SOME COMPARISON THEOREMS FOR CONJUGATE AND σ-POINTS

WALTER LEIGHTON

Introduction. Section 1 of this paper is concerned with the effect on conjugate and σ-points of various perturbations of $q(x)$ for differential equations of the form

$$
z^{\prime \prime}+q(x) z=0
$$

An integral inequality is developed in Section 2 that involves corresponding focal and conjugate points of such a differential equation.

1. On perturbations. In this section of the paper we shall consider solutions $z(x)$ and $y(x)$, respectively, of differential equations

$$
\begin{align*}
& z^{\prime \prime}+q(x) z=0, \tag{1}\\
& y^{\prime \prime}+p(x) y=0,
\end{align*}
$$

where $q(x)$ and $p(x)$ are positive functions, continuous on an interval $[0, c]$, except possibly at a finite number of points of the interval $(0, c)$ at each of which both left- and right-hand limits of $p(x)$ and $q(x)$ exist. The points of discontinuity of $p(x)$ and $q(x)$ are not necessarily the same points. Unless otherwise noted, a solution will always mean a nonnull solution.

We shall suppose that $x=c$ is the first conjugate point of $x=0$ with respect to equation (1); that is, there exists a solution $z(x)$ of (1), positive on $(0, c)$, such that

$$
z(0)=z(c)=0, \quad z^{\prime}(0)=1
$$

The σ-point of $z(x)$ is the (unique) point σ on $(0, c)$ at which $z^{\prime}(\sigma)=0$, and similarly for $y(x)$.

The paper is concerned with comparison theorems for the first conjugate point and for the σ-point of $x=0$ with respect to equation (2), when $p(x)$ is a perturbation of $q(x)$.

Use will be made of the following fundamental lemma (see [4]).
Lemma 1. If

$$
\begin{equation*}
\int_{0}^{c}[p(x)-q(x)] z^{2}(x) d x \geqq 0 \quad[p(x) \not \equiv q(x)], \tag{3}
\end{equation*}
$$

Received May 6, 1975 and in revised form, August 31, 1976. This research was partially supported by U.S. Army Research Office (Durham) Grant DAHC04-74-G0185.
a solution $y(x)$ of (2) that vanishes at $x=0$ will have a zero on the open interval ($0, c$).

Let $x=\sigma$ be the σ-point of $z(x)$ and let $[\alpha, \beta]$ with midpoint m be any subinterval of $[0, \sigma]$. On $[\alpha, \beta]$ replace $q(x)$ by a function $p(x)$ with the property that $q(x)-p(x)>0$ on $[\alpha, m)$ while $p(x)-q(x)>0$ on $(m, \beta]$. Finally, let $p(x) \equiv q(x)$ outside $[\alpha, \beta]$.

We have then the following result.
Theorem 1. If

$$
\begin{equation*}
p(m+\epsilon)-q(m+\epsilon) \geqq q(m-\epsilon)-p(m-\epsilon) \tag{4}
\end{equation*}
$$

for each $\epsilon>0$ such that $m+\epsilon<\beta$, the conjugate point of $y(x)$ precedes $x=c$.
In other words, a solution $y(x)$ that vanishes at $x=0$ must vanish again on ($0, c$).

To prove the theorem, draw the graph of the function $z^{2}(x)$, note that $z^{2}(x)$ is an increasing function on $[0, \sigma]$ and that (3) holds.

Clearly there is a dual theorem when the subinterval $[\alpha, \beta] \subset[\sigma, c]$. One replaces $q(x)$ on $[\alpha, \beta]$ by a function $p(x)$ with the property that $p(x)-q(x)>0$ on $[\alpha, m)$ and $q(x)-p(x)>0$ on $(m, \beta]$, where m is the midpoint of $[\alpha, \beta]$. Let $p(x) \equiv q(x)$ outside $[\alpha, \beta]$. We then have the following result.

