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Inequalities related to those

of Hausdorff-Young

R.E.Edwards

This note establishes the impossibility of certain inequalities

of the form

ll/llp 2 B(\\f\\r+\\f\\q)

holding for all trigonometric polynomials / on an infinite

compact abelian group G . From this is deduced the

impossibility of corresponding inclusion relations of the type

FLa c U{FLb : b > a] + U{1° : a < 2}

or

f\{FLa : 1 S a < b) c FLb + [){l° : c < 2> ,

where FS denotes the Fourier image of the set S of

integrable functions on G .

1. Introduction

Throughout this note, G denotes an infinite (Hausdorff) compact

abelian group with normalised Haar measure X , and X its character group

with counting measure; iP denotes LP(G) = LP(G, X) and lP = lP(X) .

TP = TP(G) denotes the set of all trigonometric polynomials on G . f

denotes the Fourier transform of f .

The Hausdorff-Young inequality for G (see [2], 13-5-1; 142,
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186 R.E. Edwards

(31.22)) asserts that

(1-D llfllp. 2 ||/||p

whenever / € LP , 1 < p 5 2 and p' = p/(p-l) . There are various

senses in which this result is known to be best-possible; see, for

example, [2], 13.5-3; [4], (37-19). In particular, if 1 5 p < 2 , there

is no inequality of the form

(1-2) ||/||p 5 B||?||p,

valid for every f (. TP . (if there were, i t would follow easily that iP

would be mapped by the Fourier transform onto the whole of 1? , which is

known to be false.)

Dually, the Hausdorff-Young inequality for X asserts that

( 1 - 3 ) \\f\\q, < \\f\\q

whenever 1 5 ^ 5 2 and / € TP . Here again, if 1 S q < 2 , there i s no

inequality of the form

d.u) wnq * B\\f\\ql

valid for every f i TP (see again [4], (37-19)).

In this note we sharpen the above negative results by denying the

possibility of inequalities of the form

(1-5) ll/llp

valid for all f i. TP , when p, q, r (. (0, °°] satisfy certain conditions.

As we shall show, the failure of an inequality (1.5) is equivalent to the

failure of a corresponding inclusion relation involving vector sums of

certain appropriate function spaces over G or X . The appearance of

such vector sums seems to be a novelty in this area.

DEFINITION 1.1. By a triplet we shall mean a triplet

(p, r; q) £ (0, °°]3 . Such a triplet is said to be admissible if and only

if there exists a positive number B = B{p, r, q) such that (1.5) holds

for every f € TP(G) .

A simple approximation argument shows that, if (p, r; q) is
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admissible, then (1.5) continues to hold for every continuous / on G ,

. , . „ , .max(l,r,p)and even for a l l / i L ' ^

In what follows, i f t ( (0, » ] , t' i s defined to be » ,

t/{t-l) , 1 according as 0 < t S l , 1 < i < °° , t = °° respectively.

1.2. We collect here a few resul ts which are more or less immediate.

Note f i r s t t ha t , for fixed f , \\f\\ i s an increasing function of p and

||/i| a decreasing function of q .

( i ) (p, r; q) i s admissible i f p i (0, r] and q d (0, °°] .

( i i ) If (po, ro'> <7o) i s admissible, then (p, r; q) i s admissible

whenever p € (0, p0] , r € [ r 0 , »] and <y 6 (0, q0] .

( i i i ) (p, r ; <j) i s admissible whenever q € (0, 2] , p € (0, q' ]

and r £ (0, °°] . (The appropriate inequality (1.5) i s t r i v i a l l y true if

q t (0, l ] ; otherwise i t follows from the Hausdorff-Young inequality for

X , that i s , from (1.3) .)

(iv) (°°, r; q) is not admissible i f r 6 (0, °°) and (? € ( l , "I .

To prove ( iv ) , take an inf in i te Sidon set 5 in X (see [ 4 ] ,

(37-18)). For 5-spectral f Z TP we have ( [2] , 15.I**; [ 4 ] , (37-2))

\\nx 5const.||/t ;

so, if (°°, r; q) were admissible, we should have also

(1.6) \\f\\i S const. {W\r+\\f\\q) •

But, since 5 is Sidon, we have ([2], 15-3.1; [4], (37-10))

||/Hr 5 const. ||f||2 for every 5-spectral f f TP .

Thus, by Parseval's formula, (1.6) yields

\\f\\x £ const. (ll/H^II/y

for every S-spectral f € TP . This signifies that

11*1̂  < const. (U\\2+W\q)

for every complex-valued <J> with a finite support contained in S . Since

5 is infinite and q > 1 , this is plainly false.
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1.3. From 1.2 it follows in particular that the only non-trivial

cases are those in which

p f (0, «) , r (. (0, p) and q i (l, »] .

