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Abstract
It is shown that every possible spectrum of a Mal'cev definable class of
varieties which should occur does occur. It follows that there are continuum
many Mal'cev definable classes, a result also obtained by Taylor (1975) and
Baldwin and Berman (1976).

Several specific Mal'cev classes are discussed, including some arising from
spectrum conditions, from conditions on the fundamental groups of pointed
topological algebras, and from automorphism group and endomorphism
semigroup conditions.

This paper continues the author's study of Mal'cev conditions (Neumann, 1974).
It is an expanded version of his talk at the Special Session on Varieties at the
American Mathematical Society meeting at San Antonio in January 1976.

The spectrum of a Mal'cev definable class of varieties is defined as the set of
cardinalities of finite algebras of varieties in the class. This is always a submonoid
of the natural numbers N and we show that every submonoid occurs this way.
In particular there are 2K° Mal'cev definable classes, solving a problem of Taylor
(1973) and Neumann (1974). This was also shown independently by Taylor (1975b)
and Baldwin and Berman (1976).

Most of the remainder of the paper gives some examples of Mal'cev definable
classes which the author finds particularly interesting. "Varieties of varieties" are
also briefly discussed.

The spectrum ofaeffi) of a variety 95 is just the set of cardinalities of its finite
algebras. The condition that <y£«e(!iB) be contained in some preassigned submonoid
S of N is shown to be a weak or strong Mal'cev condition according as N - S is
infinite or finite. This improves a result of Taylor (1973). Among other things,
Taylor gave there an explicit Mal'cev condition for S = N—{2} in the form of a
countable set of strong Mal'cev conditions. By our result, just one of his strong
Mal'cev conditions suffices, but we do not know which one.

Using Kronecker product of varieties, a further class of Mal'cev definable classes
is defined, which includes classes coming from conditions on the fundamental
group of topological algebras (very closely related to conditions considered by
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Taylor, 1975a) as well as conditions on the automorphism groups and endo-
morphism monoids of algebras.

A tool for the result on fundamental groups which is of some interest for itself
is a calculation, for any variety 91, of the fundamental group of the free pointed
topological 3l-algebra over a bouquet of circles to be the "free group in the variety
91".

If countably presented varieties are permitted in denning MaPcev conditions and
strong Mal'cev conditions, it turns out that many conditions that were weak
Mal'cev conditions become strong Mal'cev conditions. This is true of conditions
expressed in terms of finite algebras, for instance the spectrum conditions mentioned
above as well as many conditions discussed by Taylor (1973). It seems that this
concept, which I call "(strong) w-Mal'cev condition", is a good substitute for the
rather unnatural concept of "weak Mal'cev condition".

CORRECTION. In the appendix of Neumann (1974) the algebraic structure of the
product 5BX x 232 was incorrectly described. The set of laws should have been
described as the disjoint union S^uSguS, where 2 is as described there and
Sj and Z2 are the sets of laws (notation as in Neumann, loc. cit.).

= x.
A discussion of product of varieties with excellent bibliography can be found in
Taylor (1975c).

A further correction, for which I am grateful to the referee, is that Neumann
(1974) consistently used the term ideal instead of dual ideal or filter in a lattice.
This is corrected in the present paper.

1. Introduction and notation

We assume the reader knows what a Mal'cev condition is, see for instance
Taylor (1973) or Neumann (1974). Our notation is the notation of Neumann (1974)
with minor changes; we review it briefly.

~f4Hf denotes the category of varieties of algebras and set-preserving functors
of varieties. The superscript / stresses that we only allow finitary operations.
Given SBj and 332 in i<aif, we write

33^932

if a set-preserving functor 93i->332 exists. Two varieties 93x and 332 are called
Mal'cev indistinguishable, in symbols

if 93x^ 932 and 932> 93X. The class of equivalence classes
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[3] Mal'cev conditions 105

is a complete lattice with respect to the order relation > . Meet and join in L are
induced by product and sum of varieties (these terms refer to categorical product
and sum in the dual category (tfaif)*), that is

iel Uel

iel liel

the superscript in n ' again stressing that this product is in 'fa.tf (sum, unlike
product, is independent of which (reasonably chosen) category of varieties we do
it in, so no superscript is required for it).

