
BULL. AUSTRAL. MATH. SOC. 93A99, 60J99

VOL. 41 (1990) [313-322]

MULTIPLE DISCRETE SEMIGROUPS OF OPERATIONS

VOLF FRISHLING

For each t 6 {0,1,2,. . .}, let Tt be a set of operators in a Banach space. Tt is called
a multiple semigroup of operators with respect to some operation ® between sets
of operators, if Tt satisfies the semigroup property Tt+, = Tt®T,. Two operations,
(o) and (•), between sets of operators are defined and properties of Tt are studied.
Applications to the theory of Controlled Markov Processes are considered.

1. INTRODUCTION

Let X(t) be a Markov process with values in a Banach space. Then there exists a
contractive semigroup of operators Tt which defines, and is defined by, the transition
probability of X(t) (see, for example, Dynkin, [1]).

Now let, (X(t), a{t)) be a Controlled Markov Process (CMP), where X(t) is a
trajectory and a(t) a control, which depends in general on the state of the process
X(t).

It is not in general clear how to define control a(t) as we need to know X(t) on
the interval [0,i) to define a at the moment <; on the other hand a(t) influences the
distribution of the state of the process at the moment t.

The control a can be introduced as a parameter in the transition probability func-
tion. This approach yields a piece-wise constant control. While this is perfectly ade-
quate for CMPs in discrete time, in continuous time it necessitates taking limits. More
on the subject can be found in Gikhman and Skorohod, [2].

Taking limits may be avoided if the controlling function a(t, Z[o,t]) > which satisfies
some smoothness conditions, is included in the coefficients of a stochastic equation, the
sort most studied being equations of the diffusion type (see Fleming and Rishel, [3]).

However, this approach is bound to particular types of (CMP) and is not suitable
for deriving a general definition.

Bensoussan (see [4]) considers a CMP as a collection of semigroups of operators and
a probabilistic interpretation is sought under various assumptions on the semigroups.
Non-linear semigroups are studied for a certain class of optimisation problems.
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Our approach has more similarities with that of Kloeden [5], whereby we consider a
set of distributions of the state of a process for each moment of time. Thus we introduce
an object which we shall call a multiple semigroup of operators.

The idea of describing a CMP using a multiple semigroup of operators goes back
to 1976 (Frishling and Mirzashvili, [6] and Chitashvili et al, [7]), where it was tested on
a simple case with discrete time and discrete phase space.

We will refer to the discrete phase space throughout the paper as all results are
transparent for this case. The exposition will be in a way in reverse order, in the
sense that abstract concepts of multiple semigroups of operators will be introduced and
studied first, and then applied to the theory of Controlled Markov Processes.

The main purpose of the paper is to suggest a new approach to the theory of
Controlled Markov Processes and to illustrate the validity of the approach.

2. RECTANGLES AND QUASIRECTANGLES OF OPERATORS

We shall denote sets of operators by capital Latin letters and elements of these set
by corresponding small Greek letters. The result of the action of an operator /z on a
function / we denote by /if or fi(x,f), while /i(z, •) will stand for the section of fi
at the point x.

Let:

(1) X be a Banach space with Borel a-algebra B,
(2) B{X) be the set of all real bounded B-measurable functions,
(3) the norm of an operator fi in X be denned in the usual way as ||/^|| =

sup \nf\.
ll

DEFINITION 1: We call a set of operators M a rectangle if for any sequence {/A*} 6
M and any partition {X1} of X an operator fi such that

is an element of M.

DEFINITION 2: We call a set of operators M a complete rectangle if for any
parametrised set of operators M' = {fix £ M : x £ X} such that /j.x(x,f) £ B(X) for
any / 6 B(X), the operator fi such that for each x

fj.(x, •) = fj,x(x, •) and /x(z,/) £ B(X)

belongs to M.
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NOTE. In otherwords any section of fj. belongs to M'.

Obviously, if a set of operators M is a complete rectangle it is a rectangle as well.

In fact, it can be easily seen that if X is a discrete space the two concepts coincide.

Further, we shall need to consider rectangles or complete rectangles which contain

a given set. In particular, we shall be interested in minimal such sets. The existence of

such sets is ensured by the following lemma.

LEMMA 1. If for each 7, Af7, is a rectangle (complete rectangle), then DAf7 is

a rectangle (complete rectangle).

PROOF: We shall prove the lemma only for complete rectangles, as the proof for

rectangles is identical.

