-HVBM scheme, due to Mertig and van Neerven (1996) 
and to Vogelsang (1996), which does conserve J25 and which we shall 
refer to as the MS-MNV scheme; 

(2) a scheme referred to as the AB scheme in Ball, Forte and Ridolfi (1996), 
which modifies only the first moment of ~L(x, Q2), so as to make it 
independent of Q2 ; 

(3) the more physically motivated scheme advocated by Carlitz, Collins 
and Mueller (1988), by Anselmino, Efremov and Leader (1995) and, 
on the basis of more general arguments, by Teryaev and MUller 
(1997). This has the advantage that the contribution to g1(x, Q2) 

arising from the reaction virtual-photon +p __. jet(kr) +jet( -kr) +X 
(see Fig. 11.11 ), for the production of two jets with large transverse 
momentum kr, is directly given by the gluon term in (11.7.4) with, 
clearly, the coefficient function appropriate to this scheme, which is 
given below. We shall label this the JET scheme. Of course, this scheme 
also has the desirable property that the first moment of ~L(x, Q2) is 
independent of Q2. 

The most important difference between these schemes shows up in the 
first moment of g1. One finds that 

fol dx ~C~S-MNV (x) = 0 (11.7.5) 

so that the gluon makes no contribution to the first moment of g1. 
Thereby one loses the nice explanation given by (11.6.31) for the small­
ness of a0. Moreover the first moment of the quark-singlet combination, 

~LMS-MNV (Q2), varies with Q2 so cannot be compared with the con­
stituent quark result (11.1.1). 

On the contrary, in the AB and JET schemes one has 

(11.7.6) 

in exact agreement with the result for ao in (11.6.31). Moreover the quark-
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singlet-contribution first moment, ~LAB = ~LJET, is independent of Q2, 

allowing an intuitive interpretation as the spin carried by the quarks. 
For reasons explained earlier we feel the JET scheme has a more direct 
physical interpretation than the AB scheme. 

There is another strange feature peculiar to the polarized case. The 
gluon distributions are the same in the MS-MNV, AB and JET schemes, 
but the first moments of the singlet quark densities are related by 

~LAB= ~LJET = ~LMS-MNV (Q2) + ~ as(Q2) ~G(Q2) 
3 2n 

(11.7.7) 

so that, as explained after eqn (11.6.31), the difference between them 
is not really of order a8(Q2) and could be quite large. Scheme changes 
of this type are thus quite anomalous compared with the unpolarized 
case. 

In the JET scheme the coefficient ~CG(x) appearing in the expression 
(11.7.4) for g1(x, Q2) is given by 

~cbET(x) = (2x -1) [InC: x) -1 J (11.7.8) 

and ~Cq(x) is the same in both types of scheme. 
In NLO the quark non-singlet distributions are actually of two kinds, 

combinations like (~u + ~u) - (~d +~d), which are genuinely flavour 
non-singlets, and combinations like (~u- ~u) = ~uv, which are valence 
non-singlets. These have different evolution properties, as explained in 
Vogelsang (1996). In comparing the MS-MNV, AB and JET schemes, we 
find that all non-singlet distributions are the same in these schemes. Also 
the gluon density is the same. Only the singlet quark density ~L(x, Q2) 

changes. For any scheme change of this type, one has 

~L(x, Q2)lnew = ~L(x, Q2)1Ms-MNV 

+ Nt as(Q2) hG ® ~G 
2 2n 

(11.7.9) 

where hG(x) is a function specifying the change; for the transformation 
MS-MNV ~ JET one has 

hG(x) = 4(1- x). (11.7.10) 

Of course the NLO part of the splitting functions, which control the 
evolution in (11.7.2) and (11.7.3), is different in the two schemes. The 
connection is given by 

(~pPS) _ (~pPS) 
qq new- qq MS-MNV 

+ Nt ~h ® ~p(O) 
2 2n G Gq 

(11.7.11) 
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where 

f3o = 11- 2Nt/3. 

For the case MS-MNV ~ JET these simplify to 

( f').PPS) = (f1pPS) 
qq JET qq MS-MNV 

Nf IXs 
-832n [(x+2)lnx+3(1-x)] 

( ) NJ 1Xs 
(f1PqG)JET = f1PqG MS-MNV + 43 2n 

x {5(1- x) [ln(1- x) -7] 

- (llx + 16)lnx} 

(f1PGq) JET = (f1PGq)MS-MNV 

(f1PGGhET = (f1PGG)MS-MNV 

Nj IXs 
+ 83 2n [(x + 2)lnx- 3(1- x)] 

(11.7.15) 

(11.7.16) 

(11.7.17) 

(11.7.18) 

(11.7.19) 

Note that the connection between the nth moments following from 
(11.7.9) is 

(11.7.20) 

We remind the reader that detailed expressions for all the MS-MNV 
functions can be found in Vogelsang (1996). A study of scheme dependence 
in the analysis of data is given in Leader, Sidorov and Stamenov ( 1998b ). 