Let Afc=Z, be the sublattice represented by finitely presented varieties. It is not
complete. The following is shown by Neumann (1974).

PROPOSITION 1.1. A subclass 3f<=-'f~/ibl is definable respectively by (i) a strong
Mal'cev condition, (ii) a Mal'cev condition or (Hi) a weak Mal'cev condition, if and
only if$T is closed with respect to Mal'cev indistinguishability and defines a subclass
K<^L which is respectively: (i) a principal filter in L generated by an element of M,
(ii) a filter in L generated by a subset of M, (Hi) a countable intersection of filters
as in (ii).

COROLLARY 1.2. A filter K<^L is definable by a Mal'cev condition if and only if
every [3S]eK is greater than or equal to some [3}0]eK with 93O finitely presented
(i.e. [230]eM). It is defined by a strong Mal'cev condition if and only if it is in
addition closed under countable (and hence arbitrary) meets.

2. Some preliminaries on products of varieties

If n is a regular cardinal number, let y#*n denote the category of varieties of
algebras permitting operations of rank < n, and set-preserving functors of such
varieties. As pointed out in Neumann (1970), the dual category (fatf1)* is itself
isomorphic to the category of a variety (£neY^4n, the variety of n-clones. In
particular it is a complete category. Product and sum of varieties means categorical
product and sum in (VW)*, corresponding to product and sum of n-clones, and
will be denoted

respectively.

IF S3* and n
iel iel

LEMMA 2.1. If 58t e 'fin11, i e I, and 11\ < n, then as a category the product II£6 x 23*
is the cartesian product of the underlying categories of the 33f with the obvious
underlying set functor (that is, it is the category of all cartesian products
with AteSStfor each iel).
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The proof of this appears to be well known. The proof for finite products (see
Neumann (1974) for a proof using the language of clones, or Taylor (1975c) for
further references) goes through with no essential change, so we omit the details.

LEMMA 2.2. If 33*6 Y"W, iel, and n is infinite, then the product WieI3ii is the
reduct o / I IJ 6 j 93i t 0 tne set of all itsfinitary algebraic operations. The corresponding
statement holds also for nj l

e J93 i j / m ^ n and each 93< is in i<aim.

PROOF. The proof in Neumann (1974) for n = Xo works for any n, using n-clones
instead of

Finally we need a presumably well-known lemma.

LEMMA 2.3. Let m < n be any (finite or infinite) cardinal numbers, n regular, and
let 93 e'fai". Let 93(m) be the reduct of 93 to the set of all its algebraic operations of
rank less than m. Then the natural forget functor 93-»-93(m) is an equivalence on the
subcategories of algebras of cardinality less than nt.

PROOF. Let A e 93(m> have cardinality less than m. If we attempt to evaluate a
93-operation on A it automatically interprets itself as a 93-algebraic operation of
rank < m and is thus defined. The laws of 93 interpret themselves similarly as laws
in < m variables, which thus hold in this 93-structure on A.

These lemmata together imply the following.

PROPOSITION 2.4. If^8tei<aif, iel, then the category of finite algebras in FI^67 93f

is just the category of all cartesian products XieIAi of finite algebras -4*6 93*, all
but finitely many of which are trivial. A similar statement holds for algebras in
IIm 93* of cardinality < m if each 93* is in i<atm.

From this proposition follows that a subclass of "/at! which is closed under
finite products, if defined by a suitable sort of condition on finite algebras of its
members, will actually be closed under arbitrary products of varieties. Thus if the
subclass is definable by a Mal'cev condition, then it is actually definable by a strong
Mal'cev condition by Corollary 1.2. We shall use this remark repeatedly in the
following.