A further reduction comes from the following lemma, which is an analogue of

a corresponding statement about A -sets in X (see [2], 15.5.2).

LEMMA 1.4. Suppose that [p, r; q) is admissible for at least one

r i (0, p) . Then (p, rn q) is admissible for every ?i Z (0, p) .

Proof. In view of 1.2 (ii), we may and will assume that

0 < 2*i < r < p . By Holder's inequality and the assumed admissibility of

(p, r; q) , we have for every f £ TP satisfying

(1-7) max(||f||ri, \\f\\q) 2

the estimate

If we put o = \lf\lr , (1.8) affirms that

a 5 A(a+l)k ,

where A = B and k = p(r-x>i)/r(p-rx) < 1 . I t follows that

a , max(l, 2 * / ( l -*y / ( l -*>) = B> .

Thus

ll/llp 2 B'

whenever (1.7) holds. By the homogeneity of a l l norms, therefore,

I l /H, ^ B' )

Hence
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ll/llp S B(\\f\\r+\\f\\q)

<B[B'\\f\\p+B'\lf\lq+\ti\\q)

showing that (p, rj; <?) is admissible.

This lemma suggests a further definition.

DEFINITION 1.5. A pair (p, q) £ (0, °°]2 is termed admissible if

and only if there exists r € (0, p) such that the triplet (p, r; q) is

admissible - in which case (p, rj; g) is admissible for every

r-1 € (0, p) .

2. The first main theorem

This theorem falls into two parts, according as p > 1 or p = 1 .

The former case is easier to prove and is dealt with first and separately.

THEOREM 2.1. If p > 1 and q > 2 , (p, q) is not admissible.

Proof. This proceeds by contradiction. If the assertion were false,

the triplet (p, r; q) would be admissible for some p > 1 , some q > 2

and every r 6 (0, p) . Hence in particular we should have

(2.D n/iip -

for every f d TP .

Let y be a (Radon) measure on G such that V € ft . Apply (2.1)

with / replaced by /. = K • * ]i , where K. is an approximate identity

3 3 3
of trigonometric polynomials satisfying sup ||X-|L - 1 • We then have for

3 3

every j

(2 .2) \\f6\\x < ||»||

and

(2.3) ||f.||q 2 ||p||? .

It would follow from (2.l)-(2.3) that the numbers \\f ,\\ are bounded with

respect to j and so, since p > 1 , that the net [f.) has a weak

3
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l imiting point f in L . Since also the measures / .X converge weakly
J

t o u , i t would follow that ]i = fX and so that p is absolutely

continuous. I t would thus appear that every measure whose Fourier

transform belongs to l" i s necessarily absolutely continuous. This

contradicts the proof of Theorem 5-3 in [ 5 ] , which establishes the

existence of a continuous singular measure on G whose transform belongs

to l^ for every q > 2 .

REMARK 2.2. When 1 < p < 2 , this sharpens the known failure in

various ways of (1.2).

The next two lemmas are used to derive the excluded case, p = 1 , of

Theorem 2.1 for certain groups G . Whether or not the excluded case of

Theorem 2.1 is valid for every infinite compact abelian G seems to be an

open problem.

As will appear in 2.5, both lemmas have some intrinsic interest. The

first is an extension of Lemma (IA.50) of [4], the notation of which is

used here.

LEMMA 2.3. Suppose that [u ) is a D-sequence in G and [K } is

an approximate identity such that

/ o ) , \ M 1/ II <Z ~\ (\ <Z 1/ <Z is- I £V ̂  • H / A . _ X • U A Î C..
M l n u

n

Let p i (0, 1) and let u be a measure on G ; write

fn=Kn*V t u* = sup \fn\ .

There exists a positive real number C , depending at most on p , [u )

and K' , such, that

( 2 . 5 ) ||p*||p S Cp||v|| •

Proof. First observe that {2.k) combines with (U4.50, vi) of [4] to

show that

IIP
( 2 . 6 ) (Kn*S U P -nn "p

for every g Z L1 , where K is as in (UU.10, ii) of [4].
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For every positive integer N define FN = sup | / | . Since
n

F i \i* , i t wi l l suffice (Fatou's Lemma) to show that for every N

(2.7) \\FNfp 5 (f\\Vf .

