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ABSTRACT: Even though various types of data for binary stars are being ob­
tained in unprecedented quantities there is still a lack of completeness. Because the 
reduction of combinations of these data adds to the fundamental concepts in astronomy 
it is advantageous to have available a general self-consistent method whereby all the 
elements of the orbits of a binary or multiple system may be solved simultaneously. 
Such a method is reviewed in this paper and an emphasis is placed on the specification 
of meaningful errors attached to the orbital elements. 

1. INTRODUCTION 

Astronomy, I would say, is a well-balanced discipline. A reasonably happy 
mixture of theory, observation, speculation and experimentation by computer-
modeling would seem to have kept the oldest science alive and well through 
good times and bad. Perhaps more fundamental for the sustaining of astronomy 
today is the drive of curiosity (public pressure, if you like) which nearly every 
human of young spirit possesses. Luckily for us, in this instance the media have 
understood the general keen interest in astronomy and they have tried to keep 
the population informed. It is incumbent on us, therefore, and in particular, I 
think, those who would study binary and multiple systems, to gather as much 
data as possible and to understand it as thoroughly as possible. Only recently, 
Batten & Fletcher (1989) show that the degree of completeness of our knowledge 
of spectroscopic binaries is seriously lacking. In spite of the new catalogues 
in recent years I would venture to guess that the same predicament exists for 
astrometric binaries and even more so for multiple systems. To be commended 
are those individuals who, year after year, publish observations and orbits in 
increasing numbers. But I believe we can't let up. In a nutshell, we've got to 
get the most out of our data since it is our work which provides a foundation 
for studies in star formation and evolution, the mass/luminosity relation, and 
galactic structure and dynamics. It is equally important not to derive more from 
the data than is warranted. 

My assigned topic is the combination of different data types, especially ra­
dial velocities and astrometric data, in the analysis of orbital motions in binary 
star systems. One possible approach would be to enumerate all published meth­
ods and evaluate the relative advantages and disadvantages of each. Although 
that approach might be reasonably objective it would be rather involved and 
would require an amount of effort which would easily be a candidate for sub­
mission to the supplement of some Journal and involve more than one hundred 
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pages. Missed would be the many private methods which computers use but 
which have never been published. The approach I will take is a far cry easier 
since my ideas will be discussed. Of particular interest to me (as I've alluded 
to) is to get the very most possible out of the data but no more. Significance or 
confidence intervals, variances, constraints, weights, and systematic and internal 
errors are quantities which play a very important role in the kind of analyses I 
will summarize. In the first instance there is the general method which can be 
applied to any kind of binary system or even multiple system. Then there are 
the errors in the derived parameters and I shall concentrate on that aspect 

2. T H E M E T H O D 

Formalism describing a synthesis of the solutions of spectroscopic and visual 
binary orbits was described by Morbey (1975). Some years earlier Alan Bat­
ten and I had been working on the triple system ADS 11060 and we wondered 
whether or not the visual data and spectroscopic data could be combined in such 
a way as to predict more reliably the time of periastron passage of the visual 
double. Alan was also working on ADS 8189 at the time and was having some 
difficulty reconciling the visual and spectroscopic orbital solutions. Discussions 
involving these problems and some queries from the late W. S. Finsen led to the 
development of the method. 

It is probably best at the outset to underline the fact that there is no real 
difficulty in combining different types of data with different units in a general 
least-squares problem of any sort. Once this fact is understood the rest should 
follow without undue difficulty. Another point is that nearly anybody's brand 
of least-squares is sufficient to solve the problem. For in depth studies of the 
least-squares reduction methods you could look up a large number of references. 
In particular, and rather pertinent to the problem at hand is the reference by 
Eichhorn & Xu (1990) and earlier works by Jeffreys (1980, 1981). There are 
numerous texts which go into great detail for many aspects of the problem. 
Notably here is the book Numerical Recipes: The Art of Scientific Computing 
by Press et al. (1986) or Data Reduction and Error Analysis for the Physical 
Sciences by Bevington (1969). 

So, what DO you do to combine data of different types in a least-squares so­
lution? Some critics would suggest that you can't combine apples and oranges. 
My trite reply might be that my wife and I do it all the time and when put 
through the juicer the mixture is really quite tasty. In the case of least-squares 
the result is nearly as delightful; you only have to normalize the squared dif­
ferences, that is, the (O — C)'s, by the variances and dimensionless quantities 
result; the sum of all these is the so-called "chi-square". So whether you pick 
radial velocity, radial velocity difference, p, 0, or intensity, it matters not... just 
as long as you divide by their variances. The problem then reduces to a deter­
mination of what the variances are and how the various quantities are weighted 
with respect to one another. Problems of adding or not adding 180 degrees to 
w, SI, or the position angles are not difficult... they're just a bit confusing. 