3. Spectra of Mal'cev conditions

Recall that the spectrum of a variety 93 is the set

;, \A\ finite}

of cardinalities of finite 33-algebras. (Define Oe<y$««(93) if 93 has no nullary
algebraic operations.) This is a submonoid of the multiplicative monoid
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N = {0,1,2,...}. Let S(N) denote the lattice of submonoids of N. Observe that the
join of two submonoids S± and S2 is the product

Sx S2 = {^ s21 sx e Sv s2 G SJ.

LEMMA 3.1. Spectrum defines an antihomomorphism of complete lattices

<i/iec: Z,-*- S(N).

PROOF. Mal'cev indistinguishable varieties have equal spectra, so afiec: L-> (5(N)
is defined. That this map sends meet in L to join in S(N) follows from the fact
that meet in L is given by product of varieties, together with Proposition 2.4.
That join in L goes to meet in <5(N) follows from the fact that an algebra of the
sum 1123* of varieties 23*, ie / , is just a set with a 23t-structure for each iel.

Now if /sTsL is any filter, define its spectrum as

BleK

The above lemma implies the following one.

LEMMA 3.2. Spectrum defines a homomorphism of complete lattices from the
lattice F(L) of filters in L to S(N).

The proof is trivial. In fact this lemma is more elementary than the preceding
one, since it does not use completeness of the antihomomorphism of Lemma 3.1
and hence does not involve Proposition 2.4.

We are interested in which submonoids «S"£ N occur as spectra of strong Mal'cev
conditions, Mal'cev conditions, and others. For strong Mal'cev conditions this is
equivalent to asking which S occur as spectra of finitely presented varieties, an
as yet unsolved and apparently difficult problem. For Mal'cev conditions the
answer turns out to be easy.

THEOREM 3.3. Every submonoid S s N occurs as ofac(K) for some Mal'cev
definable class K.

PROOF. For TJGN let (n) denote the submonoid

<n> = {«*!/£]*} <=N.

For any TJGN, choose a finitely presented variety 23n with <}fec(S&n) = <n> (these
exist, for example if A is any primal algebra with n elements then QSP{A) is
suitable; finite presentedness in this case follows by a recent result of K. Baker
that a finite algebra in a variety with distributive congruences has finitely based
laws. (See, for instance, Taylor (1975c) for quite complete references on spectra.)
For any submonoid S^N with 0^5, let .fiTbe the filter in L generated by all 23TC

with neS. Then oftec(K) = S. If OsS, we replace the variety 23re used above by a
variety whose spectrum is <n>u{0}, for instance the nilpotent reduct of the 23n

described above, and repeat the proof.
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COROLLARY 3.4. There are 2K» MaVcev definable classes.

PROOF. There are certainly at most this many, by Proposition 1.1, since M is
countable, so there are exactly this many, since | <S(N) | = 2Ko.

This corollary has been shown independently by Taylor (1975b) and Baldwin
and Berman (1976). It answers a question raised in Taylor (1973) and Neumann
(1974).

4. Mal'cev conditions of spectra

If 5 s N is a submonoid, let Jf(S) be the class of varieties 93 with a/tee^^S.
W. Taylor (1973) showed that Jf(5) is definable by a weak Mal'cev condition and
is actually definable by a Mal'cev condition if N—S is finite. This result can be
improved as follows.

THEOREM 4.1. The following conditions are equivalent:
(i) N - Sis finite,

(ii) Jf(5) is definable by a Mal'cev condition,
(iii) Jf(S) is definable by a strong MaVcev condition.

Taylor (loc. cit.) gave an explicit Mal'cev condition in the case S = N—{2} by
means of an explicit doubly indexed set of finitely presented varieties. It follows
from the above result that just one of his varieties suffices. Which one? More
generally one can ask:

PROBLEM 4.2. Find an explicit nice strong MaVcev condition for Jf(S) when N—S
is finite.