Let a set of operators fiz be such that fix G HM7 for each x G X and let an

operator fj. be such that

p(x, •) = /*"(*, •) and /x(z, / ) e B(X) for any / e B{X).

As each fix belongs to M7 and the latter is a complete rectangle, \i G M^, for

each j .

Thus (j, G nM 7 . The Lemma is proved. D

It is not difficult to see that the set of all operators in X is a complete rectangle

(and, hence, a rectangle). So the family of rectangles (complete rectangles), which

contain a given set of operators is not empty.

Hence, if {M7} is the family of al rectangles (complete rectangles), which contain

a set M, then DM7 is the minimal rectangle (complete rectangle) containing M . Thus

the following definition makes sense.

DEFINITION 3: The minimal rectangle r(M) (complete rectangle rc(M)) which

contains the set M is called the rectangular (complete rectangular) hull of M.

NOTE 1. Trivially r(M) C rc(M).

NOTE 2. Let an operator /i be "glued" from operators from M, that is for each x G X

there exists n* G M, such that fi(x,f) = /i*(x,/) for all / G B(X) and (i(x,f) G B{X)

for any / . Then rc(M) consists of all such "glued" operators.

DEFINITION 4: A set of operators M is called a quasirectangle (closed quasirect-

angle) if for any / G B(X) and e ^ 0(e = 0) there exists y.* G M, such that

/**(*./) > sup /x (x , / ) - e .
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NOTE. If M is a quasirectangle, then sup p,f £ B(X). This is not generally true for
/i£Af

an arbitrary M.

Generally, if a set is a rectangle, it does not follow that it is a quasirectangle and
vice versa. However, if X is a discrete space it is easy to see that any rectangle is a
quasirectangle as well.

For general spaces there are problems of measurability of sup (if (see the note
above) and even if the measurability is assumed the problem of existence of fi* such
that

sup nf - e s% fi*f s% sup fif

still remains.

These problems are related to some problems in the theory of analytical functions
(see Dynkin and Yushkevich, [8] for further details), but as they lie outside the scope
of this paper we shall not elaborate on them:

To conclude this section we shall point out one simple fact. If M is a quasirectangle,
then r(M) and rc(M) are obviously quasirectangles and

sup fif = sup fif = sup fif.
/16M p€r(M)

Hence the extension of M to a rectangle, or even a complete rectangle, does not
increase sup.

3. OPERATIONS ON THE SETS OF OPERATORS

We need to introduce two operations between sets of operators. They will be
introduced formally in this section, their probabilistic interpretation will be discused
later.

DEFINITION 5: We shall call a set of operators K the composition of sets of oper-
ators M and N and write K = M • N if

K = {K : K = n • v £ M, v £ N},

where /J, • v is the composition of the operators y. and v.

DEFINITION 6: We shall call a set of operators L the strong composition of sets of
operators M and N and write L = M ° N if

L = {A : A/ = /*(*, «/*/) fJ.€M,vx S N}.

While composition is a simple operation, strong composition can better be illus-
trated on example of finite dimensional spaces. If X is an Euclidean space then M and
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N axe sets of matrices. To build the strong composition of M and N each row of a
matrix fj. E M is multiplied by a matrix from N and different rows may be multiplied
by different matrices from N.

It turns out that the property of a set of being a quasirectangle (rectangle) is
invariant with respect to the operation of composition (strong composition). Lemmae
2 and 3 below state this precisely.

LEMMA 2 . If M and N are quasirecfangies (closed quasirectangles) of positive

operators and N is a bounded set, then M-N is also a quasirectangle (closed quasirect-

angle).

PROOF: Let sup \\u\\ ^ c, and /x* and v* be such that for some e ^ 0 and
ueN

f e B(X)

y.*j > sup nf - e

and i/* sup (if > sup i/I sup fif I — e.
H€M v£N \/t€M /

Then v*'[i* f > v* I sup (if 1 — cc ^ sup v[ sup (j,f I — e — ce.

For closed quasirectangles the proof is similar. U

LEMMA 3 . If M is a rectangle, then M o N is also a rectangle.