To prove (2.7) , choose and fix N and a positive number £ . Since

(K ) i s an approximate ident i ty , a positive integer N' can he chosen so

large that

(2.8) H W ' V l ~ C/N f o r n ~ N •

Accordingly,

FH\ = {K * \K , * v \ ) + s u p [ \ K - K *K ,\ * | u | )

= s u p [K * g ) + s u p [ \ K - K *K , | * | u | ) ,
n5iV nSN

w h e r e ^ = | i f ^ , * y | (. L . S o , b y ( 2 . 6 ) a n d t h e a s s u m p t i o n p € ( 0 , 1 ) ,

IIF \ \ l 5 s u p (K * g) * s u p l \ K - K *K ,\ * | y | )

p

IIP

"p

"1 """p '

say. How, again s ince p t (0 , l ) and X(G) = 1 ,

the last step by (2.8). Thus

If E is allowed to tend to zero, (2.7) follows, with C = (l-p)~ P K K ' .

In the following lemma, the notation is as in Lemma 2.3, save that now
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we suppose [u , V ) to be a D"-se<iuence in G and that the continuous

functions K are chosen as in (UU.20) of [4] .
n

LEMMA 2.4. Let f denote the absolutely continuous part of y .

Then

(2.9) lim \\f-K*y|| = 0 for every p € (0, l ) .
" P

Proof. By (M+.22) of [ 4 ] , f •*• f almost everywhere. By Lemma 2 .3 ,

since f Z L1 ,

\f-f\ < y* + | / | € I? .

Thus (2.9) is a consequence of the dominated convergence theorem.

REMARKS 2.5. It is not difficult to show that the continuous

functions K in Lemma 2/U could be replaced by trigonometric polynomials

sharing with them all the properties listed in (i»U.2O) of [4]. This is not

essential to our application of Lemma 2. U in the next theorem, however.

Lemma 2.U embraces various analogues of results about Abel and (C, l)

summat»|.lity on the circle group T ; see [6], Volume I, pp. 105, 157-

The basic theorems (W.20) and (hk.22) of [4], and the Lemmas 2.3 and

2.k immediately above, seem especially interesting when compared with the

results for finite products G =\ of the circle group given in [6],

Volume II, p. 308, Theorem (2.lU). In Zygmund's discussion, the single

sequence [K } is replaced by the multisequence (KS) , where

n = (n.., .... n. ) , n,, ..., nm are positive integers, and

= K
n ^^US\ '' ' Kn

each factor on the right being a one-dimensional Fejer kernel; this

multisequence corresponds to multiple (C, l)-summability. For the maximal

function

aj = sup \Kn * f\ ,
n

Zygmund's Theorem asserts that
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'G

for p € (0, l) , while the proof shows that, if <J> is any nonnegative

increasing function on [0, °°) such that <j>(u) = o(wlog u] for large

u , then there exists a nonnegative / € L such that <j> o f € L and

cr*/(x) = °° for every a; € G .

For the same choice of G , the simplest examples of our sequence

(x ) in Lemmas 2.3 and 2.k are such as to give rise to species of

multiple Riemann summability. Inasmuch as the sequence [K * u) and the

maximal function u* are subject to (2.9) and (2.5), Riemann"s method is

thus seen to be in some senses more effective than the unrestricted

(C, l)-method, when m > 1 .

On the other hand, and a little unfortunately, even when m = 1 the

divergence of the Fejer kernel from the behaviour specified in (,2.k) would

seem too wide to permit a direct deduction from Lemmas 2.3 and 2.h of the

basic positive results about (C, l)-summability.

THEOREM 2.6. Assume that G admits at least one D"-sequence. Then

(l, q) is admissible for no q > 2 .

Proof. Assume that q > 2 and that (l, q) were admissible. Let

r € (0, l) . Then the triplet (l, r; q) would be admissible and so we

would have

(2.10) H/l̂  / ^

for every f £ TP and hence also for every continuous / .

Take dny measure \i on G such that \L d l" : we will deduce from

(2.10) that V is absolutely continuous, which will give a contradiction

exactly as in the proof of Theorem 2.1. Indeed, write / for the

absolutely continuous part of u and / = K * \i , as in Lemmas 2.3 and

2,k. By Lemma 2.U, f •* f in L and hence

(2.11) \\fm-fn\\r •* 0 as m, n + ~ .
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Since also K -*• 1 boundedly, i t follows that

(2.12) Hfm-fjq "*" ° M m> n *m •

Applying (2.10) with / replaced by f - / , (2.11) and (2.12) show that

[fn) is Cauchy in L1 . I t follows that (f ) converges in L1 to a

limit which cannot be other than / (its limit in LV ) . Hence f "* f

pointwise on Jf . On the other hand / = K ]l converges pointwise on X

to V , whence i t results that / = u and so that \i = f\ , showing that

V is absolutely continuous. This completes the proof.