PROOF OF THEOREM. We shall show (i) => (ii) => (iii) => (i). Observe first that Jf(5)
is closed with respect to Mal'cev indistinguishability, so we can consider it as a
subclass of L. As such, it is clearly a filter in L, and is closed under arbitrary meets
by Proposition 2.4. Thus (ii) => (iii) follows from Corollary 1.2.

The proof that (i)=>(ii) is essentially as in Taylor (1973). Suppose 93eJf(S)
and N—S is finite. Let 2 be a set of equational laws defining 93. The statement "the
structure A has exactly n elements" can easily be expressed by a first-order sentence
en say. Then Su{Vn6N_,sen} is contradictory, so by compactness, some finite
subset already is. This finite subset must have the form Sou{VWeN_seB}. The
equations So involve only a finite set of operations of 93. Let 93O be the variety
defined by this set of operations and the laws So. Then %$oeJf(S) and clearly
93 3s 93O, so by Corollary 1.2, JT(5) is a Mal'cev class.

Finally to show (iii)=>(i), suppose $T{S) is definable by a strong Mal'cev
condition. Write S as the intersection of a collection S{, iel, of submonoids of N
with N—St finite for each i. Let 93* be a finitely presented variety with
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= S{ (exists, since (i)=> (iii) already shown) and let 93 = UieI$$i. Then
— S, so by Corollary 1.2, there exists a finitely presented 93O<93 with

o/iec(S&^s. Since a finite generating set for the laws of 93O will only involve the
operations of finitely many of the 23$, 930<IIf€t793i for some finite subset / £ / .
Hence

o/^(23o)^/H II »«) = PI Si,
\ieJ 1 ieJ

so r\iejSi^S, so N-Ss \JieJ(N-Si) is finite.

5. A class of Mal'cev conditions

In this section I shall discuss some further examples of Mal'cev conditions which
I find very interesting. The idea was suggested partly by work of Taylor (1975a)
and we discuss the connection with his work later in this section. We first recall
a concept due first I think to P. Freyd (1966), see also Lawvere (1968).

If 93 and 2B are two varieties, then the "variety of 93-algebras in 2B" or
"Kronecker product of 93 and 90S" is denoted 93 ®2B, and can be defined as follows:
if 93 is defined by a set F of operations and a set £ of equational laws in these
operations and SOB is defined by operations G and laws F, then 93 ® 9B is defined
by the disjoint union Fu G of operations and the disjoint union S u F u A of laws,
where A consists of all laws of the form (feF, geG):

f(g(xn, ...,xln), ...,g(xml, ...,xmn)) = gC/Txn, ...,xml), ...J(xln, ...,xmn)).

In other words, a 93 ®2B-algebra is a set with a 93-structure and a SB-structure
such that the SB-operations are homomorphisms with respect to the 93-structure
(and vice versa; this follows automatically).

The following examples are easily checked by explicit calculation from the
above laws. The first is well known, and is due to H. Hopf. If one has never calcu-
lated such examples before, it is an amusing exercise to do so.

EXAMPLES 5.1.

(1) (Groups) ® (Unitary groupoids) = (Abelian groups),
(2) (Groups) ® (Groups) = (Abelian groups),
(3) (Semilattices) ® (Semilattices) = (Semilattices),
(4) (Semilattices) ® (Lattices) = Trivial variety,
(5) (Groups) ® (Semilattices) = (Z[£]-modules),
(6) (Groups) ® (Lattices) = Trivial variety,
(7) (^-modules) ® (5-modules) = (R ® S-modules), (R and 5 rings),

LEMMA 5.2. If It, 93,9B, are varieties then U ® (93 x 9B)^ (It ® 93) x (It ® W).