PROOF: Let {Xi} be a partition of X and {Aj} € L = M -N. Hence, there exist
{fii} and {i/j} such that for each i , Aj(z, •) = fii(x, vf(-)). Put fi(x,-) = fifo,-) for
x £ X{. Then A(x, •) = fi(x, vx{-)) where vx(-) = ",*(•) for x 6 X; coincides with
A;(sv) for xGZ, - . D

NOTE. This lemma is not, in general, true for complete rectangles, because if {Av • y £
L} C L and Xy(x, •) = /iy(a:, v*(•)), as in the lemma, and ^(x, •) = px{x, •); that
is fi(x, •) is 'glued' from /i r(x, •), it may not belong to M, as /xx(z, / ) may not be
measurable for some / £ B(X).

The following three lemmas describe other properties of operations of the compo-
sition and strong composition.

LEMMA 4 . For sets of operators M and N

M-N C r(M • N) C r(M o N) = r (M) o JV C rc{M) oN C rc(M • iV).

PROOF: It is sufficient to prove the third and last relations as the others are trivial.
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If A g r(M • N), there exist a partition Xi and a sequence {A;} C M • N such
that A(x, •) = Aj(x, •) for x G X{. Hence, Aj(x,/) = m(x, uff) for x G Xi and
A(x,/) = n(x, u"f), where /i(x, •) = fii(x, •) and v* — v* for x £ Xi. This implies
that A G r(M) o N. The converse is proved similarly.

Say now, A G rc(M) o JV. Then there exists ft, G r c(M), such that for any x G X

there exists fiz G M with /x(x, •) = /Jz(z, •) (see Note 2 to Definition 4) and A(x, •) =
/x(x, !/*(•))• So A coincides with some operator from M • N for each x £ X.

As A(z,/) 6 B(-X )̂ for any / G $(X) by the definition of the operation of strong
composition, A G rc(M • N). D

NOTE. The converse of the last inclusion is true for special spaces. It is true, for
instance, if X is a discrete space.

LEMMA 5 . Composition is an associative operation, that is,

(M -N)-K = M-(N -K).

PROOF: If A G (M • N) • K, then A = (/* • v) • n = fi • {v • K) G M • (N • K). The
inverse is proved similarly. D

LEMMA 6.

(M o N) o K C M o {N • K) C rc{M • N • K).

PROOF: Let A G ( M o N) o N, so that X(x, •) = 6(x, KX(-)), where 6 G M o N,

and 6(x, •) = fi(x,u'(-)). Then

A(x,•) = fi{x,vzKx{-)) £Mo{N-K).

The second part is a consequence of Lemma 4. D

The following two lemmas deal with the convex hull operation on (quasi) rectangles.

The convex hull of a set of operators M is denoted by co(M).

LEMMA 7 . r(coM) = co (r(M)).

PROOF: 1. Let M be a convex set of operators and ft}, fi2 G r(M). Then there
exist sequences {fi\} C M and {fij} C M and partitions of X, {Xj} and {Xj}, such
that

S{x, •) - fi\(x, •) for x G XJ,

M
2(x, •) = ftx, •) for x G * ? .

Let us define fi — afi1 + (1 — a)/i2 for some 0 ^ a ^ 1. Now introducing the

partition Xij = {X} C\ X?}, we get that

fi(x, •) - afi\(x, •) + ( ! - «)M2(x, •) for x G X? f~l X).
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So the rectangular hull of a convex set is convex.

As r (co(M)) D r(M) for any M, r (co(M)) D co( r (M)) .
2. Let fi', fi" G c o ( M ) , where M is a rectangle, so fi' and p" can be represented as

I J
I*' = 52<*iHi and M" = YtPjP'j respectively, where a,-, j3j > 0, £ « » = Y,Pj = *>

To make the proof more transparent let us suppose that I = J = 2, «i ^ /?i and
the partition is {Xi, -X^}.
: Now defining

a[ = /3j, aj = ai - ^ , a'3 = 1 - ai

and pi(xi ')

3

we get that the operator /i = J3 aJ/i» coincides with /x' on Xi and with fj." on X2, so
»=i

co(M) is a rectangle.

As for any M, co(r(M)) 3 co(M), we have co (r(M)) D r(co(M)). D

LEMMA 8. rc(co(M)) D co(rc(M)),

PROOF: The proof is the same as that of the first part of Lemma 7. U

4. APPLICATIONS TO CONTROLLED MARKOV PROCESSES

The definition of a Controlled Markov Process we are about to introduce is one of
many possible variants. It is not new and given only for completeness.

Let the following objects be given:

(a) (fi, T) - a probability space;
(b) (X, B) and (A, A) - measurable spaces of states of a Controlled Markov

Process and its controls respectively.
(c) Vx = {P*: i 6 II} - a family of measures on (ft, V). Here II is a

parameter space the nature of which will be specified later.