11.8 Phenomenology: the polarized-parton distributions 

Pioneering experiments with polarized electron beams and polarized pro­
ton targets at SLAC in the 1970s demonstrated significant spin depen­
dence, but it was not until the surprising results of the EMC experiment 
in 1988 that the field really took off. A vast programme of experiments 
has been, and is, under way at CERN (the SMC group), at SLAC (exper­
iments E 142, 143, 154, 155) and at HERA (the HERMES collaboration) 
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and preclSlon data on the polarized structure function g1 is available 
for protons, neutrons and deuterons over a reasonable range of x and 
Q2. Data on g2 have recently begun to be published. For access to the 
experimental literature, see Abe et al. (1997a). 

Several NLO analyses of the data have been carried out during the 
last year or two, leading to much improved information on the polarized 
parton densities (Gluck, Reya, Stratmann and Vogelsang, 1996; Ball, Forte 
and Ridolfi, 1996; Abe et al., 1997b; Altarelli et al., 1997; Leader, Sidorov 
and Stamenov, 1998a, 1999). 

However, it would be wrong to imagine that the polarized densities can 
now be determined to the same accuracy with which the unpolarized den­
sities are known. This can be understood quite simply. Up to the present 
the polarized data consist solely of fully inclusive neutral current (in effect, 
photon-induced) reactions on nucleons, i.e. one has information on two 
polarized structure functions gf(x, Q2) and g~(x, Q2). Even if one makes 
some simplifying assumptions about the polarized sea, one is still express­
ing two experimental functions in terms of four densities ~u, ~d, ~q and 
~G. What is lacking here is information from charged current reactions, 
which play an important role in pinning down the unpolarized densities. 
Neutrino experiments on a polarized target have been inconceivable up to 
now and charged current reactions of the type ep ---+ v X will be extremely 
difficult. The situation is somewhat alleviated by the constraints coming 
from the beautiful connection between the first moments of the polarized 
parton densities and weak interaction physics, as discussed in Section 11.6; 
see eqns (11.6.15) and (11.6.16). For one has 

a3 = 11 dx [~u(x,Q2)+~u(x,Q2)-~d(x,Q2)-~d(x,Q2 )] (11.8.1) 

and 

1 {1 [ 
as= J3 Jo dx ~u(x, Q2) + ~u(x, Q2 ) + ~d(x, Q2) 

+ ~d(x, Q2)- 2~s(x, Q2)- 2~s(x, Q2)]. (11.8.2) 

In all analyses one chooses some parametrization for the functional form 
of the distribution at some initial scale Q6, in terms of a small number 
of the unknown parameters, and then evolves the distributions up to the 
values of Q2 corresponding to the data and determines the parameters 
by a best fit to the data. A typical parametrization might involve the 
unpolarized distribution in the generic form 

(11.8.3) 

where f is the unpolarized version of ~f and where A, a and f3 are to 
be determined from the data. Or, in the approach of Brodsky, Burkhardt 

https://doi.org/10.1017/9781009402040.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.011


11.8 Phenomenology: the polarized-parton distributions 333 

and Schmidt (1995), both f(x, Q6) and !!f(x, Q6) are parametrized as 
polynomials in x and a simultaneous fit is made to both the polarized and 
the unpolarized data. 

There seem to be two sensible choices of distribution to parametrize at 
Q2. 

o· 

(1) !!u + !!u, !!d + !!d, !!s and !!G, or 
(2) !!uv, !!dv, !!G, together with some ansatz about the sea, e.g. SU(3)­

symmetric !!u = !!d = !!s or a weighting in favour of the lightest 
quarks, e.g. !!u = !!d = A.811.s, As > 1. Here !!qv = !!q - !!q are the 
valence parton densities. 

In Fig. 11.12 we show recent results on gf from the SMC collaboration. 
Of great interest is the comparison of their 1996 and 1993 data, especially 
at small x. We shall discuss this issue in the next section. 

In Fig. 11.13 the results on g1 from experiments 142 and 154 at SLAC 
are shown. Here the data are not strictly measured values; they have been 
evolved to a common value Q2 = 5 (GeV jc)2 , but for these experiments 
this gives only a very small effect. Again, the behaviour at small x raises 
interesting questions. 