PROOF. Let C be a It ® (93 x 9B>algebra. That is, C has a (93 x 9B)-structure
and a U-structure, and all the It-operations on C are (93 x 9B)-homomorphisms.
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The (93 x 933)-structure on C is equivalent to a splitting C = A x B of C into a
93-algebra and a 933-algebra. The U-operations, being (93 x 933)-homomorphisms,
preserve this splitting, that is they induce It-structures on A and B such that
C = A x B as a Xl-algebra. Thus 4̂ and 5 are in a natural way a U ® 93 and U ® 933
algebra respectively and C is a (U ® 93) x (U ® 933)-algebra. Conversely it is clear
that any (U ® 93) x (It ® 933)-algebra is in a natural way a U ® (93 x 933)-algebra
and that these correspondences give an equivalence of varieties. It is also not hard
to write down this equivalence directly in terms of the algebraic structures of the
two sides of the equation.

Now let <p denote the natural forget functor

We are interested in questions of the type "for which varieties 933 is it true that a
group in 933 is abelian" (that is, <p (Groups ®933)£ Abelian groups).

THEOREM 5.3. Let 93 be a variety and let 93X£ 93 be a subclass definable in 93 by
a single first-order sentence a in the language o/"93 and such that 93i is closed under
finite products (for example, a subvariety defined by finitely many additional
equational laws). Then the class of varieties 933 such that every ty-algebra in 933 is
in 93^

^(93,93X) = {9331 ?(93 ® 9J3)£ 93J,
is Mal'cev definable.

PROOF. Suppose 9B>933', that is, a set-preserving functor/: 933-̂ -933' exists.
This induces a commuting square

93®933 1(8>-^ 93®933'

9

93 = = 93

so f(93®933)£y>(93®933'). Thus 933'eif(93,93X) => 933 e^(93,930- In particular
^(93,93X) is closed under Mal'cev indistinguishability and if it is also closed under
product, then it represents a filter in L. But it follows from the above lemma that
?(93 ® (933 x 933')) = {A x B e 931A e y(93 ® 933), B e ?(93 ® 933')}, so the fact that 93X

is closed under finite products implies that ^(93,93j) is product closed. It remains
by Corollary 1.2 to show that if 933 e^(93,93X), then there exists a finitely presented
933O<933 with 933O e^(93,932). But this follows by applying the compactness
theorem to the contradictory set of statements

ZuruAu{-ier},

where S u F u A are the laws for 933 ® 93 described earlier, and a is the sentence
which defines 93X in 93.
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One reason for the importance of this sort of Mal'cev condition is the following
theorem. This theorem is closely related to a result of Taylor (1975a). First some
notation.

Let (3° be the variety of pointed sets, that is S° is denned by a single nullary
operation and no laws. For any variety 91, denote by 9t° the variety 91 ® Q° of
well-pointed 'Si-algebras (9t-algebras together with a chosen trivial subalgebra).
Similarly Top0 denotes the category of well-pointed topological spaces and 91 ® Top0

denotes the category of well-pointed topological %-algebras. We will always denote
the base point by e.

THEOREM 5.4. Let © = (Groups) and ©x be a subclass o/© closed under quotients
and finite products {for example, a subvariety). If01 is the class of all varieties'^, such
that every well-pointed topological %-algebra A has fundamental group TT^A, e) e ©x,
then 01 equals the class ^(©, ©^ of Theorem 5.3.

W. Taylor (loc. cit.) in fact describes complete conditions for the fundamental
groups of the components of a topological 9l-algebra to be in a given subvariety
©iS © of groups, in the non-pointed case. This is considerably more complicated,
since there is no natural choice of base point for calculating fundamental groups;
TTX: Top-+(S is not a well-defined functor. He gives some explicit conditions of
this type.

Since our theorem gives no control over the fundamental groups of the
components of A not containing e, it is actually not directly implied by Taylor's
results.

PROBLEM 5.5. Give nice explicit Mal'cev conditions for some of the classes given
by the above theorem (for example, ©x = (Trivial variety), ©x = (Abelian groups),
©! = (Underlying Abelian groups of Z[i]-modules), and so on).