Theorem 2. If

$$
\begin{equation*}
p(m-\epsilon)-q(m-\epsilon) \geqq q(m+\epsilon)-p(m+\epsilon) \tag{5}
\end{equation*}
$$

for each $\epsilon>0$ such that $m+\epsilon<\beta$, the conjugate point of $y(x)$ precedes $x=c$.
Next, let $z(x)$ be a solution of the system
(6) $z^{\prime \prime}+q(x) z=0, \quad z(0)=0, \quad z^{\prime}(0)=1$,
let $y(x)$ be a solution of the system

$$
\begin{equation*}
y^{\prime \prime}+p(x) y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{7}
\end{equation*}
$$

and let σ be the σ-point of $z(x)$.
Lemma 2. If

$$
\begin{equation*}
\int_{0}^{\sigma}[p(x)-q(x)] z^{2}(x) d x \geqq 0 \quad\lfloor p(x) \not \equiv q(x)], \tag{8}
\end{equation*}
$$

the σ-point of $y(x)$ precedes that of $z(x)$.
A special case of this result was proved in [4]. To prove the lemma, we employ the Picone formula
(9) $\quad \int_{0}^{\sigma}(p-q) z^{2} d x+\int_{0}^{\sigma}\left(\frac{y z^{\prime}-z y^{\prime}}{y}\right)^{2} d x=\left[\frac{z}{y}\left(y z^{\prime}-z y^{\prime}\right)\right]_{0}^{\sigma}$.

Suppose first that $y(x)>0$ on $(0, \sigma]$. The right-hand member of (9) is then zero. We shall have a contradiction unless the first two integrals in (9) are both zero. But the second integral vanishing implies that $y(x) \equiv k z(x)$, where k is a constant; that is, both $y(x)$ and $z(x)$ are solutions of (1) and of (2). Accordingly, $[p(x)-q(x)] y(x) \equiv 0$. Then $y(x)$ must be identically zero on a subinterval (by hypothesis, known to exist) on which $p(x) \not \equiv q(x)$. It would follow that $y(x) \equiv 0$ on $[0, \sigma]$.

If the lemma is false, $y(\sigma)$ must then be zero. The right-hand member of (9) is again zero, since $\lim z / y$ exists at both $x=0$ and $x=\sigma$. The second integral in (9) exists, and the above argument may be repeated.

The proof of the lemma is complete.
Theorem 3. Under the hypotheses of either Theorem 1 or Theorem 2, the σ-point of $y(x)$ precedes that of $z(x)$.

The arguments in support of Theorems 1 and 2, modified in an obvious way, are valid for Theorem 3.

Corollary 1. Let $\left[\alpha_{1}, \beta_{1}\right]$ and $\left[\alpha_{2}, \beta_{2}\right]\left(\alpha_{1}<\alpha_{2}\right)$ be equal (possibly overlapping) subintervals of $[0, \sigma]$ and consider the two differential equations

$$
\begin{equation*}
y_{1}{ }^{\prime \prime}+p_{1}(x) y_{1}=0 \tag{i}
\end{equation*}
$$

(ii) $y_{2}{ }^{\prime \prime}+p_{2}(x) y_{2}=0$,
where $p_{1}(x)=q(x)+\delta(\delta>0)$ on $\left[\alpha_{1}, \beta_{1}\right]$ and $p_{1}(x)=q(x)$ outside this subinterval of $[0, c]$, while $p_{2}(x)=q(x)+\delta$ on $\left[\alpha_{2}, \beta_{2}\right]$ and $p_{2}(x)=q(x)$ outside this subinterval. Then, the conjugate point and the σ-point of $x=0$ with respect to (ii) precede, respectively, the corresponding points with respect to (i).

This conclusion also holds in the dual situation-when the subintervals lie on $[\sigma, c]$ and $\alpha_{2}<\alpha_{1}$.

It is clear that the constant δ in the corollary can be replaced by a positive function $\delta(x)$ mutatis mutandis.