We shall assume that the spaces X and A are complete, metric, separable spaces;
their cr-algebras B and A are Borel cr-algebras; for all a 6 X the one element set
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{x} G B. These conditions ensure the existence of regular variants of all conditional
probabilities which appear later (see Loeve, [9]).

DEFINITION 6: We call a process £« = (xt, at) a homogeneous, fully observable

CMP, which proceeds from x if the following hold:

(a) the stochastic process & is defined on (Q, T) and takes values in
{X xA,BxA);

(b) P?{xt+1 G B/x0, o0;...;x«, at) = Px{xt+1 G B/xu at)-P^ a.s. for any
P£ G "Px, XQ = x, B G B, and the last probability does nt depend on
t, x, TT;

(c) P'(*o € JB) = JB(«) for any P* 6 P*;
(d) All measures satisfying (b) and (c) are elements of Vx •

The second condition expresses the Markovian property of the CMP, the last con-
dition expresses full observability.

Because of the conditions on the spaces X and A, there exists a regular variant
of the conditional probability P£(-/xt, at), for each w £ fi there exists a function
P'(w,{xt+i G B}) which is (xt, at)-measurable. This measure induces a measure on
{X, B) in the obvious way. The function P(w, B) = i"(w, {%t+i G B}) is a.s. equal
to P*{xt+i G B/xt,at) with respect to the measure PJ reduced to the cr-algebra gen-
erated by (x t ,a t ) , (see Dynkin, [1]). Thus, condition (b) implies the existence of the
transition probability function for CMP. We shall denote this function p"(-)-

Each measure P£ G Vx generates a sequence of conditional probabilities 7r =
{nQ,iri, . . . ,7r t , . . . } , where

irt(A) = Px{at G A/xo,a0;... ;xt-i» at-i\xt)

and the above probability can be assumed to be a regular variant because of the con-
ditions imposed on P*.

Such a sequence of functions is called a strategy. A strategy is called Markovian if
it depends only on the last state, that is if irt — nt(A; xt) for each t; a strategy is called
stationary if it is Markovian and does not depend on t. The sets of all, all Markovian
and all stationary strategies will be denoted by II, IIm and II' respectively.

Conversely, if 7r is a strategy, together with the transition function it generates a

measure in (X x A, B x A).

For each a, P£(-) generates a linear operator r in (X, B):

rf = J f(x)P;(x G dx).

Let ft and Tt be sets of operators generated by {P7r, TT G II} and {Pn, p G Hm}

respectively.
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Obviously II is a convex set, therefore T« is convex as well. Also, it can be easily

checked that Tt is a rectangle.

The main result of this section is contained in the following:

T H E O R E M .

PROOF: Let T 1 + 1 G Tt+1. Then there exists P* such that

rt+i/ = j f{y)P:(xt+1 G dy) = j JHy)PZ(xi+1 G dy/xt)P;(dxt).

Then,

PZixt+i G dy/xt) = J P?{xt+1 £ dy/xu at)P^(dat/xt)

= Jp:i(xt+1 € dy)P;(dat/xt) G Ti

by convexity of T\. Thus

rt+if = J f(y) JJ P%(xt+1 e dy)P;(dat/xt)P;(dxt)

and, for each x,

Ti+1(x, f) = rt(x, rf/) and r t+1/

This implies the relation Tt+\ € Tt oTt.

Now let rt € T* and rf G Ti , for all x 6 X . Then there exist TT and n0 such that

rt(*. rf/) = I f(y)P;t(xt+1 G dyjP.'^K^jast).

Let us construct a new strategy ir':

Ti = 7T; for i ^ t,

ir't{A\ x, a0;...; xt) = TTJ(A; Et).

Then Tt{x, T1
J!()) G Tt+i and the first assertion of the theorem is proved.

The second assertion can be proved similarly.

COROLLARY.

ft+1CTlOTtCr(Tt+1).
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PROOF: This follows immediately from Lemma 4. D

The Theorem and the Corollary describe the structure of the distributions of the
states of a (CMP), when all strategies are used. The distribution of a state at any
moment t can be obtained by using strategies which depend only on the last and the
first states of the process, or in other works, if the initial point is fixed then it is sufficient
to consider only Markovian strategies.

Thus the Corollary is a generalisation and elucidation of Straukh's result on semi-
markovian strategies (see Straukh, [10]).
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