3. The second main theorem

The results of §2 refer to the case q (. (2, °°] ; in this section we

consider the remaining case q i (0, 2] .

THEOREM 3.1. Suppose that q t (0, 2] . In order that (p, q) be

admissible, it is necessary and sufficient that p i (0, q'] .

REMARK 3.2. Theorem 3.1 shows in particular that in (1.3) (that is,

in the Hausdorff-Young inequality for X ) we cannot replace q' by

anything bigger; of. [Z], 13.5-3 (l).

3.3. Proof of Theorem 3.1. The sufficiency is immediate from 1.2

(iii).

Turning to the necessity, since q' = <*> for q € (0, l] , it suffices

to consider the case q £ (l, 2] , a restriction which we assume hereafter.

If (p, q) is admissible, Definitions 1.1 and 1.5 show that, for some

r € (0, p) , we have

(3.1) ll/llpS

for every f d TP and therefore for any / 6

We aim to show tha t , i f q d ( l , °°] , pi (0, °°] and r € (0, p) ,

then (3.1) implies p < q' . In doing th is we consider separately three

cases depending on the nature of G , namely,

(a) G = T , the c i rc le group;

https://doi.org/10.1017/S0004972700044427 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044427


I nequa l i t i es 195

(b) G not totally disconnected (= not zero dimensional);

(c) G totally disconnected.

(a). In this case take a small positive number u and consider the

function / i L°°(T) for which f [e1 ) is 1 or 0 according as

| i | 5 tfw or TTM < 111 2 IT respectively. Computations and simple

estimates show that

(3.2) ||/| |p = u1/p , | | / | | r = u1/r

and

(3.3) Il/H 5 A u-~X/q .

On combining (3.l)-(3.3) and letting u tend to zero, it appears that

1/p 2 1/q' , that is, p 5 q' , as required.

(b). In this case there exists ([4], (2l*.26)) in X at least one

element XQ o f infinite order. If / d L (T) is as in (a), then

f = f ° XQ € £°°(G) and

(3.10 11/' ||p = H/llp , ll/ ' il r = ll/flr ,

(3.5) II?111^ = \\Hq •

In fact, Xn maps G onto T , whence it follows (in view of the

uniqueness of normalised Haar measure on T ) that

(3.6) f [g o v )d\ = (1/2TT) f g[eii:)dt

for every continuous complex-valued function g on T . The same formula

therefore holds for every complex-valued function g on T which is the

pointwise limit of a uniformly bounded sequence of continuous

complex-valued functions on T . Applying (3-6) with

g : e •* f[e )e , where nil , we obtain (3-h) and also the fact

that

-- fM
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for every n i l . On t h e other hand, by approximating / in L (T) by

t r igonomet r i c polynomials / . , (3 .6 ) appl ied with g = f - f. shows t h a t
3 3

f is the limit in L (G) of trigonometric polynomials on G with

spectra contained in the subgroup XQ of X generated by XQ • The

spectrum of /' is thus contained in X_ , and (3.5) follows.

The conclusion p 5 q' now follows from (3-h) and (3.5) in

conjunction with the preceding discussion of case (a).

(c). Finally, if G is totally disconnected, there is ([4], (7.7))

a base V. of neighbourhoods of the identity in G , each V. being an
3 3

open-closed subgroup of G . Since G is infinite, the positive numbers

X. = X[V.) tend to zero. Let f denote the characteristic function of
3 V 3}

V • and let X. denote the annihilator in X of V. . Direct computation
3 3 3

shows that

(3-7) H/ll = ̂ /P , II/1L = * V r .

Moreoverj the transform of f turns out to be A. times the
3

characteristic function of X. , and the Parseval formula accordingly shows
3

that the cardinal n. of X. is given by
3 3

so that n. = X~ . Thus
3 3

(3.8) \\hq - y f - x}>«' .
Combining (3.1), (3-7) and (3-8) and letting X. tend to zero, it follows

3

again that p - q' •

4. Inclusion relations equivalent to admissibility

It is possible, without reference to the results of §2 and §3, to

express admissibility of a triplet (p, r; q) via an inclusion relation

between function spaces over G or over X . We do precisely this in
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Theorem U.2 and then use the results of §2 and §3 to infer that the

corresponding inclusion relations are false; see Theorems U.5 and h.6.