In mathematical notation the combination of the different groups of data 
into a simultaneous solution is easily accomplished by formulating the objective 
function, x2> in the following way. 
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The Oij are the observables, each designated i (total N) in a group j (total M). 
Cij refers to the corresponding calculated values which, in the case here, are 
found from the usual equations used to determine the elements of visual and 
spectroscopic binary orbits. The <7y are the variances. In order to obtain the 
best or most realistic values for the Cij the x2 function must be minimized since 
this makes the average deviation of the observed quantities from the calculated 
quantities as small as possible. And remember, the residuals have been reduced 
to dimensionless quantities with the variance scale factors so there is no problem 
with the combination of the data groups having different dimensions. Both 
spectroscopic and visual orbital elements are contained within the equations 
which are used to compute the Cij. For this reason the solution can be called 
simultaneous. We also call the solution self-consistent because the different \2 

sums can be relatively weighted. Changes to the elements can be described by 

e = (aTWa)-1aTWO , (2) 

where W is the matrix of relative weights and a is the design matrix made up 
of the appropriate derivatives. And because we are dealing with dimension-
less quantities the matrix elements referring to the different data types can be 
summed. 

This is the simple minded approach, and if you are so inclined there is 
little complexity in working out a fortran program to do the work. It really 
isn't necessary to do that of course because you'll find all sorts of listings for 
least-squares programs in the literature. One very useful reference and probably 
the easiest to implement is the book by Bevington (1969). His routine called 
CURFIT works with spectroscopic and/or visual binary problems very well. It 
uses the method of damped least-squares originally devised by Levenberg (1941) 
and popularized by Marquardt (1963). In that technique, the best features of 
the gradient search method and the method of linearizing the fitting function 
are combined; the diagonal terms of the design matrix are augmented by some 
factor which controls an interpolation of the algorithm between the two method 
extremes. We note that the inverse of the design matrix is called the error ma­
trix and contains estimates of both the variances and covariances of the orbital 
parameters. This is just basic to the usual method of least squares. 

We have left out some embellishments here. If you look at the work by 
Morbey (1975) or by Eichhorn & Xu (1990) you will note that there is provision 
to introduce constraints. Those of you who are familiar with solving any kind 
of astronomical problem know that the introduction of constraints can be a real 
headache. Even the relative constraints we call weights can add a whole new 
dimension to the simple solution of some problem. However, we are determined 
to extract the most out of our data so we've got to give the solution mechanism 
every ounce of information we can muster. If we know a certain parameter 
must have a certain value we introduce an equality constraint. If we know 
the parameter must take on values only within a certain range then we have 
an inequality constraint. Because our problem is rather non-linear we are now 

Oij - Cj, 
• 4 

(1) 
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involved with non-linear programming. With this kind of expertise you might 
want to look at a career in economics if you should not be successful at binary 
star data. Once you embark in economic modeling you will never have to worry 
about being wrong again because you always will be. Seriously, there are many 
tricks of the trade here, and if you are just starting into the exciting realm of 
solving binary systems by combining data of different types I would suggest that 
you start with something simple like CURFIT and once that is mastered go on 
from there. There are actually quite a few simple additions you can make to 
CURFIT or similar routines which can assist in solving the kinds of problems 
we are dealing with. One particularly useful technique which can be used to 
satisfy the inequality constraint of some parameter is to fix the parameter at 
the boundary value if it is surpassed at an iteration and then reiterate, letting 
the parameter vary only after the first iteration. Note that the objective or merit 
function can be larger once the iterations start again. This is a way of allowing a 
new region of the hypersurface to be accessed. Recall that the sum of the squares 
of the residuals divided by the variances forms the so-called hypersurface which 
has dimensions equal to the number of parameters. Because of the non-linear 
nature of the problem and observational error the surface is anything but globally 
smooth. Usually the surface has many local minima, and the trick is to find the 
global minimum which satisfies all the constraints. Interdependencies among the 
parameters which are intrinsic or which are introduced because of the scatter in 
the various types of data only serve to cause difficulty for the mechanism used 
to locate the global minimum. They also confuse the interpretation of errors 
attached to the parameters. 

