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Abstract. Let G be a symmetrizable Kac-Moody group over a field of characteristic zero, let T
be a split maximal torus of G. By using a completion of the algebra of strongly regular func-
tions on G, and its restriction on 7, we give a formal Chevalley restriction theorem. Specializ-
ing to the affine case, and to the field of complex numbers, we obtain a convergent Chevalley
restriction theorem, by choosing the formal functions, which are convergent on the semi-
groups of trace class elements G C G resp. T C T.
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Introduction

Let G be a reductive linear algebraic group, and equip its coordinate ring C[G] with
the G-action, induced by the conjugation action of G on itself. Let 7" be a maximal
torus of G with corresponding Weyl group W, and equip the coordinate ring C[T] of
T with the W-action, induced by the conjugation action of W = Ng(T')/T on T. Let
X(T)" be the monoid of dominant characters of T with respect to some Borel
subgroup containing 7. Denote by Tra the character of the rational irreducible G-
representation (L(A), a), belonging to the highest weight A € X(T)*.

The Chevalley restriction theorem says that the restriction map r: C[G] — C[T]
induces an isomorphism of the invariant algebras C[G]® and C[T]". Furthermore,
the characters Tra, A € X(T)", form a C-base of C[G]°. If G is in addition semi-
simple, simply connected, then C[G]® is a polynomial algebra in the characters
Try, belonging to the fundamental dominant weights N;, i=1, ..., n.

V. Kac and D. Peterson constructed in [K, P 1], to a Kac—Moody algebra g over a
field I of characteristic 0, a group analogue of a semisimple, simply connected alge-
braic group, the Kac-Moody group G. In the symmetrizable case, they defined and
investigated in [K, P 2] the algebra of strongly regular functions [F[G] on G. They
showed that it admits a Peter and Weyl theorem, i.e., F[G] = @, p+ L*(A) ® L(A)
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asa G x G-module, (P* the set of dominant weights). Due to this result, it seems rea-
sonable to interpret the algebra of strongly regular functions as the analogue of the
coordinate ring of a semisimple, simply connected algebraic group. (For a precise
investigation of this question, see [M 1].)

However, in the nonclassical case, there is no direct analogue of the Chevalley
restriction theorem. If the generalized Cartan matrix has no component of finite type,
then, with the exception of one-dimensional representations, the irreducible highest
weight representations L(A) are infinite-dimensional, and their traces cannot be rea-
lized as functions on G, resp. T. The invariant algebras F[G]°, resp. F[T']"” are span-
ned only by the traces of these one-dimensional representations on G, resp. 7. (Here
'[T'] denotes the restriction of the algebra of strongly regular functions on 7.)

To obtain nevertheless a formal analogue of the Chevalley restriction theorem, we
complete the algebras [F[G], IF[T'] in a natural way, obtaining a G-algebra ﬁ@], and a
W-algebra ]I*:[?]. The restriction map extends, inducing an isomorphism of the invar-
iant algebras Iﬁ[@]G and F[TT". These invariant algebras are, in a certain sense,
spanned by the formal G resp. T-characters of the modules L(A), A € PT. We also
obtain an algebraic description of these algebras.

Specializing to the field of complex numbers, every irreducible highest weight
module L(A), A € PT, carries a contravariant positive definite Hermitian form,
unique up to a nonzero positive scalar factor. Denote by G' the semigroup of ele-
ments g € G, such that for all A € P+ the linear map 7 (g) extends to a trace class
operator on the Hilbert space completion of L(A). Denote by T" the intersection
of G with T.

To obtain a convergent Chevalley restriction theorem in the affine case, we realize
certain subalgebras of 6[6], C/[?], as algebras of functions C[G"], C[T"] on the
semigroups G, T". In particular, the formal characters are now realized as func-
tions on GY, respectively T'. These algebras carry a G-, respectively a W-action,
and the restriction map induces an injective homomorphism of C[G"]¢ into C[T"]"

We restrict to the affine case because, for an indefinite Kac-Moody group, G is
not invariant under G-conjugation. Even more worse, every element of T is G-
conjugate to some element not contained in GY, compare [M 2]. It remains open
whether there is a similar result, now using a subalgebra of 6[5], which can be rea-
lized as an algebra of functions on UgEG gGlg™!

There are the following relations to the work of other people: E. Looijenga devel-
oped in [Loo], section 4, an invariant theory of exponential type associated to certain
root data of generalized Cartan matrices. Using the fans A — Qf, A € P*, he built a
7-algebra A. He defined and investigated the algebra of W-invariants 4" and W-
anti-invariants 4=V, In particular he obtained an algebraic description of 4" in
the affine case. The invariant algebra ﬁf]w used for the formal Chevalley restriction
theorem 1s constructed in a similar way as A". Starting with F[T] we build the
algebra ]F[T ], and then the invariant algebra [T ]W But to define F[T] we use the
set ¢ of weights of L(A) instead of the fans A — Qf, A € P*. Therefore, our space

[T ] is much smaller than the corresponding space 4 adopted to the field . Our
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invariant space F/[T]W is for a generalized Cartan matrix, which has a component of
nonindefinite type, smaller than 4" adopted to I. This modification is required be-
cause, in the case of a generalized Cartan matrix of finite type, we want ]ﬁf] to equal
the classical coordinate ring of the torus, and W]W to equal its invariant algebra.

We obtain an algebraic description of the invariant algebra ]ﬁf]w for an arbitrary
generalized Cartan matrix, generalizing the corresponding description of A" by
Looijenga in the affine case. Our main aid to prove this description is a finite cover-
ing of P(A)N P*, (A € P*), by certain set of weights, which are related to cones
build of imaginary roots. This covering can be considered as a generalization of
the covering by imaginary root strings in the affine case.

Let I = C. For A € P*, the formal T-character

A = Z mye;, m; = dim(L(A),),
J€P(A)

determines a function on T by y(?) := Tr(wa(7)), f € T". These functions, as well
as the domain of convergence T, have been studied by several people starting with
Moody and Lepowsky [L, Mo], Meurman [Meu] in the rank two hyperbolic case,
Slodowy [SI 2], Kac and Peterson, whose results can be found in [K], sections 10.6
and 11.10.