The function spaces over X which feature in the inclusion relations

are just the Fourier images of the Ip , where p € [l, °°] ; these will be

denoted by FlP . The norm on FlP is that for which the Fourier

transformation is an isometry of If onto FlP .

The appropriate function spaces over G call for a little more

explanation.

4.1. The spaces PAT of pseicdomeasures on G . We denote by

PM = PM(G) the space of pseudomeasures on G , regarding integrable

functions and (Radon) measures as being injected into PM . PM is normed
CO

so that the Fourier transformation maps PM isometrically onto I

PM may be identified with the dual of the space A = A(G) of

continuous functions with absolutely convergent Fourier series, the norm on

A being \\f\\A = H/l^ .

Those pseudomeasures having Fourier transforms in I are the

elements of the space we denote by PM*' ; here k (• (0, °°] . Also, PM

is normed so that the Fourier transformation is an isometry of PM onto

I . It thus follows that the PM increase with k ; and that Pfr is

identifiable with the space A , PM^ with L , and PM°° with PM . The

Hausdorff-Young Theorem for G shows that Ip c Phf for p € [ 1, 2 ] .

For future use we note the fact that, if q i [l, °°] , and if L is a

linear functional defined on fl if q + °° or on aQ if q = » , L

being in either case continuous for the Z^-norm, then there exists

ty i fl such that

(U.I) L(f) = I <Kx)?(x) = a * fie)

for every f (. TP , s denoting the element of BM* whose Fourier
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transform is IJJ , and e the neutral element of G .

Finally, note that if a, b € [ l , <*>] and c i (0, °°] , the inclusion

(U.2) FLa cFLb + 1°

is equivalent to

(U.3) LaaLb
 + PM° ,

the sums on the right being vectorial. We shall often make the type of

interchange exemplified by (1+.2) and C*.3) without special comment.

There will be occasion to consider L n Plfi . When r 2 1 , this is

interpreted by regarding both Lr and Ptfl as subsets of PM (more

s t r i c t l y , I? i s identified witn i t s image in PM }. If 0 < r < 1 ,

however, there i s no natural injection of L into PM and no suitable

interpretation of L n Pi1/' . (A l i t e r a l interpretation of this

intersection would make i t 0 .)

THEOREM 4.2. Ci; Suppose that p, r i [l, <=°] and q € (0, »] . In

order that (p, r; q) be admissible, it is necessary and sufficient that

(It.10 Lr n Ptfi ciP .

(ii) Suppose that p, r t [1, °°) and <? d [l, °°] . In order that

(p, r; q) be admissible, it is necessary and sufficient that

(k.3) FlP' cFL1"' + lq<
 }

that is, that

(1*.6) iP' cLr> + Plfi' .

Proof. (i) If (p, r; q) is admissible we have, for a suitable

positive real number B , the inequality

for every f (. TP . Let f i I? n Plfi and let (#.} be an approximate
3

identity of trigonometric polynomials such that ||K.|L 5 1 for every j

Putting f• = K. * f , we then have
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llff/ll, - ° and 11̂ -/11, * °

as j i n c r e a s e s . Applying (k.j) wi th / r ep l aced b y f . - f, , i t
0 K

follows that [f.) is a Cauchy net in iP and so converges in Ip to

some g € £ . As a consequence, f. •*• g pointwise on X . Since also
0

f • •*• f pointwise on X , it follows that / = g and hence / = g £ iP ,
3

showing that (U.lt) holds.

Conversely, suppose that (It.h) holds. Regard E = L n Ptfl as a

complete metrisable topological linear space (with the weakest topology

making the injection maps of E into L and into PAP continuous) . By

hypothesis, the function v : / n- ||/|| is finite-valued on E . It is

easy to check (using Fatou's Lemma) that v is lower semicontinuous on

E . So, by Baire's Theorem, v is bounded on some nonvoid open subset of

E . This signifies the existence of f-dE and positive real numbers d

and m such that the conditions

f i E and max(| | /- /0 | | r , \\f-fQ\\q) S d

together imply that ||/|| 5 m . Putting m' = m + \\fQ\\ , it then follows

easily that (it.7) holds, with B = m'd'1 , for every f d TP . Thus

(p, r; q) is admissible.

This completes the proof of (i).