2.25 

gf 
1.75 

1.25 

0.75 

0.25 

-0.25 

0 93 

0 96 

• 93 +96 

~ ~ *~ r ~4'~ 
¢ ¢II cDI 

1Q-2 w-I X 

Fig. 11.12 SMC data on gf(x, Q2) at the measured Q2 for each x and 
comparing 1996 and 1993 data. The solid band indicates the systematic 
uncertainty. '93 + 96' means a weighted average of the two sets of results. 
(From Adeva et al., 1997.) 
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Fig. 11.13 SLAC data on gj(x,Q2) from experiments E142 and the 
later E154. The data have been evolved to a common value Q2 = 
5 (GeV jcf assuming that gr/ F1 is independent of Q2 in the range of these 
measurements. The shaded band indicates the systematic uncertainty. 
(From Abe et al., 1997c.) 

The HERMES group at HERA has recently begun to publish results. 
An example, comparing their data on g? with the SLAC E142 data, is 
shown in Fig. 11.15. 

In Fig. 11.16 we show typical shapes of the polarized-parton densities 
at Q2 = 4 (GeV /c)2. In comparing different analyses one finds that on 
the one hand ~u(x) is rather well determined, as is ~d(x) for medium 
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Fig. 11.14 HERMES data on g\', compared with SLAC E142 data: •, 
HERMES; 6, E142. (From Ackerstaff et al., 1997.) 
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values of x, but the behaviour of Lld(x) for small x and for x;:::0.35 is 
not yet accurately known. On the other hand the sea-quark distribution 
is still largely undetermined though it is claimed that there is a tendency 
to favour an SU(3) flavour symmetric sea. This is quite misleading since 
in principle, this cannot be determined form the data (see Leader, Sidorov 
and Stamenov, 1998a). Unfortunately the most interesting quantity of all, 
the gluon distribution ilG(x, Q2), is still relatively poorly determined. That 
this is so can be understood from the facts that its direct contribution to 
g1(x, Q2) is of order 1Xs(Q2), see (11.7.4) and that its main role is in the 
evolution equations. However, the range of Q2 thus far measured is too 
small for the latter to play a definitive role. 

In order to give greater weight to the process of evolution, Gluck, 
Reya, Stratmann and Vogelsang (1996) chose the very low value Q5 = 

0.34 (GeV jc)2 at which to parametrize their initial distributions. One may 
wonder whether it is meaningful to use perturbative methods at such 
values of Q2, where 1Xs(Q2) is relatively large, but there is no doubt that 
excellent fits to the data were achieved. The same approach was shown 
to work for the unpolarized case. Stratmann (see Blumlein et al., 1997) 
claimed that even in this approach LlG(x, Q2) is virtually undetermined. 
However, a more recent study, including much new and precise data, was 
shown by Leader, Sidorov and Stamenov (1999) to constrain LlG(x) within 
reasonable limits, as shown in Fig. 11.17. 

0.2 0.4 0.6 0.8 X 1.0 

Fig. 11.15 Typical shapes of the polarized-parton densities (multiplied 
by x) at Q2 = 4 (GeV /c)2, obtained from a NLO analysis assuming an 
SU(3)-symmetric sea. (From Leader, Sidorov and Stamenov, 1998a.) 

https://doi.org/10.1017/9781009402040.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.011


336 11 The spin of the nucleon 

A knowledge of LlG(x, Q2) is of great importance for understanding the 
spin structure of the nucleon, but it is clear that polarized DIS is not the 
best place to seek this information; future experiments, though, in which 
the proton beam at HERA is polarized, would cover a larger range of Q2 

and thus have better control over the gluon. 
The quest for more precise knowledge about LlG(x, Q2) has inspired a 

whole new series of experiments involving polarized nucleons, which will 
begin in the very near future. The COMPASS experiment at CERN will 
study polarized semi-inclusive DIS, where, for example, reactions like 

ll + P ----+ !l + p +jet or p, + p + two jets 

are very sensitive to the gluon distribution. The RHIC collider at Brook­
haven will have high energy colliding beams of polarized protons, where 
reactions like Drell-Yan scattering pp ----+ 1+ 1-X, for lepton pairs with large 
transverse momentum, are also sensitive to LlG(x, Q2). Both COMPASS 
and an upgraded HERMES experiment will look at the semi-inclusive 
production of charm. For further information about these new experi­
ments the reader should consult the paper 'Towards future measurements 
of LlG/G' in the Proceedings of the DESY workshop, Deep Inelastic Scat­
tering Off Polarized Targets: Theory Meets Experiment (Bltimlein et al., 
1997). 