Critique. Note that m need not be the midpoint of $[\alpha, \beta]$ in the above theorems. It may be any point of (α, β) less than or equal to the midpoint in the case of Theorem 1 and in the first part of Theorem 3. Similarly, it may be any point greater than or equal to the midpoint of $[\alpha, \beta]$ in Theorem 2 and in the second part of Theorem 3. Then conditions (4) and (5) are required to hold only where applicable - that is, on a subinterval of $[\alpha, \beta]$ of which m is the midpoint. Outside such a subinterval, on the remainder of $[\alpha, \beta]$, the left-hand members of inequalities (4) and (5) will then be required simply to be nonnegative.

The following corollary is useful in computing estimates of the σ-point of $z(x)$ for some functions $q(x)$ (we return to this idea later in the paper).

Corollary 2. Suppose that $q(x)$ is an increasing convex function, and let $x=\sigma$ be the σ-point of the corresponding solution $z(x)$ of (6). Let the interval
$[0, \sigma]$ be divided into n subintervals on each of which $q(x)$ is replaced by its value at the midpoint of the subinterval and let $p(x)$ be the resulting step-function on $[0, \sigma]$, while $p(x) \equiv q(x)$ on $(\sigma, c]$. The σ-point of the solution $y(x)$ of (7) will follow the σ-point of $z(x)$, and there will be no conjugate point of $x=0$ corresponding to the equation $y^{\prime \prime}+p(x) y=0$ on the interval $(0, c]$.

If $q(x)$ is decreasing and concave and $q(x)$ is replaced on $[0, \sigma]$ by the above step-function, the σ-point of $y(x)$ will precede the σ-point of $z(x)$, and, likewise, the conjugate point of $y(x)$ will precede that of $z(x)$.

We continue with generalizations of earlier results of the present writer [1, Theorem 6], the proofs of which are less immediate.
Suppose now that in addition to previous assumptions $q(x)$ is nondecreasing on $[0, c]$, and let m be any point of $(0, c)$. We employ the following lemma.

Lemma 3. Suppose $q(x)$ is nondecreasing on $[0, c]$, let m be any point of $(0, c)$ such that $2 m \leqq c$, and let $z(x)$ be the solution defined by (6). Then, $z(m+\epsilon)>$ $z(m-\epsilon)$ for each $\epsilon(0<\epsilon<m)$.

To prove the lemma; construct the auxiliary differential equation

$$
\begin{equation*}
z_{1}^{\prime \prime}+q_{1}(x) z=0 \tag{10}
\end{equation*}
$$

where $q_{1}(x)=q(2 m-x)(m \leqq x \leqq 2 m)$. Note that $q_{1}(x)$ is the reflection in the line $x=m$ of $q(x)$ and that $q_{1}(x)$ is defined only on the interval $[m, 2 m]$. Let $z_{1}(x)$ be the solution of (10) defined by the conditions

$$
z_{1}(2 m)=0, \quad z_{1}^{\prime}(2 m)=-1
$$

Then $z_{1}(x)$ will be well defined on $[m, 2 m]$ and will be the reflection on that interval in the line $x=m$ of $z(x)$ on the interval $[0, m]$, and $z_{1}(m)=z(m)>0$, $z_{1}{ }^{\prime}(m)=-z^{\prime}(m)$. Observe that $[\mathbf{4}] m \leqq c / 2 \leqq \sigma$; consequently,

$$
\begin{equation*}
z_{1}^{\prime}(m)=-z^{\prime}(m) \leqq 0 . \tag{11}
\end{equation*}
$$

The conclusion of the lemma is obvious, unless $m+\epsilon>\sigma$. So assume that this inequality holds. It follows from (11) that $z_{1}(x)<z(x)$ on a small inter$\operatorname{val}\left(m, m+\epsilon_{1}\right)\left(\epsilon_{1}>0\right)$. Suppose that at some point

$$
x=x_{1}\left(m<x_{1}<2 m\right), \quad z\left(x_{1}\right)=z_{1}\left(x_{1}\right) .
$$