(ii) This is a consequence of the general Lemma It.8 below, applied

with X = TP taken with the 4-norm; 3 = TP taken "with the £P-norm, T

the injection of X into 3 ; 3 = LV , T the injection of X into

3 ; 3' = iP1 if q t «° or c if <? = °° , taken with the Z^-norm in

either case, and T^ the Fourier transformation. X' is identified with

PM ; 3' and 3' are identified with iP and I? in the usual way,

the coupling being expressed by (f, g) = f * g(e) ; and 3' is
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identified with l" in all cases. Admissibility of (p, r; q)

signifies that Lemma k.8 (i) holds. On the other hand, in view of Ct.l),

Lemma U. 8 (ii) signifies that to every g € If correspond h € L and

\j) 6 lq such that

/ * g(e) = / * h{e) + I iKx)?(x)

for every f i. TP . This last equality signifies that

g = h = y .

Thus Lemma k.8 (ii) signifies that (U.5) holds and the proof is complete.

COROLLARY 4.3. Suppose that p € (1, ») and q € [l, <*>] . In order

that {p, q) be admissible, it is necessary that

' r>( U . 8 ) FLP> cFLr> + l ^ ' , that is, LP' c Lr> =

for every r i [ l , p ) , and s u f f i c i e n t that (k.8) be true for at least one

r 6 [ 1 , p ) .

P r o o f . T h i s f o l l o w s on combin ing (ii) o f T h e o r e m U . 2 w i t h Lemma l.k

and D e f i n i t i o n 1 . 5 -

REMARKS 4 . 4 . On c o m b i n i n g C o r o l l a r y k.3 w i t h T h e o r e m 2 . 1 we i n f e r

t h a t , i f p t ( l , °°) , r € [ l , p ] and c? € ( 2 , <*>] , t h e n

' ±r' q'(It.9) FLP' ±FLr' + lq' , that i s , LP> ± zf' + PA/7' .

Likewise, from Corollary k.3 combined with Theorem 3.1 i t follows tha t , if

q € ( 1 , 2] , p f (q1 , «) and r t [ l , p) , then (1+.9) i s again t rue .

Replacing p1 , r ' and q' by a, 2? and o r e spec t ive ly , (k.9)

reads

(It.10) FLa £ F£b + lC , tha t i s , La £ Lb + Pfif ,

which relat ions are therefore true i f either

(it.11) a € [ 1 , ») , i € (a, ~) , c e [ 1 , 2)

or

(It.12) a d [2, °°) , a € [ 1 , c1) , fc € (a , «] .
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(The condition p £ ( l , °°) i s equivalent to a € Cl> °°) ; c l e a r l y , i f

(U.10) holds for a € ( l , °°) or for a € ( l , a') , then i t a lso holds for

a € [ l , ») or for a € [ l , a') .}

By using some general theorems from functional ana lys i s , these

inclusion r e s u l t s can be sharpened.

THEOREM 4 . 5 . (i) If a d [ l , <*>) , then

(It. 13) FLa £ U FLb + U 1° , that is, La £ U Lb + U BM° .
e<2 £>a c<2

r i i ; If b t (1, ">] , then

(k.lk) 0 FLa^FLb+ U ZC , that is, fl La ^ Lfc + U Phf .
l<a<b o<2 VSa<b e<2

(U.15) FLa c U FL n + i n

Proof. (i) Take sequences (b ) and (a } such t h a t

b > a , b 4- a , 1 2 e < 2 , c + 2 .

Then

b
U F L " + U Z" = U

n

Supposing (U.13) to be false, we should therefore have

b aI* '"
n

Now apply Theorem 6.5.1 of [J] (with F = La ; u : f »• f ;

hn °n N
F = L x l j u : (ff, <j>) ** ff + <)> ; £ = 0 with the product topology,

C denoting the complex field and N the set of positive integers) to

conclude that there exists n for which

b c
(U.16) FLa c FL n + I n .

Since bn > a and 1 S ̂  < 2 , (It.l6) contradicts (U.10) in the case

specified by (U.ll).

(ii) Take a sequence (a ) such that 1 S a < b and a + £> ; let
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(e^) be as i n (i) above. I f (k.lk) were f a l s e , we should have

(U.17) n FLn c FLb + U l n = U [FLb+ln\ .

a
Apply Theorem 6.5-1 of [2] (this time taking F = fl FL n with the weakest

n

a
topology making all the injections F •*• FL n continuous; u : / "• f ;

F = £ x Z - n ; u : (ffj <l>) •* ff + <(> ; E = C with the product topology)

to conclude the existence of a positive integer m such that

a , a
(I(.l8) C\ FL n c FL° + I m .