In the last few years a very powerful technique for solving large non-linear 
problems has emerged. It is probably 'over-kill' for solving binary orbits because 
we are only interested in less than a dozen orbital parameters. But it would be 
rather interesting to see how successful it would be should some enterprising 
person care to do the analysis. The technique is called the 'simulated annealing 
method', and in problems which involve many parameters a global minimum 
can usually be assured. Essentially, an analogy to the physical process of crys­
tallization is made. If some appropriate material at high temperature is slowly 
cooled, a low energy state can be achieved where the material crystallizes. Fast 
cooling or quenching does not result in a stable lowest energy state. A direct 
comparison can be made to the iterative improvement of complicated non-linear 
least-squares solutions, and the merit function or objective function takes on the 
role of energy. Small changes in parameters make small changes in energy or 
magnitude of the merit function. The real difference in this method over others 
is that while the algorithm implements changes in the parameters which yield a 
smaller merit function, it also accepts changes in the parameters which yield a 
larger merit function. This is done on a statistical basis. The probability that a 
configuration is accepted is the Boltzmann probability factor: 

exp(-EfkT) , 

where E refers to the energy or merit function, k is Boltzmann's constant and 
T is the temperature. If you are interested in the application of this method a 
useful reference is an article in Science by Kirkpatrick et al. (1983). Another is 
The Art of Scientific Computing (Press et al. 1986) mentioned earlier. 
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3. P R E L I M I N A R Y ESTIMATES OF T H E ORBITAL 
E L E M E N T S 

Since we are dealing with a linearized non-linear least-squares problem, we are 
actually solving for the changes to the parameters and so we need some initial 
estimates. Before a solution is attempted or even before a data set is complete it 
is necessary to have a good idea of the period. This is usually the most difficult 
parameter to initialize. I won't go into any detail on period-finding methods 
since most everyone seems to be happy with the method they presently use. Let 
me just summarize the method that I use in case there are those who might 
like to try something different. Also in this kind of analysis the error is vitally 
important. We like to know what the chances are of extracting the same period 
from random data. More detail can be found in the paper by Morbey & Griffin 
(1987). Basically, there are three parts to the selection process: 

1. the orbit curve is approximated by an empirical monotonic function; 
2. a least-scatter selection criterion determines which periods yield arrange­

ments of data which look 'best'; 
3. a bootstrap statistical comparison estimates the chance of finding a period 

of equal or better quality in random data. 

Suppose we are looking for a period in a number of observed velocities. The 
variance of the velocities defines the standard of comparison with which trial 
orbits fit the velocities arranged at phases appropriate to a particular period. 
Then there is the quantity which describes the fit or gives the 'quality' of a 
trial period; it is the factor by which the variance from the empirical monotonic 
function is smaller than the standard variance. Lower qualities are attached to 
arrangements of velocity versus phase which do not follow the empirical function 
very well. What is this empirical function? If the average minimum velocity is 
constrained to occur at zero phase then it is defined by two best-fitting monotonic 
functions on either side of the phase of the average maximum velocity. The form 
of these functions is given by 

xn + yn = l , (3) 

where the n is determined by the best fit. In practice, the fitting can be done 
before the trial periods are checked because the data are reduced into a 10x11 
grid and there are only so many possibilities. To assess the absolute quality 
of a period we compute the chance that it could be detected in random data. 
By random data I mean data which is made up by randomly reassigning the 
observed velocities among the actual epochs of observation. In this way, period 
aliases in the original data are maintained in the random data. 

Now that the period is isolated, what next? For the spectrographic elements 
we can simply choose as starting elements for the least-squares the average of 
the velocities for V0, half the difference of the maximum and minimum velocities 
for K, 0.3 for e, 0 for u, and the time of maximum velocity for T. These starting 
values are usually sufficient for most systems. For the initial visual elements, 
one can make some quick graphical plots or just make a few sensible guesses. 
Computer time is usually very cheap, and a dozen trials can be made even before 
you would have been able to find some graph paper. 
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4. E R R O R S I N T H E ORBITAL E L E M E N T S 

Note that the elements in equation (2) are determined without knowledge, a 
priori, of the variances of the observables. As a summary, let's look at a few 
more equations which give us the errors in the parameters if the errors on the 
observables are gaussian. The covariance of e is written 

covar(e) — o2(oirWa)~1 , (4) 

where a2 is the scale factor between the variances of the observables and the 
relative weights 

var(0) = cr2/W . (5) 

The errors of the orbital elements are then 

covar(e) = (a Va)-1 , (6) 

where V is the matrix containing the inverses of the covariances. If the variances 
are not known they must be estimated before the errors of the elements can be 
computed. Supposing there are different kinds or groups of observables there 
are two ways to determine the variances: 

1. Use internal errors. 
2. Suppose weights for the observables such that the derived variance of the 

fit obtained from the sum of squared residuals is what might be expected. 

