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A MOORE STRONGLY RIGID SPACE

V. TZANNES

ABSTRACT. It is proved that for every Hausdorff space R and for every Hausdorff
(regular or Moore) space X, there exists a Hausdorff (regular or Moore, respectively)
space S containing X as a closed subspace and having the following properties:

la) Every continuous map of S into R is constant.
b) For every point x of S and every open neighbourhood U of x there exists an
open neighbourhood V of x, V C U such that every continuous map of V into
R is constant.
2) Every continuous map f of S into S (f # identity on S) is constant.

In addition it is proved that the Fomin extension of the Moore space S has these

properties.

The first example of a strongly rigid space was given by J. de Groot [2]. In [4, Re-
mark 3.5.4] V. Kannan and M. Rajagopalan posed the question whether every Hausdorff
space can be embedded in a Hausdorff strongly rigid space. (A space S is called strongly
rigid if every continuous map f: S — S, f # identity on S, is constant).

We solve this problem by proving that for every Hausdorff space R and for every
Hausdorff (or regular) space X there exists a Hausdorff (or regular) space S containing
X as a closed subspace and having the following properties: 1) Every continuous map
of S into R is constant. 2) For every point x of S and every open neighbourhood U of x
there exists an open neighbourhood V of x, V C U, such that every continuous map of
Vinto R is constant. (Spaces having these properties are called in [3] R -monolithic and
locally R -monolithic, respectively and by their construction are connected and locally
connected). 3) The space S is strongly rigid.

The method of construction of these spaces is basically the same as in [3] which needs
an auxiliary space T having two points a, b such that f(a) = f(b), for every continuous
map f of T into R. Thus, using in place of space T the Moore space constructed in [1,
Lemma 2] it follows that for every Hausdorff space R and for every Moore space X,
there exists a Moore space S containing X as a closed subspace and having properties
(1), (2), (3). A direct consequence of this, is that the Fomin extension of the Moore space
S has properties (1), (2), (3).

The terminology and the notation used here are the same as in [3], which is necessary
background for the later results.

Let R be a Hausdorff space and X be a cardinal number such that X >
max{ ¢ *(R),R;}. We construct the space Ti(R), [3, Theorem 1] setting | Tyns2| =
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|T5,+1] = R and considering that for every point ay; a basis of open neighbourhoods
are the sets of the form { v} } U B, where the set B contains all but X number of elements
of the set Ty, U T4;,,. We denote this space by T(R *).

LEMMA 1. The space T(R*) has the following properties:

(1) It is regular totally disconnected and for every continuous map f of TR*) into
R, f(p7) =fp").

(2) If M is a subspace of T(R™") containing the points p~, p* and having cardinality
< R* then the points p~, p* are separated by disjoint open-and-closed subsets
inM.

PROOF. (1). That T(R*) is regular totally disconnected is easily proved. The proof
that, for every continuous map f of T(R*) into R, f(p~) = f(p*) is similar to that of
the corresponding property of T1(R ) (in [2]). It should be noticed that the proof in [3] is
based on the fact that | T4,42| = |T§"q+,| = max{ ¢ *(R),R,}, for then both sets A].,, =
T\ (Fah), Ay = T \f~'(f(a}h)) have cardinality < max{ (R),Ro}. In
our case here, the cardinality of both sets A%}, |, A4,_; is X, that is, the map f is constant
on a neighbourhood of the point a].

Q) LetM C T(RY), |M| < R*, p~, p* € M and let U(n, p*) be an open neighbour-
hood of p* in T(X*). Then

UnpHh= U Twu U U {ef:k>4n+2,m=12,..}U{p'}.
k>4n+2 k>4n+2
But then the points aj, of U(n,p*) (if they belong to M) are isolated in M, because
M| <R and every open neighbourhood of a}, consists of all but X number of elements
of the set Ty,41 U T4y—). Hence U(n,p*) N M = U(n,p™) N M and therefore the points
p~, p* are separated by open-and-closed subsets in M.
We now apply Theorem 2, [3], setting X = T(R*), T1(R) = T(R*) and a = p* and
we construct the space / (T(?‘l +)) which in the sequel will be denoted by C(p*,R*).

LEMMA 2. The space C(p*,R ™) has the following properties:

(1) It is regular R -monolithic and locally R -monolithic only at the point p*.

(2) The cardinality of every open set is R ™.

(3) ¥ (Cp*RY) = R*,

(4) There is no non-trivial connected (hence R -monolithic) subspace of C(p*,R ™)
containing the point p* and having cardinality < R*,

PROOF. (1) That it is regular R -monolithic and locally R -monolithic at the point
p*, is proved as in [3, Lemma 2 and Theorem 1]. Since the subspace C(p*,R*)\ {p*}
is totally disconnected [3, Theorem 2], it follows that C(p*, R *) is locally R -monolithic
only at the point p*.