Now apply Lemma k.9 below, taking therein E = I , F. = L " ,
3

F = F , H = L x I m , s : / " • / , t : (j, •)»• j t f . Using the fact

that the closed unit ball in H is compact for the product of the weak

h h' ( ° G\
topologies O[L , L ) and all m, I m\ it is easy to check that Lemma

k.9 (iv) is satisfied; notice that t is continuous for

O\L , L ) x a Z , I on H and the product topology on E as a

N
subset of C . All the other hypotheses of Lemma k.9 are obviously

fulfilled, Lemma U.9 (v) being a reformulation of (U.18). We thus conclude

that there exists a positive integer j such that

a. , c
FL ° c FLb + I m .

However, s i nce 1 5 a . < b and 1 5 c < 2 , t h i s again c o n t r a d i c t s (U.10)
3 "*

i n t h e case spec i f i ed by ( l » . l l ) .

THEOREM 4 . 6 . If a € [ l , 2) , then

(U.19) FZT £ u FL + U Z , tfezt i s , L ^ U £ + U
c<a'
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Proof. This proceeds in the same manner as does that of Theorem k.5

(i), taking sequences [b } and [c } such that b > a , b + a ,

2 5 e < a' , c + a' , noting that the negation of (U.19) implies that

b c[ b c \
FL n+l n\ ,

and then applying Theorem 6.5.1 of [ / ] to reach a contradiction of (U.10)

in the case specified by (1+.12).

REMARK 4.7. The Hausdorff-Young theorem for G implies that

L c PAT whenever a € [ l , 2] . Compare th is with (1+.19), noting that in

the l a t t e r a' i s jus t greater than a i f a i s jus t less than a' .

Note also that when a > 2 , PM contains true pseudomeasures (that i s ,

pseudomeasures which are not measures).

LEMMA 4.8. Let X be a topological linear space, and

Y, Y , ... , Y normed linear spaces. Let T be a continuous linear

mapping of X into Y 3 T' : Y' -»• X' its adjoint; and, for each

k € {l , 2, . . . , n} j let T, be a continuous linear mapping of X into

Y. , Tl : Y', •*• X' its adjoint. The following two assertions are

•equivalent:

(i) there exists a positive real number B such that

(It.20) ||Kc|| 5 B- I \\Tpx\\

for every x C X ;

(ii) THY1) c I Tl{Y') .
~ k=l k k

(Compare Exercise 8.36 in [/].)

Proof. We first show that (i) implies (ii). Assuming (i), if

y' € Y' we have for every x £ X

n
\y'(Tx)\ 5 const. I \\T.x\\ .
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Accordingly, there is a continuous linear functional L with domain the

linear subspace U^)-,<£<„ : * * ^} of Y x . . . x Y^ which maps

^ ^ i n t O ^ ' ( ^ • ^ t h e Hahn-Banach Theorem, combined with the

known form of the dual of Y. x ... x Y (see [/], Exercise 2.18), it

follows that there exists (j/t)i<t< * Y' x . . . x Y' such that the linear

functional

extends L . Then we have for every z S. X the formula

k = l K K k = l K

which shows that

(U.21) 2"l/' = I TW
k=l ICk

and so proves that (ii) is satisfied.

To prove the converse, assume that (ii) is true and write A for the

set of y' £ Y' such that

T'y' i I T'(Uk) ,
k=l K K

where V denotes the closed unit ball in Yl . By hypothesis, A is

absorbent in Y' . On the other hand, A is plainly convex and balanced.

Since also T\ is weakly continuous (that is, continuous for a[Y', Y,J

n
and a(X' , X) ) and I) is weakly compact, \ Tl [b',) is weakly compact,

k k=l k k

hence weakly closed. Since T' is weakly continuous, A is weakly

closed, hence norm-closed in Y' . Thus A is a barrel in Y1 and

therefore a neighbourhood of 0 in Y' . In other words, there is a

positive real number B such that for every y' I Y' , T'y' is

representable as in (It.21) with
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(it.22) llĵ H 5 B\\y' || for every k € { l , 2 , . . . , n) .

This being so, let x i X , y' € y' and \\y'\\ £ 1 . Choose the y'k

so that (It.21) and (1».22) hold. We then have

\y'{Tx)\ = |2V(*>I
k=l

= I K M I

k=l k fe

k=i K K

SB I ||Tx|| .
k=l *

Letting y' vary, (U.20) follows.

LEMMA 4.9. Suppose that

(i) B and F are topological linear spaces, H a normed linear

space with closed unit ball U ;

(ii) (F ) is a sequence of linear subspaces of F , each a Frechet

space with some topology, F c F , the injections

F -*• F and F •*• F being continuous;

(Hi) s is a continuous linear map from F into E and t a

linear map from H into E ;

(iv) A = t[U) is closed in E ;

(v) sin Fj c t(H) ;

(vi) n F is dense in F for every n .
T»=l m n

The conclusion is that there exist a positive integer n and a. continuous

seminorm p on F such that

(vii) s{y) c (e+p(y ))*(£/) for every y i. F and every e > 0 ; in
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particular, s (F ) c t(H) .