11.8.1 Behaviour as x ----+ 0 and x ----+ 1 

In order to test sum rules one must integrate the experimentally measured 
g1,2(x, Q2) from x = 0 to x = 1 and this inevitably means making a 

0.3 .-------·---------------, 

... 
0.2 

x.'lG 

0.1 

--0.1 

0.01 0.1 X 

Fig. 11.16 Polarized-gluon density and error band (shown by dotted 
curves). (From Leader, Sidorov and Stamenov, 1999.) 
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theoretically biased extrapolation from the region actually covered in the 
experiment. 

In the region x ~ 1 there are perturbative QCD arguments (Farrar and 
Jackson, 1975) that suggest that 

ilqv(x) ~ 1 Llq(x) ~ 1 
qv(x) q(x) 

(11.8.4) 

Even if detailed fits to the data do not always support this behaviour, 
the disagreement is innocuous from the point of view of the sum rules, 
since in all cases the parton densities drop rapidly to zero as x ~ 1 and 
the contribution to the sum rule from the large-x region is essentially 
negligible. Surprisingly, the behaviour as x ~ 1 turns out to be quite 
critical in the analysis of pip ~ nx with a transversely polarized proton, 
is discussed in Section 13.4. 

Quite the contrary happens in the region x ~ 0, where it is not at all 
clear what is happening, nor what is expected to happen, theoretically. 
In view of the connection between DIS and the imaginary part of the 
forward virtual-photon Compton scattering amplitude (Section 11.6) one 
would expect the structure functions to have a Regge-type behaviour as 
the energy v ~ oo at fixed photon 'mass' Q2. Regge behaviour (see, for 
example, Collins and Martin, 1984) describes the highly non-perturbative 
region of forward scattering, so cannot be derived rigorously in QCD, but 
there are powerful reasons to believe in its validity. In that case we should 
have at fixed Q2 

a behaviour arising from the trajectories associated with the a1 (1260) and 
!1(1285) mesons, for which one expects rx!J(t) ~ rxa1(t) and rx1 = rxa1(0) = 

-0.14 ± 0.20. 
Since, via (11.3.15), v oc 1/x we may deduce that, on the one hand, at 

fixed Q2 

2 x-o 2 g1(x, Q ) ~ x-cq x (function of Q ), (11.8.5) 

which would imply a rather fiat, almost constant behaviour of g1 as 
x ~ 0. (A detailed analysis of the Regge contributions to DIS is given in 
Heimann, 1973.) 

On the other hand, data on the growth with energy of several exclusive 
reactions initiated by virtual photons, for example, 

'y' + p ~ p + vector meson, 

do not seem to follow standard Regge behaviour: they grow much faster 
with energy v when Q2 is significantly different from zero, even though 
in these reactions v ~ Q, a condition which used to be thought sufficient 
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to justify Regge behaviour. Moreover the behaviour of the unpolarized 
structure functions F1,2(x, Q2) does not seem to follow Regge predictions 
at small x. This is particularly evident in the HERA data (see, for example, 
Adloff et al., 1997), where there is a very rapid growth of F1(x, Q2), faster 
than x-1, as x ----+ 0. This has consequences for the polarized case since there 
are arguments relating the small-x behaviour of polarized and unpolarized 
densities, namely, for x ----+ 0 

dq(x) 
q(x) oc x 

L1G(x) 
G(x) oc x 

which would imply then that lgt(x, Q2 )1 should grow faster than the Regge 
behaviour (11.8.5) as x----+ 0. 

Attempts have been made to study the small-x behaviour via a selec­
tive summation of terms in perturbation theory. Berera (1992) and Ball, 
Forte and Ridolfi (1995) studied the small-x behaviour of the evolution 
equations. Very interesting results emerge. If the starting distribution at 
Q6 is singular enough as x ----+ 0, namely g1(x, Q6) oc x-A with A > 0, 
then this behaviour remains unchanged by the evolution. But if one starts 
with a relatively flat distribution, for example one corresponding to the 
Regge behaviour (11.8.5), then as Q2 grows the behaviour near x = 0 for 
dqNs(x, Q2), dL(x, Q2) and dG(x, Q2) tends to 

(~()- 1 14 exp (2yJIT -<5() (11.8.6) 

where 

~=lnxo 
X 

(11.8.7) 

and xo is a small value of x below which the asymptotic treatment is valid. 
The coefficients y and <5 depend upon what density one is studying. 