The relative weights between the groups are not arbitrary but are selected 
iteratively such that the resultant variance of the fit of that group compares 
favourably with what is expected (x2 test). If the comparison is not favourable, 
it means that there are some systematic deviations not accounted for in the 
equations relating the orbital elements to the calculated values. 

Normally, attention is only given to the diagonal terms (variances) of the 
covariance matrix, the square-roots designating the standard deviations of the 
orbital elements. However, the off-diagonal matrix elements are rarely zero and 
this means that some of the orbital elements are correlated with one another. 
The variances, then, are only part of the designation of errors. Although the 
covariances are seldom taken into account they really ought to be since a full 
knowledge of the deviations of a variable usually depends on the deviations 
of other variables. Eichhorn & Xu (1990) in their discussion of least-squares 
solutions to visual binaries point out the pitfalls of fixing particular orbital 
elements in order to obtain a better conditioned solution: "If the eliminated 
unknown was strongly correlated with some of the other, retained unknowns, the 
elimination of the correlation will have brought about smaller formal standard 
errors." 

If we are to extract the most from our data, but no more, it is most im­
portant that the errors attached to the orbital elements are known precisely. 
Normally, as we have discussed, the errors are derived from the covariance ma­
trix of the elements. In simple least-squares problems involving only one type 
of data, say radial velocities, we can assume sometimes that the observations 
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all have identical variance or equal weights, if you like. The elements can be 
determined without any knowledge of the variances but when it comes time to de­
termine the errors of the elements we have to supply an estimate of the standard 
deviation of the residuals, and this is found directly from the observed values 
and the calculated best-fit values. The product of this standard deviation and 
the diagonal elements of the covariance matrix then yields the standard errors 
of the orbital parameters. In the case of solutions which combine various data 
types this really isn't possible because the standard deviations of the residuals 
have different units. To overcome this problem it is necessary to know, a priori, 
what the variances or standard deviations of the observed quantities are. They 
must be determined by obtaining the so-called internal errors of measurement. 
As we've mentioned, the only way around this procedure is to assume relative 
weights and iterate until the solved standard deviations of the fit turn out to be 
what would be expected. Of course, if this is done, you forego an independent 
evaluation of 'goodness of fit'. Visual observers with much experience can tell 
you quite accurately what they expect their errors of measurement to be, but 
let's be careful here. An objection to a general simultaneous solution of orbital 
elements by the method of least-squares is that you can't adjust the weights of 
the observations as you proceed. If you read older papers on the solutions of 
visual orbits you definitely get the impression that the solutions were 'moulded 
into shape' almost like a potter does with her clay. I would venture to guess 
that the great experience of these observers would be a satisfactory guide for the 
determination of definitive solutions, but in this day and age we are all too im­
patient for that kind of experience. And we've been taught over and over again 
that solutions should be as objective as possible. With the speed and capability 
of computers increasing daily there is no excuse to weight data according to how 
they fit a particular solution. 

Once the least-squares procedure settles on some preliminary elements it 
is necessary to revisit the question of errors in the observations and how they 
propagate to errors in the elements. As I mentioned earlier it is necessary to 
make accurate assessments of the standard deviations of the observed quantities. 
This really is a separate subject, and we won't go into it here. We are nearly 
finished when the standard deviations which are determined from the least-
squares fit match the original assessments. There will be times when such a 
match does not occur, and the question of reconciliation becomes paramount. 
Alan Batten at IAU Colloquium 62 (1981) had something to say about that. 
Obviously, a thorough knowledge of the internal errors of observation is most 
important. 

It is of interest to look briefly at two data sets containing both spectroscopic 
and visual observations. We will, in particular, be looking out for correlations 
in the orbital elements rather than the actual values themselves. The data for 
Burnham 1163 were originally used to develop the the combined solution method 
whereas those for Struve2173 were used just recently to determine its orbital 
elements completely. 