The proof of the above theorem is quite close to Taylor's methods but we sketch
it anyway, since it is quite interesting. First note that if A e9I ® Top0 then TT^A, e)
inherits an 9l-structure which commutes with the group structure, so

Hence certainly

To see the reverse inclusion we consider the metric space X obtained by identi-
fying all the endpoints in the disjoint union of a collection [0,1^, iel, of unit
intervals to the base point e (so X is the "wedge" or "bouquet" of circles). Let
91° = 91 ® S° be the variety of well-pointed 9l-algebras and let F(X) be the free
9I°-algebra on the set X. Then F(X) can be given a topology as a topological
9I°-algebra (Swierczkowski, 1964; see also Taylor, 1975a, for an exposition of
this). Observe that F{X) can be built up as a cell complex as follows: for each
unary algebraic 9l°-operation/and each iel, the set/([0, l]f) is a l-cell in F(X).
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0, =1,

X together with these 1-cells gives the 1-skeleton F(X)a) of F(X). Now if g is any
binary 9l°-algebraic operation and ijel, ij^j, then g defines a map of
[0, l]f x [0,1]^ to F(X) which is injective on the interior and maps the boundary
({0,1}; x [0,1],.) u ([0, l]t x {0,1},.) into F(X)™ (since g(e, - ) and g(-, e) are unary
operations). This thus gives a 2-cell attached to F(X)a) in F(X). If i =j we must
consider the two 2-cells

and

which are both attached to F(X)a) in F(X) by g. Adding all these 2-cells
for all possible g and i and j gives the 2-skeleton F(X)l2) of F(X). Next, to each
ternary algebraic 3I°-operation h and each triple i,j, k, of elements of /, we get
1, 2 or 6 3-cells in F(X) according as no two, precisely two, or all three of i,j,k,
coincide. For example, if / =j = k, then these six 3-cells in F(X) are the images
under h of

{(tvt2,ta)e[0, l]t x [0, l]fx [0, l]i\tp^tq^tr}

as p,q,r run through all six permutations of 1,2,3. Similarly the 4-ary algebraic
3l°-operations give us the 4-cells of F{X) and so on. The union of all these cells is
F(X), giving a cell decomposition of F(X) with just one 0-cell e (note that e is the
only nullary operation, since it is a subalgebra). The fundamental group TT^F^X), e)
can be calculated from this cell decomposition in the usual way: the 1-cells give
the generators of ^(^(Z), e) and the 2-cells give the relations. Thus as a © ® W-
algebra, w^F^X), e) has one generator represented by the loop [0, l]f) for each
iel. The relations of ^(FiX), e), which come from the 2-cells of F{X), all have
the form g(x, e). g{e, y) = g(e, y). g{x, e) or g(x, x) = g(e, x). g(x, e) for some binary
algebraic ^-operation g. But these are © ® 2t°-laws, so n-^FiX), e) has no
relations which are not © ® 3l°-laws, so it is the free © ® 3l°-algebra on the basis /.
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Note that © ® 91° = (© ® 91)° = ©° ® 91 = © ® 91, since © is already a well-
pointed variety, so we have shown

LEMMA 5.6. ir^FiX), e) is the free © ® %-algebra on the basis I.

It now follows that if 91 e@, then $?(F)e©i for any free © ®9I-algebra F, so
certainly <p{A)e(5x for any ©®9l-algebra A. Hence 5le^(©, ©0, completing
the proof of 5.5.

The above suggests a possible direction of generalization of Theorem 5.3. Let
X be any category, P: 3£->93 a product-preserving functor to a variety 93, and
93jC 93 a product closed subclass of 93. Then

®{P: 3 - ^ 93,930 = {9I|P(^(3£ ® 9Q e 93J

is always a filter in L and under suitable conditions on P, 93, 93^ it will be a
Mal'cev definable class. It also contains ^(93,930 anc* under suitable conditions
will equal it. We have just dealt with the case (P: 3-->93) = (wx: Top°->(5). One
can ask: what are suitable conditions in general above?