For dqNs one has 

y ~ YNs ~ ( 33 ~ 2NJ )'I' 
4 

<5 = <5Ns = 33 - 2Nj 

For both dL and L1G, 

y ~ Y+ ~ [33 ~2NJ (s +4Jt- ;2Nf) r2 

b ~ b+ ~ 2(33 ~ 2NJ) [35+ 2Nf +43 ( J~--j!~~/) ]· 

(11.8.8) 

( 11.8.9) 
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Moreover one finds the remarkable result that as x -4 0 

~L(x, Q2) -4 -2 ( 1 - V 1 - ]2 NJ) ~G(x, Q2). (11.8.10) 

The implications of these results are fascinating. 

(1) All the polarized distributions grow faster than any power of lnxo/x, 
and the growth rate increases with Q2. 

(2) Since Y+ > YNs, ~L and ~G dominate in magnitude over ~qNS· 
(3) If ~G(x, Q2) is positive and reasonably large the negative contribution 

of ~L will then make the sum gf + g1, and eventually each of gf and 
g1, negative at small enough x. 

Interestingly, a similar analysis for the unpolarized case produces the 
required growth at small x to account for the HERA data mentioned 
above provided the starting value Q6 is chosen small enough. 

The situation is somewhat muddied by the work of Bartels, Ermolaev 
and Ryskin (1996a, b) and Manayenkov and Ryskin (1998), who sum 
'double logarithmic' terms, of the form (as ln2 x)n, that are not included 
in the evolution equations, with the startling results that all the densities 
diverge as x-2, with ANs )::::: 0.5 and A.s = A.c:2:;1. The latter would imply that 
the first moment of gf'n diverges! It is difficult to believe that these results 
reflect the physical behaviour of the densities. It may be that such selective 
summations at fixed Q2 are dangerous and that major cancellations can 
occur between different subsets of terms. 

All the above results, based on a selective summation of terms in 
perturbation theory, disagree with Regge behaviour. Is this a genuine 
incompatibility or are the perturbative arguments unreliable at small 
enough x or small enough Q2? And if the latter, at what scale should we 
expect to see Regge behaviour setting in? These are fascinating questions 
to which we have, as yet, no answer. A good discussion can be found 
in Altarelli, Ball, Forte and Ridolfi (1997). These authors also show that 
with a careful extrapolation to small x the Bjorken sum rule (11.6.19) is 
well satisfied by the present data. 

As a final word on the subject of small-x behaviour, note that the new, 
1996, SMC data on gf (Fig. 11.12), combined with the new E154 data 
on g1 (Fig. 11.13), do suggest that gf + g! might become negative at the 
smallest measured x-values! 

There is a major experimental push towards smaller x. The results are 
awaited with great interest. 

11.9 The general partonic structure of the nucleon 

In Section 11.5 we saw how the parton model for DIS can be given a 
more fundamental field-theoretic formulation. Crucial to that derivation 
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was the separation of the physics into 'hard' and 'soft' parts, exemplified 
by EJ.lv and <I> in (11.5.14) respectively. In Section 11.5 we took a specific 
form for Ellv and concentrated upon its antisymmetic part under 11- - v. 
But the steps taken are actually more general and would apply to any 
structure of the form 

W = J d4k Tr [E(q,k)<l>(P, 9';k)] (11.9.1) 

so long as E(q, k) represents a hard process whose scale is set by q2 and 
provided the approximation (11.5.28) is adequate. 

The generalization of (11.5.31) and (11.5.32) is then 

W = Tr [E(q,k)<i>(P,9';n,x)] (11.9.2) 

where 

(11.9.3) 

and k = xP in E(q,k).l 
Being a 4 x 4 matrix in its Dirac labels, <i> can be expanded in the form 

(11.9.4) 

The coefficients are given by traces of the form (r is some Dirac matrix) 

Tr (<i>r) = j ~~eiJcx(P,9'11P(O)rtp(A.n)IP,9') 
(11.9.5) 

(r) 
for brevity. One has 

s = ~(I) p = -~ (iys) } 

vJ.l = ~ (yll) all = ~ (ysyll) 

PJ.lv = ~ (iysa J.lV), 

(11.9.6) 

these coefficients being scalar, pseudoscalar, vector, axial-vector and 
pseudo-tensor respectively. The coefficients can only be constructed from 
the large vector P J.l• the small vector nil and the axial vector 9' il' and 
they can at most be linear in 9' w In addition the behaviour under hermi­
tian conjugation, and the transformation laws for the fields under space 
inversion and time reversal (see Section 2.3), lead to the requirements 

<i>t(P,9';n) = Yo<i>(P,9';n)yo 

<i>(P,9';n) = yo<i>(P,-Y';n)yo, 

(11.9.7) 