In the affine case G. Briichert determined in [B] a conjugation invariant sub-
semigroup G~!' of G', and conjectured equality. He showed, that the functions
Trp on GY defined by Tra(g) := Tr(na(g)), g € GY, are conjugation invariant on
G7', A e Pt.

We shall prove the conjecture of G. Briichert. The functions y,, Try fit into our
framework. The conjugation invariance of Trp will be deduced from a more general
theorem for the functions of C[GY].

For an affine Kac-Moody group G of holomorphic loops (which contains the
Kac—-Moody group G of Laurent polynomial loops as a subgroup), P. Etingov,
I. Frenkel, and A. Kirillov defined and investigated in [E, F, K] spherical functions.
These are functions on certain G’-conjugation invariant parts éq of G,0<g<1,
with certain holomorphy properties, and certain properties with respect to the G'-
conjugation action. The union of these parts Gq, 0 < ¢ < 1, is disjoint. It gives a sub-
semigroup of G, which extends the subsemigroup G>! of G.

In particular, Etingov, Frenkel, and Kirillov showed, that the characters of the
integrable modules at level & form a basis in the space of é/-conjugacy invariant
functions on G, of degree k, k > 0.

1. Preliminaries

In this section we recall some basic facts about Kac—-Moody algebras, Kac—-Moody
groups, and the algebra of strongly regular functions, which are used later, merely to
introduce our notation.
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The Kac—Moody group given in [K, P 1], [K, P 3] corresponds to the derived Kac—
Moody algebra. We work with a slightly enlarged group, corresponding to the full
Kac—Moody algebra, as in [Ti], [Mo, Pi].

All the material stated in this subsection about Kac—Moody algebras can be found
in the books [K] (most results also valid for a field of characteristic zero with the
same proofs), [Mo, Pi], about Kac—-Moody groups in [K, P 1], [K, P 3], [Mo, Pi],
about the algebra of strongly regular functions in [K, P 2], and about the faces of
the Tits cone in [Loo], [SI 1].

Furthermore, we will prove some properties of the set of imaginary roots, and of
the set of weights of irreducible admissible highest weight modules, which will be
important in the following sections at several places.

We denote by N = 7", QT resp. R the sets of strictly positive numbers of 7, Q,
resp. R. The sets Ny = 7, Qf, R{ contain, in addition, the zero. In the whole
paper, I is a field of characteristic 0, and " its group of units.

1.1. GENERALIZED CARTAN MATRICES

Starting point for the construction of a Kac-Moody algebra, and its associated sim-
ply connected Kac—-Moody group is a generalized Cartan matrix, which is a matrix
A = (ay) € M,(7) with a; =2, a; <0 for all i#j, and a; =0 if and only if
a; = 0. Denote by / the rank of 4, and set /:={1,2,...,n}.

For the properties of the generalized Cartan matrices, in particular their classifica-
tion, we refer to the book [K]. In this paper we assume 4 to be symmetrizable.

A nonempty subset J C 7 is said to have a property, if the corresponding subma-
trix of 4, which is a generalized Cartan matrix, has this property.

1.2. REALIZATIONS

A simply connected minimal free realization of A consists of dual free Z-modules H, P

of rank 2n—1I and linear independent sets IV ={hy,...,h,} C H, Tl=
{oq, ..., 2.} € P such that oi(h) =a;, i,j=1,...,n. Furthermore, there exist (in
general nonuniquely determined) weights Ny, ..., N, € P such that N;(h) = dy,
Lj=1,...,n

P is called the weight lattice and Q := Z-span{o; | i € I} the root lattice. Set

Qf = ZF-spanfo;|i € I}, 0F == 07\ {0}.

We fix Ny,...,N, € P as above, and set P;:= Z-span{Ny, ..., N,}. Extending
h,....,hy€ H, Ni,...,N,€P to a pair of dual bases h,...,hy, ;€ H,
Ni, ..., Ny € P gives a system of fundamental dominant weights Ny, ..., No,_;.

1.3. THE WEYL GROUP, THE TITS CONE, AND ITS FACES

Define the following vector spaces over F

h=hy =H®, I, h* := th =P Ry .
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H and P are identified with H ® 1, P ® 1, and h* is interpreted as the dual of h. Order
the elements of h* by 4 < A" if and only if ' — 1 € Of.

Because A4 is symmetrizable, we can choose a symmetric matrix B € M,(Q), and a
diagonal matrix D = diag(ci, ..., ), €1, ..., ¢, € QF, such that 4 = DB. Define a
nondegenerate symmetric bilinear form on h by

(hilh) = (hlh;) = a(h)e; (i € I, h €h),
(hilh) =0 (i, j=n+1,...,2n=1).
The induced nondegenerate symmetric form on h* is also denoted by ().

The Weyl group W = W(A) is the Coxeter group with generators oy, i € I, and
relations:

o;=1 (e (o) =1 (jel i#)).
The my; are given by

a;d;i | 01 2 3 24
m; | 2 3 4 6 no relation between a; and a;.

The Weyl group W acts faithfully and contragrediently by

oih == h— o;(h)h;, iel, heh,
O',‘/l ::i—)»(h[)oc,-, iEI, ;LEh*,
on h and h*, leaving the lattices H, Q, P and the forms invariant.

Are :=W{o,; | i €I} C Q is called the set of real roots.
To illustrate the action of W on hj; geometrically, for J C I set

Fr={Aehy | M(h)=0forieJ, Ah)>O0foriel\J},
Fr:={lehi | Mh)=0foried, Ah)=0foriel\J)}

Call C:=Fy={l¢e h% | A(h;) = 0 for i € I} the fundamental chamber. The Tits
cone X:=WC is a convex W-invariant cone with edge c:=F; = Fr=
{Aehy | A(h;))=0foriel}. A W-invariant partition into facets is given by
{6F; | 6 € W, JCI}. The chamber C = UJC,FJ is a fundamental region of X,
and the parabolic subgroup W; of W is the stabilizer of every element A € F.