At such a point, $z_{1}^{\prime}\left(x_{1}\right)>z^{\prime}\left(x_{1}\right)$. But the "wronskian"

$$
w=z_{1} z^{\prime}-z_{1}^{\prime} z
$$

has the property that

$$
w^{\prime}(x)=\left[q_{1}(x)-q(x)\right] z(x) z_{1}(x)<0
$$

for x on $\left(x_{1}, 2 m\right]$; that is, $w(x)$ is nonincreasing on this interval. We have, however,

$$
\begin{aligned}
& w\left(x_{1}\right)=z\left(x_{1}\right)\left[z^{\prime}\left(x_{1}\right)-z_{1}^{\prime}\left(x_{1}\right)\right]<0, \\
& w(2 m)=-z_{1}^{\prime}(2 m) z(2 m)>0
\end{aligned}
$$

a contradiction. Accordingly, $z_{1}(x)<z(x)(m<x \leqq 2 m)$, and the conclusion of the lemma follows.

Theorem 4. Let $q(x)$ be nondecreasing on $(0, c)$ and let m be any point of $(0, c)$ such that $2 m \leqq c$. If on $[0,2 m] q(x)$ is replaced by a function $p(x)$ with the property that

$$
p(m+\epsilon)-q(m+\epsilon) \geqq q(m-\epsilon)-p(m-\epsilon) \geqq 0 \quad(0<\epsilon \leqq m)
$$

with $p(x) \equiv q(x)$ on ($2 m, c]$, the conjugate point of $x=0$ with respect to the differential equation $y^{\prime \prime}+p(x) y=0$ precedes that of $z(x)$, unless $p(x) \equiv q(x)$.

An appeal to Lemmas 1 and 3 yields the proof of the theorem.
The dual of Theorem 4 is the following.
Theorem 5. Let $q(x)$ be a nonincreasing function on ($0, c$) and let m be any point of $(0, c)$ such that $2 m \geqq c$. If, on the interval $[2 m-c, c], q(x)$ is replaced by a function $p(x)$ with the property that

$$
\begin{align*}
p(m-\epsilon)-q(m-\epsilon) & \geqq q(m+\epsilon)-p(m+\epsilon) \tag{12}\\
& \geqq 0 \quad(0<\epsilon \leqq c-m)
\end{align*}
$$

with $p(x) \equiv q(x)$ on $[0,2 m-c)$, the conjugate point of $x=0$ with respect to the differential equation $y^{\prime \prime}+p(x) y=0$ precedes that of $z(x)$, unless $p(x) \equiv q(x)$.

Theorems 4 and 5 generalize Theorems 1.1 and 1.2 of [4].
An instructive example. Let $q(x)=1$. Then $z(x)=\sin x$, and $c=\pi$, $\sigma=\pi / 2$. Set

$$
p(x)=\left\{\begin{array}{l}
\lambda^{2}(0 \leqq x<\pi / 2) \\
\mu^{2}(\pi / 2<x \leqq \pi)
\end{array}\right.
$$

where λ and μ are numbers on the interval (0,2). A solution of the system
(13) $y^{\prime \prime}+p(x) y=0, \quad y(0)=0$
is, then,

$$
y=\left\{\begin{array}{l}
\sin \lambda x \quad(0 \leqq x \leqq \pi / 2) \tag{14}\\
\sin (\lambda \pi / 2) \cos \mu(x-\pi / 2)+(\lambda / \mu) \cos (\lambda \pi / 2) \sin \mu(x-\pi / 2) \\
(\pi / 2<x \leqq \pi)
\end{array}\right.
$$

A little trigonometry reveals that for (13)

$$
\begin{aligned}
c & =\frac{\pi}{2}+\frac{\pi}{2 \beta}\left[\pi-\arctan \left(\frac{\beta}{\alpha} \tan \alpha\right)\right] \quad(\alpha=\lambda \pi / 2, \beta=\mu \pi / 2), \\
\sigma & =\frac{\pi}{2 \lambda} \quad(\lambda>1), \\
\sigma & =\frac{\pi}{2}\left[1+\frac{1}{\beta} \arctan \left(\frac{\alpha}{\beta} \frac{1}{\tan \alpha}\right)\right] \quad(\lambda<1) .
\end{aligned}
$$

When, for example, $\lambda=3 / 2, \mu=1 / 2$, we have $c=2.2143, \sigma=\pi / 3$. Note that $c<\pi$ and $\sigma<c / 2$. When $\lambda=1 / 2, \mu=3 / 2$, we have $c=2.8325, \sigma=$ 1.7853. In this case, $c<\pi$, while $\sigma>c / 2$ (cf. [4]).