(11.9.8) 

1 In fact one can go beyond this approximation by making a Taylor expansion of E(q,k) about 
the point k = xP. For details see Boer (1998). 
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where for any 4-vector Vll = (V0,-V), and 

<i>(P,Y';n) = ysc-l<i>T(P,-Y';n)Cys (11.9.9) 

where T indicates the transpose and Cy 11c-1 = -yJ. 
It follows that p = 0 in (11.9.6). For the other coefficients, several terms 

are possible. They can be ordered into sets according to magnitude, the 
largest O(IPI), the next 0(1) and so on. When linked to the hard process 
they give rise to terms of twist 2 and twist 3 respectively. ('Twist' was 
briefly mentioned in Section 11.7. For a more detailed explanation of this 
concept see, for example, Section 22.2 of Leader and Predazzi (1996)). 
For the purpose of this classification it is convenient to split the covariant 
spin vector into a longitudinal part g'll(.A) given by (11.5.35), and therefore 
'large', and a transverse part 

Y'j = (0, Sr, 0) (11.9.10) 

of 0(1). We have 

A f 
<I>= 2 [f(x)- 2A.hL(x)ys + hr(x)ys.f T] 

M + 2 {e(x)I + fr(x)ys.fr + fL(x)A.ys[f, ~]} 

+··· (11.9.11) 

There is confusion in the literature about the nomenclature of the 
coefficient functions in (11.9.11). We have essentially followed the logical 
notation in the ground-breaking paper of Ralston and Soper (1979) and 
in the later discussion of Cortes, Pire and Ralston (1992). 

Unfortunately, an influential paper of Jaffe and Ji (1991) uses a quite 
different and potentially misleading notation. This labels some of the 
coefficient functions as g1, g2, g3, thereby confusing experimentally defined 
and measured quantities with approximate theoretical expressions for 
them. Up to an overall constant the relations between our coefficients and 
those of Jaffe and Ji are 

hL = g{l hr = h{l 

fr = (gl + g2)JJ f = ff1 (11.9.12) 

h = (h2 + !hdJJ 

In principle a complete knowledge of the partonic structure of the 
nucleon would require a knowledge of all the coefficient functions in 
( 11.9.11 ). It is hard to imagine that we will ever possess such detailed 
knowledge. In ( 11.9.11) the first three terms correspond to twist 2 and 
are the parton-model terms that would emerge if the quark fields tp were 
treated as free fields. As explained in subsection 11.5.2 the term f r, which 
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occurs in the expression (11.5.50) for g1 + g2, is not of twist 2 and does 
not emerge from the parton model. 

All the coefficient functions in ( 11.9.11) are given by the nucleon matrix 
elements of bilocal light-cone operators. As such they depend not only 
upon x but, strictly speaking, upon the renormalization scale J1 as well. 
Since this is, in principle, arbitrary, it is usual to choose it equal to the 
large scale in the reaction. For example, in DIS one chooses }12 = Q2. 

In the shorthand notation of (11.9.5), with the spin state of the nucleon 
indicated by a subscript A or Y r for the longitudinal and transverse cases 
respectively, one has 

1 
hL = - 4A (ys fz) A 

h - 1 j· Jl v) 
T - -2 \zysa!lv!fl yn .'l'r 

1 
fr =-2M (ys!fr)gr 

f _ 1 (" JlPV) 
L- 4MA zysa11vn A 

(11.9.13) 

f = ~ ( fz) 

1 
e =2M (I)· 

We mentioned in Section 11.5 that in the free-field or parton model 

hL(x) = ~q(x) = q+(x)- q_(x) (11.9.14) 

where ± refers to the quark helicity inside a nucleon of helicity + 1/2. 
The function hr ( x) is the analogue of this when the nucleon is polarized 

perpendicular to its momentum, and in the parton model 

(11.9.15) 

where j L refer to the quark's transverse covariant spin vector being along 
or opposite to the spin of the transversely polarized nucleon. 

Conventionally the transverse spin direction is chosen as the Y direction 
for a particle moving along the Z-axis. Then by (1.1.18) 

lp; i)y = ~ (lp; 1/2) + ilp; -1/2)) 

lp; L)y = ~ (lp; 1/2) - ilp; -1/2)) 

where j L means along or opposite to 0 Y respectively. 
Sometimes the X -direction is chosen, for which we have 

lp; nx = ~ (lp; 1/2) + lp; -1/2)) 

lp; L)x = - ~ (lp; 1/2) -lp; -1/2)). 