Every face of the convex cone X is exposed, and W-conjugate to exactly one of the
faces

R(®):=X N{ieh | A(h) =0 forall i e ®) = Wy Fo,

where ® C [ is special, which means either ® = @ or else all connected components
of ® are of nonfinite type, and O+ :={i e I | a; =0 for all j € ®}.

1.4. THE KAC-MOODY ALGEBRA

The Kac—Moody algebra g = g(A) is the Lie algebra over [ generated by the Abelian
Lie algebra h and 2n elements ¢;, f; (i € I), with the following relations, which hold
foranyi,jel, heh:
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lei, fi1 = 05hi,  [h, e)] = ai(h)e;,  [h, fi] = —oi(h)fi,
(ade;)'~e; = (adf)' ~If; =0 (i #)).
The Chevalley involution % of g is the involutive anti-automorphism determined by
ef=fi,ff=e,*=h(icl heH).
The space h and the elements ¢, f;, (i € I), can be identified with their images in g.

The nondegenerate symmetric bilinear form (|) on h can be uniquely extended to a
nondegenerate symmetric invariant bilinear form (|) on g. We have the root space

decomposition:
g= EBga where g, :={x € g | [h, x] = a(h)x for all i € h}.
och*

In particular gy =h, g, = Fe;, g_, = I'f;, (i € D).

The set of roots A := {0 € h* \ {0} | g, # 0} is invariant under the Weyl group and
spans the root lattice Q. We have A, C A, and Ay, := A\ A, is called the set of ima-
ginary roots.

A, A and Ay, decompose into the disjoint union of the sets of positive and
negative roots At = AN Q* AL = A N QOF, AL = Ajn N 0F, and we have A* =
—AF, AL = AT AL = AT

The roots belonging to the cone X U (—X) are exactly the imaginary roots, more-
over A, = AN X. Therefore, to describe the negative imaginary roots, it is sufficient
to describe their intersection with the fundamental chamber: For ¢ = >"._ ko € Q
set supp(q) := {i € I|k; # 0}. In [K], Theorem 5.4, it is shown, that

iel

AN C={ye (Qy N O)\{0} | supp(y) is connected}.

We need an easy conclusion of this description. For a special set ® C I, we get a
nonempty subsemigroup of Q by

K(®):={y € 0; N C | supp(y) = O).

Note that K(@) = {0}. It is also easy to see, that for ® # @, the subsemigroup K(®) is
the intersection of Q with a pointed, finitely generated, convex, Q-rational cone in
0®7R.

PROPOSITION 1.1. (1) If © is nonempty, special, with connected components
O, ...,0,, then K(®) = K(®))+ --- + K(O,,).
(2) We have

A= NC= U k®©), o;nC= |J Kk©).

® special, connected, #0 © special

Proof. In (1), we only have to show the inclusion ‘C’. Let y = ), o m0; € K(O).
Then y can be written as a sum y =7y, +---+7,, with y,:= Zie@,, nio; € Qp
p=1,...,m. We have Vp € C, because of
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Vp(hj) = "/(h]), fOI'j € ®pv

7, () = Zi‘;i& >0, forjel\®,.
i€®, <0 <0
Therefore y, € K(®)), p=1,...,m. )

In (2), we only have to show the equation for Oy N C. Then the equation for
A;,, N C follows from the description of [K], Theorem 5.4, stated above. It is suffi-
cient to show, that for any element y € Q5 N C its support ® := supp(y) is special.

Wehavey = Oifand only if ® = @, and this setis special. Lety = 3, g m;2; # 0, and

let @, ..., ©,, be the connected components of @. Then for p € {1, ..., m} we have
0 < y(hy) = Z a; n; forallje @,
i€®, <0
Due to [K], Corollary 4.3, ®, is not of finite type. O

Corresponding to the decomposition into positive and negative roots there is a
triangular decomposition g =n~ @h @ n*, where n* := @ _,:g,.
For a real root o, the subalgebra g, ® [g,. g ,] ® g_, of g is isomorphic to s/(2, I).

1.5. THE KAC-MOODY GROUP

To construct the Kac-Moody group, call a representation (V, n) of g admissible if:
(1) Vis h-diagonalizable with set of weights P(}) C P.
(2) m(x) is locally nilpotent for all x € g,, o € Aye.

Examples are the adjoint representation (g, ad), and the irreducible highest weight
representation (L(A), mp), A € P := PN C.
The Kac—-Moody group G = G(A) can be characterized in the following way:

e The group G acts on every admissible representation. Two elements g, g'e G
are equal if and only if for all admissible modules V, and all v€ V' we have
gv = g'v.

e (1) For every h € H, s € ¥ there exists a unique element #,(s) € G, such that
for any admissible representation (V, ) we have

l‘h(S)lJ/{ = Sl(h)l);,, v, eV, ALe P(V)

(2) For every x € g,, o € A, there exists a unique element exp(x) € G, such
that for any admissible representation (V, ©) we have

exp(x)v = exp(n(x))v, veV.
G is generated by the elements of (1) and (2).

The Chevalley involution *. G — G is the involutive anti-isomorphism det-
ermined by
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exp(xy)* := exp(x}), th(s)* = 1;,(s) (xy, €840 €A, he H, s €l™).

The Kac—Moody group has the following important structural properties: (a) The
elements of (1) induce an embedding of the torus H ® [ into G. Its image is deno-
ted by T.

For o € A, the elements of (2) induce an embedding of (g,, +) into G. Its image U,
is called the root group belonging to «.