In the limiting case $\lambda=0$, if we take $\mu=\sqrt{2}$, say, we have $c=2.9806<\pi$, and $\sigma=2.3824>c / 2$. This is, of course, equivalent to defining $p(x)=0$ on $[0, \pi / 2)$ and $p(x)=2$ on $[\pi / 2, \pi]$. When $\lambda=\sqrt{2}, \mu=0$, then $\sigma=\pi / 2 \sqrt{2}=$ 1.1107, and c does not exist.

Finally, it is of interest to determine μ^{2}, when λ^{2} is an arbitrary number <1 and $c=\pi$. This leads at once to the equation

$$
\frac{\tan \beta}{\beta}+\frac{\tan \alpha}{\alpha}=0 .
$$

A little computation leads to the following paired values of λ^{2} and μ^{2} :

$$
\begin{array}{lllll}
\lambda^{2}: & 0.000 & 0.0625 & 0.2500 & 0.5625 \\
1.000 \\
\mu^{2}: 1.664 & 1.638 & 1.538 & 1.369 & 1.000
\end{array}
$$

Approximating σ. A method of obtaining both lower and upper bounds of σ-points was developed in [3]. Corollary 2 to Theorem 3 above permits sharper results in two situations. Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}+q(x) y=0 \tag{15}
\end{equation*}
$$

where $q(x)$ is positive, nondecreasing, and convex on $[0, \sigma]$, and where $x=\sigma$ is the σ-point of a solution of (15) that vanishes at $x=0$. Divide the interval $[0, \sigma]$ into n subintervals $[0, h],[h, 2 h], \cdots[(n-1) h, n h]$ of common length h. If $q(x)$ is then replaced by the step-function $p(x)$, where

$$
p(x)=q\left(\frac{2 i-1}{2} h\right)=c_{i}{ }^{2}
$$

on the i th subinterval $(i=1,2, \cdots, n)$, the σ-point of $x=0$ with respect to

$$
\begin{equation*}
y^{\prime \prime}+p(x) y=0 \tag{16}
\end{equation*}
$$

will, by Corollary 2 to Theorem 3, follow that of (15) - that is, will provide an upper bound for σ of (15).

The above observations yield a method of obtaining such a bound (see $[3,6]$). One solves the equations

$$
\begin{align*}
\tan z_{2} & =\frac{c_{2}}{c_{1}} \tan c_{1} h \\
\tan z_{i} & =\frac{c_{i}}{c_{i-1}} \tan \left(c_{i-1} h+z_{i-1}\right) \quad(i=3,4, \cdots, n), \tag{17}\\
h & =\frac{1}{c_{n}}\left(\frac{\pi}{2}-z_{n}\right)
\end{align*}
$$

for h using a modified version of successive approximations (see [6]).

Similarly, if $q(x)$ is positive, nonincreasing, and concave on $[0, \sigma]$, equations (17) will provide a lower bound for the σ-point associated with (15).

For example, the σ-point of $x=0$ associated with (17), when $q(x)=7-x^{2}$, is known to be

$$
\frac{\sqrt{9-\sqrt{57}}}{2}=0.6021
$$

Taking $n=5$ in (17) one obtains the lower bound 0.6020^{-}-- a very good lower bound considering the small value of n employed.
2. Some integral inequalities. In another paper [4] it was shown that if $p(x)$ is positive and increasing on $[a, c]$ and $x=c$ is the first conjugate point of $x=a$, then
(18) $\int_{a}^{\sigma} p(x) d x<\int_{\sigma}^{c} p(x) d x$,
where σ is the σ-point of a solution vanishing at $x=a$. The inequality is reversed when $p(x)$ is a decreasing function. It is also true when $p(x)$ is increasing that $\sigma<f$, where $x=f$ is the focal point of the line $x=a$. If we write (19) $p(x)=1 / h^{2}(x)$
and assume that $p(x)$ is of class $C^{\prime \prime}$, an inequality stronger than (18) may be available, as the following result shows.