(11.9.16) 

(11.9.17) 
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In DIS it is easy to see from (11.5.10) that the leading-order piece of 
E(q,k) in (11.9.1), which describes the 'hard' process, always involves a 
product of an odd number ofy-matrices. Hence in the trace in (11.9.2) only 
that part of <I> involving an odd number of y-matrices will contribute, i.e. 
only the terms v11 and a11 in (11.9.4). The large term hr(x) is connected to 
the structure ysu 11v, and hence does not appear in leading order in DIS. It 
can be measured in polarized Drell-Yan-type reactions, as is discussed in 
Section 12.4, and possibly also in single-spin asymmetries in semi-inclusive 
hadron-hadron reactions. (See, however, Section 13.4.) 

It should be stressed that the functions f(x), hL(x) and hr(x) or, equiv­
alently, q(x), ~q(x) and ~rq(x) are on an equal footing and contain the 
most essential information about the internal partonic-spin structure of 
the nucleon. There is steady progress in the experimental determination 
of the ~q(x) but, to date, we possess very little experimental information 
about the transverse densities ~rq(x). (See, however, Section 13.4.) Indeed, 
the only unambiguous information we have about ~rq(x) is the Soffer 
bound (Soffer, 1995): 

l~rq(x)l ::::;; ! [q(x) + ~q(x)]. (11.9.18) 

The importance of ~rq(x) was first stressed in a seminal paper by 
Ralston and Soper (1979), and the possibility of its measurement was 
discussed by Artru and Mekhfi (1990), by Jaffe and Ji (1991) and by 
Cortes, Pire and Ralston (1992). We shall discuss the phenomenological 
aspects of ~rq(x) in Section 12.4 and Chapter 13. 

11.9.1 Evolution for ~rq(x, Q2) 

The evolution equations for ~rq(x, Q2) are similar in form to (11.7.2), 
but simpler since there is no gluon contribution. The evolution is thus 
analogous to that of a flavour non-singlet combination of polarized-quark 
densities. 

The transverse-polarization splitting functions, in leading order, ~rPJ~l, 
were given by Artru and Mekhfi (1990). The next-to-leading-order result 
can be found in Vogelsang (1998). 

At leading order the moments of the transversely polarized quark 
densities vary is a very simple way with Q2 : 

l
-2~rp(O)(n) /Po 

~yq(n)(Q2) = [ ::~~~~ qq X ~yq(n)(Q5) n = 1,2, ... (11.9.19) 

where Po = 11 - 2nt /3, nt being the number of active flavours, and the 
moments ~rPJ~)(n) of the splitting functions turn out to be negative for 
all n. It follows that all ~rq(n)(Q2) decrease as Q2 increases. In general 
one cannot conclude that ~rq(x, Q2) decreases in magnitude for all x as 
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Q2 increases, but one can do so if ~rq(x, Q6) is a monotonic function of 
X. 

Strictly speaking, in NLO the combinations ~rq+ = ~rq ± ~rq evolve 
with different splitting functions ~T P~!~, but it t~rns out that the dif­

ference between ~rPJ~~ and ~rPJ~l_ is completely negligible. Hence, in 
practice ~rq and ~rq can be considered to evolve with essentially the 
same splitting functions. 

11.10 The future: neutrino beams? 

There has been much discussion recently about the possibility of con­
structing a muon collider involving the collision of two circulating high 
energy muon beams. A prerequisite for this is a muon storage ring, which, 
it was suddenly realized, could provide a clean high energy neutrino beam 
of staggering intensity - 103 or 104 times more intense than present fluxes 
and well focussed. In fact the production via, say, fl- ~ e-+v.u+ve actually 
produces, in a well-defined way, a mixture of neutrinos and antineutrinos. 
But it is a trivial matter to separate the neutrino from the antineutrino 
charged current reactions in the target by simply identifying the charge of 
the final state lepton. It is not necessary to separate high energy same-sign 
muons from electrons, which would have been a daunting task. 

With this sort of flux it becomes possible to use targets of a few kilo­
grams, rather than kilotonnes and, for the first time ever, to contemplate 
polarized target experiments with neutrino beams. This would indeed be a 
dramatic development. Flavour separation, i.e. the separate determination 
of the parton and antiparton densities of a given flavour, has only been 
possible for the unpolarized case because of the ability to combine data 
from neutral current and charged current reactions. With this exciting 
prospect in view we shall here present a brief outline of how and what 
could be measured for neutrino and antineutrino CC reactions. 