Let o € Aj;. Let x, € g,, x_, € g_,, such that [x,, x_,] = h,. There exists an injec-
tive homomorphism of groups ¢,: SL(2, ') - G with

N

¢((1) i)::exp(sxa), 4,“(1 ?)::exp(sx_a) R

(b) Denote by N the subgroup generated by T and n, := ¢, ( _01 :)), o € Ar. Then

N/T can be identified with the Weyl group W, the isomorphism x: N/T — W given
by k(n, T) := 0,, & € Ae. We denote an arbitrary element n € N with k(nT) =0 € W
by n,. The set of weights P(V) of an admissible g-module is W-invariant, and
neVy, = Vs, S P(V)

(c) Let B* be the subgroups generated by T and U,, « € Arie. Let U* be the sub-
groups generated by U,, o € Afg.

Then (G, (U,) ep,,» T) is a root groups data system, leading to the twinned BN-pairs
(B%, N), which have the property Bf N B~ =B*NN=B"NN=T. We have the
Bruhat and Birkhoff decompositions:

G=UBB (0= (o)) h).
geW

Bruhat Birkhoff

The derived group G’ is identical with the Kac-Moody group as defined in [K, P 1].
It is generated by the root groups U,, o € A, and we have G = G'X Tyesy, Where Tieg 1S
the subtorus of 7 generated by the elements #,(s), i=n+1,...,2n — 1, 5 € '™,

1.6. PROPERTIES OF THE ADMISSIBLE IRREDUCIBLE HIGHEST WEIGHT
REPRESENTATIONS, AND THEIR SET OF WEIGHTS

For Ae Pt:=CNP there exists a nondegenerate symmetric bilinear form
((])): L(A) x L(A) — F, which is contravariant, i.e., {({v]|xw)) = ({(x*v | w)) for
all v, w € L(A), x € g, resp., x € G. This form is uniquely determined up to a nonzero
multiplicative scalar.

For the properties of the set of weights P(A) of L(A) we refer to the book [K], sections
11.1, 11.2 and 11.3. We prove some more properties, which will be important later.

THEOREM 1.2. Let Aj, A, € P*. We have:

(a) L(A)® L(A) = DAeP(A+A)NPF naL(A), with np € Ny, HA +A, = 1.
(b) If Ay € P(Ay), then P(A1) C P(Ay).
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() P(A1)+ P(Ay) = P(A + Ay).
Proof. To (a). Due to [K], Corollary 10.7 b),

LAN®LA)= P mLA)
AePt, A < Aj+A;

with np € No, na,44, = 1. Also np # 0 is only possible for A € P(L(A1) ® L(A2)).
Therefore it is sufficient to show P(L(A1) ® L(A>)) NPT C P(A; + Ay) N P™.

Recall from [K], section 11.2, that an element 4 € P is called nondegenerate with
respect to A € PT, if either 2 = A, or else 2 < A, and for every connected component
S of supp(A — ) wehave SN {i € I | A(h;) # 0} # @. Due to [K], Proposition 11.2(a),
the set of weights P(A; + Ay) N PT consists of the elements of A € P+, which are non-
degenerate with respect to A| 4+ A;. Therefore it is sufficient to show, that every weight
in P(L(A)) ® L(A,)) = P(A) + P(A;) is nondegenerate with respect to A; + A,.

An element 4; € P(A;) is of the form A; = A; — ¢; with ¢; = Zi k;")ocj € Q(J{. Due to
[K], Lemma 11.2, /; is nondegenerate with respect to A;. (i=1,2). Clearly
M+ < Ai+ Ay Let 414+ #A1+ Ay, let S be a connected component of
supp(A; + A, — (41 + 42)). Choose an element iy € S. We have kgﬂl) #0 or kgf) #0,
and we may assume kf[)l) # 0. Let S’ be a connected component of supp(A; — 4;) with
iheS.Dueto S C{iell kgl) + k§2> #+ 0} we get §' C S. Because 4; is nondegene-
rate with respect to A, we find

p#£Sn{iell Ah)#0} S Sn{iell (A +A)(h) #0}.

To (b). Denote by ‘co’ the convex hull in hj;,. Due to the W-invariance of P(A;),
and due to [K], Proposition 11.3(a), we have WA| C P(A;) € co(WA;). Therefore
co(WA,) C co(WA,). Because of A < A,, we also have Ay — Of € A, — Qf . Using
[K], Proposition 11.3(a), once more, we find P(A;) C P(A»).

To (¢). For n € N we have P(nL(A)) = P(A). Using (a), we find

P(A1) + P(As) = P(L(A) ® L(A)) = U P(A).
AeP(A1+A)NP+, na#0

Due to (b), the union on the right is a subset of P(A; + A;). We have equality
because of np,4+4, # 0. ]

Recall that ¢ denotes the edge of the Tits cone.

PROPOSITION 1.3. Let A have no component of finite type. For A € PT, we have
P(A)Nc#0if and only if A € c.

Proof. We only have to show the direction ‘=’. Every element of P(A) can be
written in the form A — ", mo;, where Y., mo; € Of . Let A — Y, njo; € ¢. Then
by applying this element to 4, j € I, we find

iel
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0 < Ahy) = Zaﬁ&.

iel >0

Due to [K], Theorem 4.3, we get A(hy) = >, ,a;n; =0 for all j e L O

iel
For an affine Kac-Moody algebra, the set of weights P(A) NPT, (A € PT), can be
covered by finitely many imaginary root strings, i.e., sets of the form 4 — INyJ, where
0 denotes the minimal positive imaginary root. Compare [K], Proposition 12.6. Fur-
thermore, —INoé = Oy N C. Now the only special sets are ¢ and 7, and we can write
—Njo as the union —Nyd = K(0) U K(I), where K(¥) = {0}, K(/) = —INo. Therefore
every root string 4 — Ngd is the union of 4+ K(@) = {4} and 4+ K(I) = 4 — INJ.

Next we give a generalization for an arbitrary Kac-Moody algebra. We find a
finite covering of P(A) N Pt, (A € PT), by sets of the form 1+ K(©®), ® special:

Call E C I'relevant for A € P*, if either = = @, or else every connected component
of E intersects {i € I | A(h;) # 0} nontrivially. Proposition 11.2(a) of [K] can be writ-
ten in the form

PMNP = | A+SE) (1)
E rel. for A

where S(E) := {g € Qy | supp(q) = E, A + ¢ € P*}. Note that S(¥) = {0}.