Theorem 6. Suppose that $p(x)>0$ is an increasing function of class $C^{\prime \prime}$, that $h^{\prime \prime}(x)<0$, and that $y_{1}(x)$ is a solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y=0 \tag{20}
\end{equation*}
$$

such that $y_{1}(a)=y_{1}(c)=0, y_{1}(x) \neq 0$ on (a, c). Then

$$
\begin{equation*}
c / 2<\sigma<f \tag{21}
\end{equation*}
$$

and
(22) $\int_{a}^{f} p(x) d x<\int_{f}^{c} p(x) d x$.

The result (21) is known [4]. To prove (22), let $y(x)$ be a solution of (20) and set

$$
z(x)=y^{\prime}(x)
$$

Then $z(x)$ is a solution of the differential equation

$$
\begin{equation*}
\left(z^{\prime} / p\right)^{\prime}+z=0 \tag{23}
\end{equation*}
$$

If in this equation we substitute
(24) $t=\int_{a}^{x} p(x) d x$,
we have

$$
\ddot{w}+\frac{1}{p_{1}(t)} w=0,
$$

where $w(t)=z(x)=y^{\prime}(x)$, and $p_{1}(t)=p(x)$, subject to (24). Further, we have the following identities:

$$
\dot{w}(t)=\frac{z^{\prime}(x)}{p(x)}=\frac{y^{\prime \prime}(x)}{p(x)}=-y(x) .
$$

Suppose now that $y(x)$ is a solution of (20) such that $y(a)=1, y^{\prime}(a)=0$, $y(f)=0, y(x)>0$ on (a, f). Then $x=f$ is the focal point of the line $x=a$. We observe that when $x=a, t=0$, and write

$$
t_{1}=\int_{a}^{f} p(x) d x, \quad t_{2}=\int_{a}^{o} p(x) d x,
$$

where $x=g$ is the first zero of $y^{\prime}(x)$ following $x=a$. It follows that $w(0)=$ $0=w\left(t_{2}\right)$.

Because $p(x)$ is an increasing function, $1 / p_{1}(t)$ decreases, as t increases. It follows [1] that $2 t_{1}<t_{2}$; that is,

$$
\begin{equation*}
\int_{a}^{f} p(x) d x<\int_{f}^{a} p(x) d x \tag{25}
\end{equation*}
$$

But (see [5]) because $h^{\prime \prime}(x)<0, g<c$, and (22) follows.
A companion result is the following.
Theorem 7. If in Theorem $6, p(x)$ is a decreasing function with $h^{\prime \prime}(x)>0$, then $f<\sigma<c / 2$ and

$$
\int_{a}^{f} p(x) d x>\int_{f}^{r} p(x) d x .
$$

The proof is analogous to that of Theorem 6.

References

1. Walter Leighton, Some elementary Sturm theory, Journal of Differential Equations 4 (1968), 187-193.
2. -_Upper and lower bounds for eigenvalues, Journal of Mathematical Analysis and Applications 35 (1971), 381-388.
3. -Computing bounds for focal points and for σ-points for second-order linear differential equations, Ordinary Differential Equations (Academic Press, New York, 1972).
4. - More elementary Sturm theory, Applicable Analysis 3 (1973), 187-203.
5. - The conjugacy function, Proceedings of the American Mathematical Society 24 (1970), 820-823.
6. -On approximating conjugate, focal, and σ-points for linear differential equations of second order, Annali di Matematica Pura ed Applicata 107 (1975), 373-381.
7. Henry C. Helsabeck, The minimal conjugate point of a family of differential equations, to appear, SIAM J. Math. Analysis.

University of Missouri,
Columbia, Missouri