Because of the parity-violating electroweak coupling one no longer has 
the correspondence that the symmetric part W~~) in (11.3.9) is spin inde­
pendent and the antisymmetric part W~~) in (11.3.10) is spin dependent. 
Now the spin-dependent part of W.uv is a superposition of symmetric and 
antisymmetric pieces and involves five independent structure functions 
gj(x, Q2), which, in the absence of strong interactions, would obey Bjorken 
scaling, i.e. would be independent of Q2• There is a plethora of different 
definitions of the gj in the literature. We shall follow the definitions used 
in the recent very important paper of Bllimlein and Kochelev (1997).1 

1 These gj are related to the gfEL used in the review article by Anselmino, Efremov and Leader 
(1995) via g1.2 = gtrL; g3 = -g~EL; g4 = gfEL- g~EL; gs = -g~EL. 
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Then, using the same kinematic variables as in Section 11.3 and defining 

(11.10.1) 

(11.10.2) 

(11.10.3) 

where we have suppressed the neutrino labels v and v that should be 
attached to W11v and the gi. 

The differential cross-section differences for the longitudinally and trans­
versely polarized target cases are related to the g1 as follows. 

For v or v beams on a target polarized longitudinally, along ( =>) or 
opposite ( ¢=) to the initial lepton beam direction, 

d2av,v ( ¢=) d2av,v ( =>) l/.2 

dxdy - dxdy = 32ns Q4 IJW 

x [± (2- y- 2xy~2 ) yxg1 + 4~2 
yx2g2 

+ 2~2 
( 1 - y - xy ~2 ) xg3 

- ( 1 + 2x ~2 ) ( 1 - y - xy ~2 ) g4 

+(1+2x~2 )y2xgs] (11.10.4) 

where JS is the CM energy of the lepton-nucleon collision (s ~ 2ME), 
and 

1 (GMf;y Q2 )
2 

IJW = 2 4nll. Q2 + Mf:v 
(11.10.5) 

In (11.10.4) one must use gf- for neutrino beams, and gf+ for antineu­
trino beams. 
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It is perfectly reasonable to neglect terms of order M 2 j s, so that one 
obtains the simpler result 

d20"v,v(-=) d20"v,v(=>) 

dxdy dxdy 

rx2 [ w+ w+ 2 w+] ~ 32ns Q4 11w ±(2- y)yxg1 - (1- y)g4 + y xg5 . (11.10.6) 

For a transversely polarized target ( ft or ~ ), with ¢, the azimuthal angle 
of the final state lepton, measured with respect to the plane formed by the 
initial lepton momentum and the nucleon spin direction ft (see Fig. 11.17), 
one has 

d30"v~(ft) d30"v~(~) 

dxdydcp dxdydcp 

= 16M JS ~: 1Jw cos cp [ xy ( 1 - y- xy ~2 )] 

X { ±2yxgl ± 4g2 - t ( 2 - y - 2xy ~2 ) g3 

+~ ( 1- y- xy ~2 ) g4 + 2ixgs}. ( 11.10. 7) 

Just as for the case of g2 in electromagnetic neutral current reactions, 
(Section 11.4 and subsection 11.5.2) the structure functions gf and gf 
cannot be calculated in the simple parton model. For the other g j one 
finds 

g r- = ~u + ~c + ~d + ~s 
w- - -

g5 = ~d + ~s - ~u- ~c 

k' 

k 

(11.10.8) 

(11.10.9) 

Fig. 11.17. Definition of azimuthal angle¢ for transverse nucleon po­
larization. The bold horizontal arrow gives the nucleon spin direction. 
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and (Dicus, 1972) 

and 
g r+ = ~d + ~s + ~u + ~c 
gf+ = ~d + ~s - ~u - ~c. 

In all these it is probably safe to take ~c = ~c = 0. 
At the parton level, (11.10.6) simplifies to 

d2av,v(<=) d2av,v(~) 

dxdy dxdy 

347 

(11.10.10) 

(11.10.11) 

(11.10.12) 

a2 -
~ 32ns Q4 YJw { ±(2- y)yxgf+ + [i- 2(1- y)] xgr'F} (11.10.13) 

so that it might not be too difficult to determine g1 and g5 separately. 
In that case one would be able to make a direct measurement of the 

flavour-singlet combination ~~. which plays such a crucial role in the 
'spin crisis' (Section 11.2 and subsection 11.6.1 ). For one has 

gf- + gf+ = ~u + ~u + ~d + ~d + ~s + ~s + ~c +~c. (11.10.14) 

The advent of neutrino-induced polarized DIS would open up an ex­
tremely rich and valuable source of information on the internal structure 
of the nucleon. It is to be hoped that such experiments do not lie too far 
into the future. 
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