THEOREM 1.4. Let E C I be relevant for A € P*. Denote by Z°, resp. 2°, the union
of all connected components of Z of finite, resp. non-finite, type. Then E°, E* are also
relevant for A, and we have

SE) = SE°) + S(E™). )
Furthermore, S(E°) is finite, and there exists a finite set M(E*®) C S(E*°) such that

S(E*®) = K(E*)U U ME®+ k). 3)

O special, @CE™

Proof. The sets E2°, 2 are relevant, because they are unions of connected
components of E, or empty. To show the inclusion ‘C’ of (2), decompose g =
ez nioi € S(E) in the form g = ¢° + ¢ with ¢° := 3", o mo; and ¢ := >, o My,

ieE ieE

a sum over the empty set to be equal to zero. We have A + ¢° € P* due to

A+)h)=A+q(h) =0,  forieZ,
(A+¢")h) = Alh) =0,  for i¢ E°.

Therefore ¢° € S(Z°). Similar we find ¢® € S(E*). To show the reverse inclusion, let
¢° € S(E°), ¢ € S(E®). Then

(A+¢"+q®)h) = Ahy),  forigE'UE™,
A+¢"+¢°)h) = A+¢")h) >0,  forie=,
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A+ "+ g™ () = (A +¢®)(h) = 0, for i € 2%,

Therefore ¢° + ¢* € S(Z).

Let g0 be the Lie algebra generated by g, ,i € 20, Let nZ, be its subalgebra gen-
erated by g, ,i € 2. Then U(nZ,)L(A), is a finite-dimensional irreducible highest
weight module of the finite-dimensional split reductive Lie algebra g-o +h. Due to
A+ S(E% € P(UZ,)L(A),), the set S(Z°) is finite.

We only have to show (3) in the nontrivial case E* # ¢. We only have to find a
finite set M(E*) C S(E™), and show the inclusion ‘C’ of (3). Then the reverse inclu-
sion is also satisfied. This follows immediately from the definition of S(Z*), using
M(E®) C S(E*) and K(E®), K(®) € Q; N C.

Let g™ =), nje; € S(E™). E* has no component of finite type. Due to the char-
acterizations of [K], Corollary 4.3, there exists at least one element j € Z°°, such that
> ez~ ajin; = 0. Therefore one of the following finitely many cases holds:

(a) The case ) = a;n; > 0 for all j € 2. Because of > -~ a;n; > 0 for all j¢ =,
we have ¢® € PT. Together with ¢® € Qy,supp(¢™®) =E%, we get
g™ € K(E™).

(b) There exists a partition 2° = E|UZ,, | # ), Z, # #, and there exists a tuple of

integers m_ := (m;);cz, with 0 > m; > —A(h), such that
Z ajin; = mj for ] (S E], Z a;in; = 0, for ] € Ez.
i€E™ i€E™

By decomposing the generalized Cartan submatrix belonging to 2 into blocks with
respect to Ei, E,, we can write these equations in the form

m_ = Az,n_+ Bn,, 0< Cn_+ Az,n,.

Note that B, C are matrices with nonpositive entries. Every component of E; is of
finite type, due to Az, (—n_) = —m_ + (—B)(—ny) > 0, compare [K], Corollary 4.3.
The tuple (—n4, Cn_ + Az,n.) belongs to the set

{(—ﬁ+, Cii_ + Az,fiy) € NP N2V 7in = AZ!m_ — 42! Bi, < 0}. 4)

Equip Né'El‘ with the product order of the natural order of Ny. It is well known, that
a nonempty subset of N(z)\52| contains only finitely many minimal elements, and every
element of this subset lies over some minimal element. Let (—n™i", Cn™" 4 4z, nTi
be a minimal element of the set (4), which is smaller than, or equal to
(—n4, Cn_ 4 Az,n;). Then we have

ny — nrfr‘i“ <0, (%)
C(n_ — n™™) + Az, (ny —n™™) > 0, (6)
Az, (n_ — n™) + B(ny —n"™™) = 0. (7
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B has only nonpositive entries. With (5) follows B(n, — nr}:i“ > 0. With (7) follows
Az, (n_ —n™") < 0. Because Z; has only components of finite type, we get from
[K], Theorem 4.3,

n_ —n™" <0. ®)

Write ¢® as the sum ¢ = ¢™" + 8, with

qmin — Z n?indi, and B = Z(n’ — l’l?lin)ai.

i€E™ i€E™

Due to (5) and (8), we have f € Qy. Due to (7) and (6), we have f§ € C. Because of
peQyn C= Ue special K(©), we find supp(f) is special. Due to the definition of f,
we have supp(ff) C E*.

Due to the conditions defining the set (4), we have n™" < 0, n™" < 0. Therefore
supp(¢™") = Z*. Also due the conditions defining the set (4), we find

Az 0™ + Bn™ —m_ =0 and Cn™" 4 Az,n™ > 0.

From this follows (A4 ¢™")(h) >0 for all ie E°. We have also A(h)+
(g™™)(h;) = 0 for all i ¢ 2. Therefore ¢g™" e S(E*).

Take as M(Z™) the finite set of these elements ¢™", i.e., the occurring minimal ele-
ments ¢™", for all occurring partitions 2% = 2| UE,, Z, # 0, Z, # ), and occur-
ring tuple of integers m_ := (m));cz, with 0 > m; = — A(h). O

1.7. THE ALGEBRA OF STRONGLY REGULAR FUNCTIONS

For A € P, v,w € L(A), and {( | )) a nondegenerate symmetric contravariant bilin-
ear form on L(A), call the function f,,: G — [, given by f,,.(g):= ((v|gw)), g € G,
a matrix coefficient of G. The algebra ['[G] generated by all such matrix coefficients
is called the algebra of strongly regular functions on G. IF[G] is an integrally closed
domain. It admits a Peter—Weyl theorem: Define an action © of G x G on I'[G], and
an involutive automorphism * of [F[G], which we also call Chevalley involution, by

(g, N):=flg”'xh),  [*(x):=fx"), gx,heC, feF[G]
For every A € P', fix on L(A) a nondegenerate symmetric contravariant bilinear
form. Define an action © on L(A) ® L(A) by

(g, @ w) =g Vv@hw, g heG, v,welL).