First of all, we examine the orbital parameters of /? 1163 as they have been 
determined with the very early visual data and the spectroscopic data described 
by Fletcher (1972). Normally distributed observation errors were superimposed 
on these data, and the solution was computed 100 times. Figure 1 shows the 
results of these calculations; each parameter plotted as a function of the other. 
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FIGURE 1. Monte Carlo simulations of ADS 1123 = 01163. 

What is immediately obvious are the correlations among K, u>, and e. Next 
are correlations among i, SI, and a. If any of these correlating elements are 
held constant the resulting errors of the elements they were correlated with are 
substantially reduced. This is just an artifact of doing something quite illegal in 
least-squares solutions, i.e. specifying a theoretical error in one parameter when 
another with which it is correlated is held constant. The data for /J1163 are 
given by Fletcher (1973) and Morbey (1975). Note that the visual data here are 
plotted on the 16-year period but they actually span a number of decades. As 
you can see, the radial velocities cover just one side of periastron; the velocities 
are relative and there is no minimum velocity difference defined. It is clear that 
random data which point to solutions which tend to have a reduced value of K 
have smaller eccentricities and larger oms since the curves are flatter. If you 
think about the correlations of i, ft, and a for a while it becomes clear that 
they too result from freedom in the orbit shape-defining visual parameters. The 
point is that because the coverage of the orbit is not complete for all data types 
correlations develop. In these cases it is particularly important to analyse the 
errors properly. 

Before leaving the discussion of these data let me also point out another 
pitfall which is a little more subtle. The random data sets produce standard 
deviations of the parameters which are nearly identical to the formal standard 
deviations derived from the covariance matrix. However, if instead of normally 
distributed errors we subject the data to uniformly distributed errors, the stan­
dard deviations become quite different and are usually substantially smaller. In 
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FIGURE 2. Monte Carlo simulations of ADS 10598 = E 2173. 

sparse data sets the distributions tend to have outliers and although a uniform 
distribution may be a bit of an exaggeration it clearly shows what happens. A 
better determination of the form of distributions within the data types and use 
of these in the Monte Carlo simulations would then lead to more realistic error 
estimates. 

Figure 2 shows the results for similar Monte Carlo estimates for E2173. 
Coverage of the visual and spectroscopic data types in this case is much more 
complete but there are still correlations mainly involving T. If you are familiar 
with the data a little reflection shows why this is the case. Since the eccentricity 
is only 0.17, the radial velocity curves are reasonably sinusoidal. Moreover, the 
individual velocities of each component can only be determined when the lines 
have doubled, that is, near maximum and minimum velocity. For this reason T 
and a> are less precisely known and the resulting freedom in the Monte Carlo 
simulations causes correlations, mainly with P, i, and ft. Again, the rule is: 
if there are correlations, don't fix one parameter and expect the errors of the 
others to be unaffected. If you do, in the case of this system, the errors can drop 
to only 10% of their real values. 

CONCLUSION 

I have summarized a self-consistent general method of solving the orbital ele­
ments from different types of data for binary star systems. Only ordinary x2 

minimization techniques have been used but the various matrix elements sum 
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over different data types. Although I didn't refer to multiple systems, the same 
method can be used. The application of the least-squares method to the com­
bined solution of binary orbits is really not all that complicated, and the elements 
can be obtained quickly if the data are sufficient. What takes more effort is a 
good understanding of the errors in the elements. Since most of us now have a 
substantial amount of computing power available, even Monte Carlo statistics 
should pose no real problem. The whole process is really not a 'sausage machine' 
method since most systems will have their own peculiar distribution of errors. I 
would advocate, therefore, that those who have found great satisfaction in com­
puting the orbits of binary and multiple star system increase their satisfaction 
by including a full discussion of the errors of observation and the effects of their 
propagation through the calculations to the elements themselves. The tools are 
available, and I think we owe it to posterity. 

6. A C K N O W L E D G E M E N T S 

I would be remiss if I didn't bring attention to the fact that I have benefitted 
substantially from discussions with Alan Batten, Murray Fletcher, and Colin 
Scarfe over the years. Colin has graciously offered to present this paper, but I 
can't hold him responsible to answer all questions as I might. To save him from 
that you may reach me with email at morbey@dao.nrc.ca. 
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8. D I S C U S S I O N 

H A R R I N G T O N : Even in just the visual orbit computation problem, where 
we have both visual and photographic data, we have the same mixed-data prob­
lem of weighting, correlations, and so forth. These considerations are with us 
everywhere. 
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