A more interesting generalization of Theorem 5.3 than what we have just
indicated is given in the following section.

6. More Mal'cev conditions; automorphism and endomorphism conditions

By looking just at finite algebras we can alter Theorem 5.3 as follows.

THEOREM 6.1. Let 93 and 93i be as in Theorem 5.3 and let S be a set of natural
numbers which contains all divisors of each of its non-zero members. Then

^s(23, $ 0 = {9B\Aep(93 ®9B) and |A\eS => Ae93J

is a strong MaVcev definable class if S is finite and a weak MaVcev definable class
(defined by a principal filter in L) ifS is not finite.

PROOF. The proof that ^§(93,930 i s a Mal'cev definable class if S is finite
is as in Theorem 5.3. If S is infinite then ^g(93,93x) is the intersection of a
sequence of classes ^s<(93,930 ^vith S^S finite, so it is a weak Mal'cev class.
Finally ^s(93,930 is closed under arbitrary products of varieties because of
Proposition 2.4, so it is a principal filter in L (note that we use here that the filter
in L given by a weak Mal'cev definable class is generated by a set in L; this follows
from 1.1). Hence if it is a Mal'cev class, then it is actually strong, by Corollary 1.2.

We obtain some interesting examples for this theorem as follows. Let G be a
group and GQ the variety of G-sets considered as a variety with | G\ — 1 non-trivial
unary operations. Then an algebra in G<5 ® 91 is an 9I-algebra A together with a
homomorphism G^-Aut(A). If H is a quotient of G, then H<3 is a subvariety of
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GQ. Using 93 = GQ and 93! = HQ in the above theorem we get, to pick some
random examples:

EXAMPLES 6.2. The following are definable by strong MaVcev conditions on 21.
(1) No algebra of% with less than 20 elements has the alternating group A5 on 5

symbols as a subgroup of its automorphism group (use G = AB and H — {1}).
(2) Every automorphism group of an 'Si-algebra with less than 20 elements is

solvable (use G = free group on 19 elements and H = free soluble group on 19 symbols
of solubility length c, where c is the maximum solubility length of a soluble group of
permutations of 19 symbols).

The following is a weak MaVcev condition.
(3) The automorphism group of any Ae% with \ A \ prime is Abelian (use G =free

group on two generators and H its Abelian quotient).

We could clearly continue writing down such examples ad infinitum. Replacing
the group G by a monoid and H by a quotient monoid, we get Mal'cev conditions
out of similar conditions on the endomorphism monoids of algebras. Note that
a condition of the following form for instance: "the automorphism group of an
algebra with n elements (n prime) has solubility length «", though not directly
dealt with by the above theorem, is a countable conjunction of strong Mal'cev
conditions by the above theorem, so it is a weak Mal'cev condition.

7. Other classes of varieties

The main claim of this section is that the concept of weak Mal'cev condition is
not the "right" concept. It has so far defied intrinsic characterization, and the
attempts to do so by Taylor (1973), Neumann (1974) and Baldwin and Berman
(1976) have only served to stress the unnaturalness of the concept. It seems
probable that the following substitute is sufficient for all "natural" purposes.

DEFINITION. Strong w-Mal'cev condition and a>-Mal'cev condition are defined
just as strong Mal'cev condition and Mal'cev condition but using countably
presented varieties in place of finitely presented ones. Thus an w-Mal'cev definable
class (strong w-Mal'cev definable class) of varieties is a filter in L generated by a
set of countably presented varieties (a single countably presented variety).

We leave to the reader the formulation of Theorem 1.1 and Corollary 1.2 for
co-Mal'cev conditions as well as the application of these to verify the following
examples.

EXAMPLES 7.1. The following conditions are strong at-MaVcev conditions:
(1) <^(93)£ S(Sa submonoid o/N).
(2) The conditions of Theorem 6.1.
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(3) 93 is Lagrangian, that is, A^Be9& and Bfinite implies \A\ divides \B\ (this
is a weak Mal'cev condition by Taylor, 1963, Theorem 5.7).