Then the map @Gpcp+ L(A) ® L(A) — IF[G], induced by v ® w f,,,, is an isomorph-
ism of G x G-modules. It identifies the direct sum of the switch maps of the factors
with the Chevalley involution.

An embedding of the linear space [F[G] into the dual of the universal enveloping
algebra U(g) is induced by
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Fow(X):= ((v] xW)), v,we L(A), AePt, xeU@).

Restricting the functions of F[G] onto G, resp. Ty gives the algebras F[G'], resp.
[ Ttest], the first identical with the algebra of strongly regular functions as defined in
[K, P 2], the second the classical coordinate ring of the torus Tiey. IF[G] is isomorphic
to F[G'] ® F[Tiest] by the comorphism dual to the multiplication map G’ x Tiest — G.

1.8. THE FIELD OF COMPLEX NUMBERS [ = C

Some of the above constructions can be modified for the field of complex numbers.
For the sake of simplicity we shall use the same notations.

The compact involution % of g is the involutive anti-linear anti-automorphism
determined by e = f;, f* = e;, h* =h,(i € I, h € H). It induces the compact involu-
tion x on G by exp(x,)*:= exp(x?), ()" := 14(5), (x4 € 8,, ® € Are, h € H, 5 € CX).

Define the exponential map exp : h — T by

2n—I 2n—1
exp Z cih; | := l_[ i (e), ¢ € C*.
i=1 i=1

For every i € h, and every admissible module V/, we have

exp(hy; =" Pv,, v, eV, e P(V)

Define 7' := exp(H ® R), and the unitary form K:= {g € G | g* = g~'}. We have
the Iwasawa decompositions G = KTTU* = U*T*K.

For A € P*, the irreducible highest weight representation (L(A), ma) carries, with
respect to the compact involution, a contravariant positive definite Hermitian form
({ ] )), unique up to a nonzero positive factor. We assume ({ | )) to be anti-linear in
the first entry. The algebra of strongly regular functions is also generated by the
matrix coefficients built by using these Hermitian forms.

2. A Version of Looijenga’s Exponential Invariant Theory

In this section, we present a version of Looijenga’s exponential invariant theory
adopted to the ground field . We restrict to the facts relevant for our purpose.
Starting point is the algebra of strongly regular functions IF[G] of a Kac—Moody
group G, restricted onto the torus 7. We first describe this restriction:

The group algebra [F[ P] of the lattice P can be identified with the classical coordi-
nate ring on 7, identifying the elements of the natural base (e,),.p with the functions
given by

2n—I[ 2n—1 Ah
el [Tmen) =T (€.
=1 =1
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The restriction of the algebra of strongly regular functions on 7, which we denote by
F[T7], is in the nonclassical case only a subalgebra of the classical coordinate ring of 7~

PROPOSITION 2.1. We have F[T] = F[X N P).

A variant of this Proposition has been proved in [M 1]. For the convenience of the
reader, we sketch its

Proof. For v; € L(A),, wy € L(A),, 4, u€ P(A), A€ P*, we find by checking
on the elements of T: f,,, |7 = fu,w,(1)e,. Due to the Peter and Weyl theorem for
IF[G], and due to (Jucpr P(A) =X NP, we get F[T] C (XN P]. Due to the non-
degeneracy of {({ | )) on the weight spaces, we have even equality. O

Next we construct a formal completion of FF[7T']. The algebra F[T] is (X N P)-
graded by I[T]; :=I'e;, A€ XN P. For an element f € [[,_y-p I'[T]; denote by f;
the projection of f onto IF[7T],. Set

supp(f):={Ae XNP|f, Z0} C XNP.

Using Theorem 1.2(c) we casily find:

PROPOSITION 2.2.

reXnpP i=1

k
F[T]:= {fe [T 7 3keN,3A1,...,AkeP+:supp(_f)gUP(A,-)}

is a commutative associative algebra with unit, the multiplication given by

W= Y. fufu ©)
e

Remark. We identify F[T'] in the obvious way with a subalgebra of F/[T]. If 4 has
only components of finite type, then F[T] = F/[?].

It is useful, to introduce a natural limit concept for the algebra ]F/[T]. Call a
sequence (f7);en © ]F/[T] convergent to f € F/[T] if:

o There exist kelN, A,...,Ar € P", such that for all ieN we have
supp(fi) S P(A1) U--- U P(Ay).
e For every 4 € XN P, there exists an element iy € IN, such that for all i > iy we

have (fj); = fi.
Note that the limit f'is uniquely determined by the sequence (f);cn-
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Call a map ]F'/[T] — Iﬁ?] continuous, if it maps convergent sequences into conver-
gent sequences.

With respect to this limit concept, ['[T'] is dense in Iﬁf], i.e., every element
fe F/[T] is the limit of a sequence (f;);cny € F[T]. The addition, the multiplication
by a scalar, and the multiplication of the algebra ]ﬁf] are continuous.

To investigate Iﬁ?], it is also useful to generalize the notion of a linear base. We
call a nonempty family (fj);c, € ﬁf] summable, if there exist ke N,
A1, ..., Ar € P*, such that

Usupp() € P(AD) U+ U P(Ay),

jeJ

and for every A € XN P, we have (f}), # 0 for only finitely many j € J. The sum of
such a family is defined as (3_,;/); == > jc,(fj),» 4 € XN P. Note that there are
only countably many nonzero f;’s. The sum is equal to the series sum, corresponding
to the notion of convergence as above, relative to an arbitrary linear order of these
elements.