00

Proof. Form P = D F into a Frechet space with the weakest
—~\m

topology such that all the injections P •*• F are continuous. Define

5 = {y € P : siy) d A} = P n s"1^) .

5 is plainly convex and balanced; it is closed in P because of (ii) ,

(Hi) and (iv) ; and it is absorbent because of (v). S is therefore a

neighbourhood of zero in P . This means that there exist a positive

integer n and a continuous seminorm p on F such that to every y (. P

corresponds z (. H such that siy) = t{z) and |[j3|| S piy) .

Now let y £ F . By (vi), there exists a sequence {jy .} of elements

of P converging in F to y . Then p (z/ .) ->• p(#) . By what has just

been established, to every j corresponds z • £ H such that

3

lk.|| spfc^.) and «(»,_.) = t(z.) .

Taking any k > piy) , we have p[y .} 5 fe for every j > j ' . For such

fc 2 . 5 1 and so

e7 If

Using (ii) , (iii) and f£W i t follows that y . -*- i/ in f1 and so
7

s [k y) = E - l ims

Hence

s(i/) £ fed =

This is equivalent to (vii) and the proof is complete.

REMARK 4.10. Lemma h.9 (vii) implies that

(4.23) siy) c (l+e)piy)-tiU)

for every E > 0 and every y t F satisfying piy) t 0 . The

restriction p(z/) ^ 0 can be removed if either
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(a) there exists on F a continuous norm, or

(b) E is Hausdorff and £(£/) = A is bounded in E (which is so

whenever t is continuous from H into E ).

In fact, if (a) holds, we may assume that p is a norm on F , so that

p{y) ^ 0 whenever y t 0 ; and (*t.23) is in any case trivially true

whenever s(y) = 0 , and so, in particular, whenever y = 0 . If, on the

other hand, A is bounded in E , and if p{y) = 0 , Lemma k.9 (vii)

implies that s(y) belongs to the closure in E of {0} ; if £ is

Hausdorff, this entails that s(y) = 0 and so that (U.23) is trivially

true.

5. A constructional procedure

Suppose it to be known that p € (l, °°] , q € (0, °°] and that

(p, q) is not admissible (of. Theorems 2.1 and 3-l). Then, by Theorem k.2

(i) , we have

(5.1) L r ^

for every r i. (0, p) . An appeal to Lemma k.9 will show that (5.1)

implies that

(5.2) f 0 Lr) n Ptfi £lP ,
^r<p >

though of course the lemma does not indicate how to find functions f

satisfying

(5.3) / € f fl A n P l f i , f { l P .

It is however possible to construct such functions / fairly explicitly.

To do this, choose a sequence [v ) from (0, p) such that r t p .

Since (p, r ; qj is not admissible, there are trigonometric polynomials

/ such that

K\> > n\}fnh +K^'q
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In the cases covered by Theorem 2.1, such a sequence (f } may tie taken as

a subsequence \K. * u of [K. * y) , where [K.) is an approximate
v 0n ) 3 3

identity of trigonometric polynomials and (j ) is any sequence of

positive integers which tends to infinity sufficiently rapidly. In the

cases covered by Theorem 3.1, we proceed likewise, u being replaced by

the function / or /' appearing in (a), (b) or (c) of 3-3. In any case,

write

so that g € TP and

(5.5) \\g II 5 n~1/2 , \\g || < n~1/2 , \\g || > n 1 / 2 .
n r f

Consider the first countable complete topological linear space

E = fl Lr n Vlfl

• (n L'")

n\ n

the topology being the weakest making continuous all the injections E -*• L

and E -*• Plfi , and the gauges F on E defined by

Fn(g) = ||min(|ff|, n)||p = (| (inln(|ff|, n))
Pd\} ? .

If F* is the upper envelope of the F , Fatou's Lemma shows that

(5.6) FHg) = [j \g\Pd\

Thus, F* [g ) is finite for every n . Also, (5-5) shows that g -*• 0 in

E and F* [g ) > n . Positive integers m can therefore be found such

that
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F [g ) > n .

How apply Theorem 2.1 of [3] to E and to the gauges F to obtain
n

sequences n. < n. < ... of positive integers and elements

f = 9n
 + 9n

 + •••

of E satisfying

lim F if) = °° .

Reference to (5.6) and the definitions of E and F* show that f

satisfies (5-3).
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