(4) Each of the weak MaVcev conditions of Taylor (loc. cit., Theorems 5.9, 5.19,
5.21).

REMARK. A Mal'cev condition which is not strong cannot be equivalent to a
strong oj-Mal'cev condition, but a weak Mal'cev condition can be (as the above
examples show). Note also that a weak Mal'cev condition is always equivalent to
a co-Mal'cev condition—what is interesting is if it is equivalent to a strong one
(or at the least a countably generated one; that is, the filter in L is countably
generated).

PROBLEM 7.2. Which congruence conditions (see Wille, 1970) are determined by
strong ut-MaVcev conditions!

The literature on Mal'cev definable classes amply demonstrates the ubiquity of
such classes in nature and thus certainly justifies their study. But of course not
every interesting class of varieties is a Mal'cev definable class. I would like to
mention briefly one example of a type of class of varieties that is perhaps at present
more remarkable for its sparsity than the contrary.

DEFINITION. A class of varieties (allowing now operations of countably infinite
rank) is a variety of varieties if it is closed under formation of product varieties,
subvarieties and images of pure forget functors.

In other words, using the equivalence of the dual category "tat* with the
category of the variety (£ of X0-clones (Neumann, 1970), a variety of varieties is
just a class of varieties whose class of Xo-dones is a subvariety of (£. Hence a
class of varieties is a variety of varieties if and only if it can be defined equationally,
that is, by a set of universal equational laws on operations.

EXAMPLES. A variety is commutative if every algebraic 95-opc ration is a
93-homomorphism (for example, Abelian groups).

A variety is idempotent if every algebraic 93-operation is idempotent, that is,
satisfies/(JC,x,...,x) = x (for example, lattices).

Commutative varieties form a variety of varieties and so do idempotent varieties.
One can find further examples, but it seems remarkably difficult to fii.d examples
not rather closely related to the above two.

PROBLEM. Why is this? Is the lattice of varieties of varieties maybe quite sparse?
What is the smallest variety of varieties containing the variety of groups for
example?
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8. On the meaning of "nice"

In this paper we have several times asked that "nice" explicit Mal'cev conditions
be supplied. Since the variety which generates a strong Mal'cev (or <o-Mal'cev)
definable class is only defined up to Mal'cev indistinguishability, there is a lot of
freedom of choice in picking a single explicit such variety. One criterion of niceness
is the purely subjective one; MaPcev's original Mal'cev condition, namely the
variety

931 = (p ternary | p(x, x, y) = p(y, x, x) = y>

generating the strong Mal'cev class of varieties with permuting congruences, is
clearly "nice" by this criterion.

Here is a less subjective, but also probably less generally applicable criterion:
call a variety 93 canonical if every set-preserving functor 33 -> 93 is an equivalence
(for example, groups, lattices, semilattices). This will be our concept of "niceness".

LEMMA 8.1. A Mal'cev indistinguishability class contains at most one canonical
variety up to equivalence.

The proof is trivial.
Thus if a strong Mal'cev or w-Mal'cev class is generated by a canonical variety,

then this variety is unique up to equivalence (and is also in some sense "minimal"),
so it has a right to be called nice.

I do not know which strong Mal'cev and to-Mal'cev classes mentioned in this
paper have canonical generators. The following proposition, whose proof we leave
to the reader, gives a general criterion, which however rarely seems applicable.
It is the only result of this type that I know.

PROPOSITION 8.2. The Mal'cev indistinguishability class of a locally finite variety
contains a canonical representative.

Note that MaFcev's variety 9ft above, though subjectively nice, is not canonical.
The operation q denned by

q(x, y, z) = p(p(x, y, z), y,p(p(x, y, z),p(z, y, x), y))

defines an 2Jt-structure on any 9Jt-algebra which gives a set-preserving functor
9Ji->9Jt which is not an equivalence.
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