For a set # B C F[T], we call a sum of the form > pep Cvb With ¢, € I a s-linear
combination. Call B s-linear independent, if »,_,c,b =0 implies ¢, =0 for all
b e B. Call B an s-base, if every element of F/[T] can be written in the form
> pep cvb With uniquely determined ¢, € I

The action of the Weyl group W on F[T] extends uniquely to an action on F/[T],
by continuous homomorphisms of algebras:

(@f); =Y e forf= cie; € F[T1, ceW.
A A

In the rest of this section, we investigate the structure of the invariant algebra W]W.

First we determine certain s-bases. For every A € P', choose an element
Sh € ]F'/[T]W with supp(Sa) € P(A) and (Sa), = ea. In particular, we can take the
formal T-character corresponding to L(A):

=y muen,  my = dim(L(A),). (10)
A€P(A)

Generalizing the classical case we have:

THEOREM 2.3. The family (Sp)pcp+ is an s-base of Iﬁ?]w, and its s-linear combi-
nations are given by the sums
CASA, (11)
AE(P(A)U-UP(A))NP
with ca € V', Ay,...,Ar € P+, k e N.
Proof. First we show, that every sum of the form (11) is well defined, i.e., the
family (cASA)ae(pa)u--UPA NP+ 18 sSummable. Fix 2 € XN P. Due to Theorem 1.2(b),
(caSA); # 0 implies 2 € P(A;)U---U P(Ax), and we have A € (P(A)U---U P(Ay))
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NP* with A > 4. This is only possible for finitely many A. A sum of the form (11)
is an element of F[T ]W because the elements Sy belong to F[T 1Y, and W acts
continuously.

Let >~ \cp+ cASA be a s-linear combination of (Sa),cp+. Due to the definition of
summable, there exist Aj,...,Ar € PT, such that we have UAE,,#CA £0 supp(Sa)
C P(A})U---U P(Ay). Because of A € supp(Sa), this s-linear combination is of the
form (11).

We only sketch the next part of the proof, because the idea can be extracted
from the proof of Theorem 4.2 in [Loo]: Let fe IPTT]W with supp (f)
C P(A))U---U P(Ar). We show that f can be obtained as a s-linear combination
of (Sa)pcp+- The family (Fp,),cx, defined by

= (P(A))U---UP(A) NPT,
Foy1 = F,,\max(F,,), m € Ny,

is a filtration of (P(A;) U --- U P(Ax)) N P*, in particular (nery, Fm = . Similarly as
in [Loo], define recursively the following sequence: Set g := 0. For m € N, set

(m+1) .

g ca SA,

Aemax(Fy)

where the c¢,’s are obtained from the decomposition

m

f- Z g = Z ca Z e, +r with supp(r) € WF,4.

i=0 Aemax(F,,) AEWA

It is not difficult to check that this sequence is well defined, summable, and

f Z g() ZAGF() cASA-

To show the s-linear independence of (Sa)acp+, let

0= Z c,\SAzz Z cASA.

AE(P(A)U--UP(Ar)NPT meNy Aemax(Fy,)

The elements of max(F;) are pairwise incomparable, and they are bigger as, or
incomparable with the elements of max(F;) for i > 0. Due to supp(Sx) € A — Of,
we find ¢y, = 0 for all A € max(Fp). Repeating the same argument, we find succes-
sively ¢y = 0 for all A € max(F;), i € . O

To investigate the structure of F/[T]W as an algebra, we choose a family (Sa)pcp+
as above, with SASy' = Sy, for A, A" € PT. (Choosing the Sx’s for a system of fun-
damental dominant weights determines such a family.)

For an [F-algebra B, and a subsemigroup S of the lattice P, denote by B[S] the
semigroup-algebra, i.e., the [F-algebra of all finite sums in the symbols 55, A € S,
with coefficients in B. If S is contained in the Ny-span of a base of P, denote by
B[[S]] the B-algebra of all formal sums in the symbols s,, y € S, with coefficients in B.
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Define Cy := C. Let ¢ # O C I be special with connected components O, ..., ®,,,
and define

é@) Z=é\(F®IU---UF@ )

m

Note that Co N P* consists of the elements A € P*, for which @ is relevant. Cg is
obtained from C by removing the facets, which are common with the faces
R(®)), ..., R(®,,) of the Tits cone. From this follows Ce + Co € Cgue . Because
we have also K(®) + K(®") C K(O® U @), the sum

P Flik©)[Co N P]
© special
is a subalgebra of IF[[Q; N CII[P*]. We write the elements of F[[Q; N CJ][P*]in the
form

Y emnsda. el EC P finite.
A€E, yeQynC

THEOREM 2.4. We get a surjective homomorphism of algebras

¢: @ FIK@O)Con P — FTTY

© special

by putting $(3_p, ¢;a8558) 1= d_n, &5aSy+a- The elements of the kernel are finite sums
of elements

en(sn—nSa, —sn-n.8p,)  (en € 1), (12)
Ne(A1+K(©1)N(A2+K(©2))
where @y, @, are special, and A; € Co, N P+, Ay € Co, N PT.

Proof. To show that ¢ is well defined, it is sufficient to show, that we
have > k@) ciaS)+a € F[T]” for all ® special, A € Co N P, ¢y € . Due to
Theorem 2.3, it is sufficient to show K(®) + A € P(A) N P*. Because O is relevant
for A, this follows from Theorem 1.4 and its preceding Equation (1).

Due to Theorem 2.3, ¢ is surjective, if for every A € P the set P(A) N P* is the
union of finitely many sets of the form N+ K(®), @ special, and N € Cg N P,
i.e., O relevant for N.

Due to Theorem 1.4 and its preceding Equation (1), the set P(A) N P is the finite
union of the sets

N+ K(E®) with N e A+ S(E"), (13)

N+ K(®) with N e A + S(E%) + M(E™), (14)

where ® C E* is special, and = relevant for A. Note that the elements N belong to
P(A) NPT,

It is easy to check, that in (13), E% is relevant for N, because E* is already rele-

vant for A. In (14), ® = @ is relevant for N. Let ® # @, and let ©4, ..., ®,, be its
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connected components. For every i choose an element y; € K(®;). Due to (14) for ©,,
we have N+y,€ P(A)NP". Because y; is an imaginary root, and
N,N+y; € P(A)N P, we can apply [K], Corollary 11.9, and find (Nl|y;) # 0. This
is equivalent to the condition, that ©; is relevant for N. Therefore ® is relevant
for N.

