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Abstract: In order to understand what happens in the Sun when convection overshoots 
into the radiation zone an idealized model of penetrative convection with rotation is 
studied. Here we highlight two properties of the model which occur with parameters 
relevant to the Sun. Firstly rotation allows motions to persist far beneath the convection 
zone, and secondly the profile of helicity with depth is dominated by a local maxima just 
beneath the convection zone. This second result has consequences in dynamo theory. 

1. Introduction 

Overshoot at the base of the solar convection zone motivates this study of astro-
physical penetrative convection, even though the simplest examples of rotating 
penetrative convection remain poorly understood. Stability analysis is used to 
determine preferred horizontal length scales, eigenfunctions and critical Rayleigh 
numbers, and we are particularly interested in isolating features arising in the two 
layer configuration that do not occur in a single layer of fluid. No magnetic fields 
are included here, but a helicity distribution is obtained from which an a-effect 
can be calculated, this effect being the cornerstone of mean-field dynamo theory 
(see, for example Krause and Radler, 1980). A full account of the mathematical 
details appears in Jennings (1990). 

2. The model 

Many simplifications are adopted here, such as the Boussinesq approximation, 
a simple equilibrium, and a plane parallel geometry. Although formally there is 
initially no motion, we loosely think of there being a mean flow in the convection 
zone that is turbulent, while the lower layer's fluid is laminar. Thus we assign 
turbulent values to the thermal diffusivity and kinematic viscosity in the upper 
layer, and laminar values to these quantities in the lower fluid, and further consider 
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the convective region to be only slightly superadiabatic in contrast to the lower 
fluid which is extremely subadiabatic. Ratios of these respective quantities yield 
dimensionless parameters: 

K 
Ktan 

^•turbulent v = n aminar B = HSU* bcritical 
a • C1) 

^turbulent "supercritical 

Both K and V are small and positive, while B is large and negative. Since the 
transition from a convectively unstable stratification to one that is stable to con­
vection is probably very sharp in the Sun it is convenient to neglect the details of 
the transition and model using a step function (see Fig. 1). 
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Fig. 1. The geometry; the stable layer is semi-infinite and —oo < x,y < oo 

2.1 Eigenvalues 

Following the procedure in chap. 3 of Chandrasekhar (1961) we obtain equations 
for the vertical velocity perturbation W{z) in each layer: 

(D2-a2f+TD2 + Ra2 
Wupper — U 

[(D2 - a2)3 + (T/V2) D2 + (BRa2/KV)} Wlower = 0 , 

(2) 

(3) 

where D = d/dz, T is the Taylor number, R is the Rayleigh number, and a2 = 
a2

x + a2 is the horizontal wavenumber. Note that there is no difference here between 
x and y, and that overstable marginal solutions are not considered. Eqns. (2) and 
(3) together with the boundary conditions and conditions at the interface listed 
below define an eigenvalue problem, with non-trivial solutions for W{z) only if R 
has a special value. 
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At z = 1 the boundary is impenetrable, stress free and isothermal, and as 
z —> —oo all perturbations vanish. At the interface (z = 0) we require the following 
quantities to be continuous: 

• Vertical velocity; 
• Horizontal velocity, (both x and y); 
• Horizontal stress (both x and y); 
• Normal stress; 
• Temperature; 
• Heat flux. 

Analytic solutions for W(z) in each layer which satisfy the boundary conditions 
at z = 1 and z = —oo are easily obtained. However, to satisfy the above conditions 
at the interface it is necessary to use numerical methods. Having fixed parameters 
T, V, K, B and a we seek the eigenvalue R. Varying only a, this is repeated until 
we find the critical value of a (ac) at which R is minimized. This minimum value 
is the critical Rayleigh number Rc, and ac gives the preferred horizontal length 
scale at the onset of convection. 

3. Results 

3.1 V <C 1, an important limit 
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Fig. 2. Curves of log10 Rc versus log10 V at different values of T, with K — —B = 1 in 
each case. 

From Fig. 2 it is seen that if V <C 1 the results for no rotation (T = 0) are very 
different to those for small rotation (T — 10). In other words T = 0 is singular 
when V is small. To understand how this singularity arises for V < 1, consider 
Eq. (3) with K = —B = 1, which has solutions Wiower oc exp(Zz), where / is a root 
of the polynomial: 

V2(l2-a2)3+Tl2-VRa2=0. (4) 
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In the case of no rotation (T = 0) the balance in Eq. (4) is: 

VI6 - Ra2 « 0 , (5) 

from which we can deduce that there is no motion in the lower fluid except in thin 
viscous boundary layers of O (V1/6) thick. With rotation (T ^ 0), there are now 
two different balances: 

V2l4 + T « 0 and Tl2 - VRa2 ss 0 . (6) 

The first balance defines thin Ekman layers of O (V1/2) , but the second shows that 
one wavenumber is very small, of O (V1/2) , showing motions persist far beneath 
the interface to depths of O ( V - 1 ' 2 ) . 

3.2 Helicity Profiles 

Using the eigenfunctions we can compute the horizontally averaged helicity profile 

&(*); 
h = 2(WZ)+a-2\DZDW-ZD2w\ , (7) 

where Z is the vertical vorticity, and bars denote horizontal averages. Eq. (7) shows 
that rotation is essential for the generation of helicity because without rotation 
Z decays to zero. An a-effect, is closely related to the flow's helicity; a oc —h, so 
the profiles h(z) provide qualitative information regarding the distribution of a in 
the Sun. Note however, that a formal derivation of a is via a two-scale analysis 
involving a large scale flow and small scale turbulence (Krause and Radler, 1980), 
and therefore the relation here between h and a is not rigorous. 

Estimating the parameter values which apply to the Sun in this model is not 
easy, but we took K = 10~6 ,B = —104 and T — 105 after considering standard 
solar models discussed in Chaps. 1 and 2 of Priest (1982). There is considerable 
uncertainty with the value of V, but it is generally accepted that V is smaller 
than K, and we took V = 1 0 - 8 . For these parameters we find Rc = 2 x 104 and 
ac = 8.5 (tall thin cells), and the resulting helicity profile is shown in Fig. 3. Since 
helicity is a quadratic quantity its sign is unaffected by the normalization used 
for the eigenfunctions. The curve in Fig. 3 is normalized such that the maximum 
value is ± 1 , and as can be seen this maximum is —1 and occurs just beneath the 
interface. 

4. Conclusions 

Two interesting results have come from this simple model which now need to be 
tested using better models. The first is that in the Sun motions can penetrate 
far below the convection zone as a consequence of rotation and V being small. 
Secondly, somewhat surprisingly overshoot leads to a large source of helicity just 
beneath the convection zone suggesting that a dynamo could work well there even 
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Fig. 3 . Helicity profile for solar parameters. The scales of the two graphs are very dif­
ferent, and almost all the helicity occurs in a thin boundary layer beneath the interface. 
This helicity is negative so the local a-effect is positive. The shape of the profile in the 
upper layer is typical of the helicity that results in a single layer of convecting fluid. 

though it is not the site of the most vigorous convection. This gives an a-effect 
which is positive in the nor thern hemisphere, which if correct implies tha t w is 
negative because only when the product aw < 0 do dynamo models yield the 
observed activity migrations from the poles to the equator . 
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