(2) and (3) are obvious by the construction of C(p*, R *) and by the fact that | T(R *)| =
N,

(4) Let M, M| < R* be a non-trivial connected subspace of C(p*,R*) containing
the point p*.
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By Lemma 1, (2) and the definition of topology on C(p*, R *) [3,§4] it follows that for the
set O(U(n, p).H, G), (which is an open neighbourhood of p* in C(p*, R *)), it holds that

O(U(n,p*),H,G)N M = O(U(n, p*), H, G) N M, which implies that M is not connected
hence not R -monolithic since every R -monolithic is obviously connected.

THEOREM. For every Hausdorff space R and for every Hausdorff(or regular) space
X, there exists a Hausdorff(or regular, respectively) R -monolithic, locally R -monolithic,
strongly rigid space S containing X as a closed subspace.

PROOF. Let R be a Hausdorff space, X be a Hausdorff (or regular) space and y an
index set for which |Io| = |X|. Let A be a set of cardinal numbers such that

(@) |Ao| = |X],

(b) For every Ry; € Ao, i € Iy, Rg; & Ao,

(c) Forevery i € Iy, Xg; > max{y*(X),v*(R),X; }.

We construct for every Ro; € A, i € Iy, the spaces T(X;) and then the corresponding
spaces C(p;, Xg;). We attach the spaces { C(pf;;, ¥) }ier, to the space X = X as follows:

First we set

C = Cpgi» X\ { Poi» Poi} -

Then we fix a point x; € X and we consider the set

Ao(x) = {x:} x Xo\ {xi}).

Forevery A = (x;,x) € Ag(x;) we denote by C* the copy of C attached to the points x;, x.
We set
Cotr) = {xx} UCY, X =(x,%

and
L= U G
A€EAg(xi)
We consider the set
X=Xu {J

A€Ag(xi)
x;€Xo

on which we define a topology in exactly the same manner as on the set I'(X, Ag) in [3].

The space X1, n = 1,2,. .., is constructed by induction: first we consider the space
Sn = X»\ Xn—1 and an index set I, such that |I,| = |S,|. Then we consider a set A, of
cardinal numbers such that

@ |Aa| = [Sal,

(b) Forevery R,; €A,, i € I,, N} € Ay,

(c) Foreveryi € I, N\ > ¢¥*(X,).
We construct for every R,; € A,, i € I, the spaces T(X,}) and then the corresponding
spaces C(p};, R}). We attach { C(p}, R }icr, to S» = X,\ X,—1 and we construct the
space

Xu=XU U C

A€EAR(x)
X €Sy
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where

An(xi) = {x;} % (Sa\ {xi})
and

Cn = C(pyis &n.:')\ {p;iv P;i}-

For every A = (x;,x) € A, (x;) we set
Cr(x)) = {xi,x} U C)

and
Lxy= U Cyx).
AEAL(x)
Thus to the fixed point x; of S,, n = 1,2,..., are attached |S,| = |A,(x;)| copies C),
A = (x;,x) as x runs over the set S,.
It should be observed that if x;, x; € S, and x; # x;, then for the attached spaces L, (x;)
and L,(x;), it holds that

_L,,(x,~) N L,,(.Xj) = S,, and Nnt # Nn;
Also, by the definition of C)(x;) it follows that if A\ = (x;,x), u = (x;,y), x,y € S, then

Cr)N Chg) = {x}, ifxi = x, x#,
Cy)N Cho) =0, ifxi # x5, x#,
Chx)N Chx)) = {x}, ifxi £x, x=y.

It should also be observed that since for every n = 0,1,2,... and i € I,
max{Y*(R),R;} < V& < Ve, . it follows that f(p~) = f(p*), for every continu-
ous map f of T(R*) into R. Hence for every n = 0,1,2,...,X,;, € A, and i € [, the
corresponding spaces C(p;, X,) satisfy Lemma 2.

Also it is obvious that for every n = 0,1,2,...,A € A,(x;) and R,; € A,,, the space
C) (x;) is homeomorphic to the space C(p};, R,*) and hence it also satisfies Lemma 2.

We consider the set S = U;2, X, on which we define a topology in exactly the same
manner as on the set /(X) in [3].

That S is Hausdorff (or regular, if the initial space Xj is regular) R -monolithic, lo-
cally R -monolithic containing Xj as a closed subspace is proved as in [3, Lemma 2 and
Theorem 1].

We prove that S is strongly rigid. Let f be a continuous map of S into S and let s; € S
such that f(s;) # s;. Let n, m be the minimal integers for which s; € X,, and f(s;) € X,»,.
The space Cﬁ (/) is an R -monolithic subspace of X,,,; and has cardinality X .. Hence the
space f (C,A, (s,-)) is R -monolithic (because the continuous image of an R -monolithic is
obviously R -monolithic) and has cardinality < NX*.

Suppose first n < m. There exists a natural number k such that n+k = m. Since by (c),
(see the construction of the space X+, ) the corresponding cardinals R %, i € I, satisfy the

ni»
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inequality X%, > 1 (X)), it follows that for the construction of X1k, k = 2,3,...,m—n,
the corresponding cardinals R, |, i € In4k—1, satisfy the inequalities

N(;+k_,)i > ¢+(Xn+k—]) > N,:' = (C;\; (Si)),

(the latter by Lemma 2, (3) and by the fact that C) (s;) is homeomorphic to Cp; N5,
Hence, for every i € Inysk—1, every C(p i _1)» Ruix—1y) Which is attached to a point of
Snik—1 = Xn+k—1\ Xn+k—2 (in order to construct X,.;) has cardinality > N and none of
them contains a non-trivial connected subspace having cardinality < X (Lemma 2, (4)).
Hence f(C) (si)) = f(s;) which implies that f(La(si)) = f(s;) and finally that f(X,) =
f(si).

Now suppose n > m. By the construction of spaces Xi, Xz, ..., Xy, it follows that
f (C,*, (si)) C X,.+1, because by (c) again, the connected subspaces of S\ X, have cardi-
nality > R *. Consider the space T(R,*) which was used for the construction of C(p};, X,%).
Then for the points of T(X,}) having the form o}, t = 0,1,..., m = 1,2,..., it holds
that the points f(«;) belong to an R -monolithic subspace Ck(sy) of X, having car-
dinality < R (because |f (C,*, (s,-))l < X* and no R -monolithic subspace of X, has
cardinality exactly X" besides C,*, (s;)). Therefore, for the pseudocharacter of f(a ) in
C¥(sy) it holds that 1 (C%(s).f(ef)) < R But then, by the construction of C(p;;, R
it follows that f(C) (s;)) = f(s;), which implies that f(Ln(s;)) = f(s;) and finally that
FXn) = f(s0).

Thus in both cases f(X,) = f(s;). Consequently, if s is an arbitrary point of S\ X, and
k is the minimal integer for which s € X, then by the above it follows that f(Xy) = f(s)
and since X, C X; we have f(s;) = f(s) and therefore f(S) = f(s;), i.e., the space S is
strongly rigid.

COROLLARY 1. For every Hausdorff space R and for every Moore space X there
exists an R -monolithic, locally R -monolithic, strongly rigid Moore space S containing
X as a closed subspace.

PROOF. In [1, Lemma 2] it is proved that for every Hausdorff space R (denoted
there by Y) there exists a Moore space T7(R ) (denoted by S) having two points —o0,
+00 such that f(—o0) = f(+00), for every continuous map f of 7;(R) into R. By its
construction T1(R ) is totally disconnected. Applying again Theorem 2 [3] (as we did
before for the construction of C(p*, R *)) we construct the space I (T| R )) setting in place
of the space X in Theorem 2 [3], the above space T7(R ) and in place of a the point +oo.
Denote 1 (T.(IR )) by C(+00,2%), where X is a cardinal number such that |[R | < X and
R¥o = 2% (see [1]).

That C(+00, 2%) is Moore is proved as in [3, Theorem 3]. That it is R -monolithic
and locally R -monolithic only at the point +00 is proved as property (1) in Lemma 2.
That the cardinality of every open set is 2% (i.e., property (2) of Lemma 2) is implied by
the construction of C(+00,2") and because |T;(R )| = 2X. Property (4) is implied by
the construction of space C(+00,2%). For property (3), obviously v (C(+oo, ph )) =Ny
(because every Moore space is first countable).
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We now follow the proof of the Theorem above making the appropriate modifications.
That is, for the construction of the space X; we consider an index set Iy, |Io| = |X| and
a set Ag of cardinal numbers such that

@ |Ao| = |X|,

(b) For every Ro; € Ay, i € Ip, Rgy = 2%,

(c) Foreveryi € Iy, Ro; > max{|R|,|X|}.

Thus the spaces to be attached to X = X are { C(+000;, 259) }ieo.-

For the construction of space X,,;1,n = 1,2, ... we consider an index set I, | I,| = |S,|
and a set A, of cardinal numbers such that
(@) |Anl =[S,

(b) For every Ry € Ay, i € I, R0 = 2%

(c) Foreveryi € I, N,; > | X,|,
and thus the spaces to be attached to S, = X, \ X, are { C(+00,i, 2% }icy,.

The final space S is defined as in the Theorem above and the proof that it is Moore
is again the same as in [3, Theorem 3]. The other properties of S are proved as in the
Theorem.

COROLLARY 2. If S is the Moore space constructed in Corollary 1, then the Fomin
extension oS of S is R -monolithic, locally R -monolithic, strongly rigid.

PROOF. That ¢S is R -monolithic, locally R -monolithic is obvious since S is dense
inoS.

We prove that o' S is strongly rigid. Let f: S — o S be continuous and f # identity on
S. Since S is first countable and the sequential closure of Sin ¢S is S [5, Theorem 5.12],
it follows that if s € S and f(s) € oS\ S, then f(S) C ¢S\ S. Hence f is constant, because
oS\ S is totally disconnected [5, Lemma 5.3(b)]. Therefore £(S) C S and consequently f
is constant on S and hence on ¢ S.
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