It is easy to check that ¢ is a homomorphism of algebras. Obviously elements of
the form (12) belong to the kernel of ¢. Let x be an element of the kernel of ¢. We
may write x in the form

X = E xy, where xy:= E E c?.y,s.,EA,

NeP+ O special AeEg, yeK(O)
A+y=N
with Eg € Co N P finite. Applying ¢, and using the s-linear independence of
(SN)NeP+a we get

g, =0, forall Ne P (15)
O special AeEg, yeK(O)
A+y=N
For every element N € P+ with xy # 0, choose a special set @y, elements Ay € Eg
v € K(®y), such that N = Ay + yy. Using (15), we get

(..) ~ ~
Xy = E E CA},(S},SA — 8y SAy)-
O special A€eEg,yeK(O)
A+y=N

N>

By using the formula

E E aNyy = E AN N-A,N-A'>

NePt yeK(®) with A+y=N Ne(A4+K(@)N(A'+K(@))
Y eK(®') with A'+y'=N

it is easy to see, that X = >y i v, Xv can be written in the form

x= Y > CNOO' AN (SN-ASA — SN_A'SAY),
©',0special Ne(A+K(©)N(A'+K(O"))
NeEgy,AeEg
where

.0 3 [ [
Croory = {LANA if xy#0, @ =0y A=Ay 0
0 else

—

The structure of the kernel, and therefore also the structure of F[7'] is quite com-
plicated, except for the following examples with at most two special sets:

(1) If 4 has only components of finite type, then Iﬁ?]w = }ﬁf]w is isomorphic to
F[P+.

(2) Let A4 be of affine type. We fix a system of fundamental dominant weights as
described in [K], chapter 6.
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Recall that ¢ denotes the edge of the Tits cone. We have ¢ N P = 7 d/ay. Here §
denotes the minimal positive imaginary root, and @y = 1, unless 4 is of type A(Zz,),
in which case ay = 2. Define the following [F-algebra of formal series with coefficients

in I

€W, AngVn=np: ¢, =0¢.

0
Flen P):= F<7’_) = [Z CnSné/ay
o ne’z

Using the decomposition Pi\: P} & (¢cN P), where Pf:=P;N C, it is easy to see,
that the invariant algebra F[T]" is isomorphic to the subalgebra

Flen Pl @ F(c N P[PF\{0}]
of F(c N P)[Pf]. This result is similar to the result of Looijenga [Loo], Theorem 4.2
(i*), whose invariant algebra 4" is isomorphic to 7Z(c N P)[P}].

(3) Let A be of strongly hyperbolic type, such that the f(_)llowing condition is satis-
fied: There exist mjy,...,m, € N such that Qy NC =@ No(mN,;), where
Ny, ..., N, are the fundamental dominant weights.

It is easy to check, that the elements of the kernel are finite sums of elements

Z en(Sn—uSy — SN—pSp) Sa (ey € ),
Ne(a+(Qy;NCNN(B+(Q; NC))

with
0 fe0;nC o#p, and AeM::{Zk,—N,—)k,:o,...,(m,-—l)}.
i=1

Every A € P™ can be written uniquely in the form A = A(modM)+ «, with
A(modM) € M and « € Q5 N C. On the F-linear space F[[Qy N CJ][M] the structure
of an algebra is induced by

(55 (s 8p7) 1= Sy+y'+A+A —(A+A") mod M)S(A+A")ymod M >

and this algebra is in the obvious way isomorphic to ﬁf]w.

It isn’t difficult to check, that the Dynkin diagrams (as defined in [K], section 4.7)
of the strongly hyperbolic symmetrizable generalized Cartan matrices, which satisfy
the above condition, are:

—-1,-5
O—)  111] = L, m=1,
1 1

—-1,—-6
Ommm— M| =2, My =2,
1 2

—-2,-3
Om——() m; = 2, mp = 1,
1 2

-2,—4
Om—) mp; = 2, mp = 2,
1 2
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s — e — —+] _ _ _
h 2 s =2, m=m; =1,
o0 — e — —+] _ _ _
h > s =2, m=m;=1

One of the main results of the exponential invariant theory of [Loo] is the descrip-
tion of a certain m"-adic completion of the algebra 4" in the irreducible, nonfinite
case. In our notation, the result in the affine case is Z(c N P)[[P/]], and in the inde-
finite case Z[c N P|[[PF]]. (Recall that ¢ denotes the edge of the Tits cone X, and
Pf:=PNC)

Using Theorem 2.3 and Proposition 1.3, it is easy to derive a similar result for the
invariant algebra F/[?]W, which we state as a supplement: Because c is a face of X, we
get an ideal of Iﬁf]w by

= e FITTY | supp(f) < X\e}.

Choose a family (Sx)pcp+ as above, with SASy = Sy, for A, A" € P*. For 1 € Pt
set h(A) = >0, Alhy).

PROPOSITION 2.5. Let the generalized Cartan matrix A have no component of finite
type. Then the m"-adic completion of F[T1", described as inverse limit, is given by
Fle N PI[[PF]] together with the maps

Ele N PIPT] — FITTY /™y,
Yo ChasuSat ) GnSum + Y, pel.

J12a Aida, h(Z2)<p

3. A Formal Chevalley Restriction Theorem

We first describe a formal completion of the algebra of strongly regular functions
F[G] of a Kac—Moody group G. Its construction is similar, but not completely par-
allel to the construction of the completion in the last section:

Let @: ®rcp+ L(A) ® L(A) — F[G] be the isomorphism of the Peter—Weyl theo-
rem. The algebra of strongly regular functions is (X N P) x (X N P)-graded by

F[Gl, = @ O(LA), ® L(A),), (16)

AePt

(4, w€ XN P). For an element f'€ [[; cynp FG]
projection onto F[G];,. Set

supp(/):= {(, 1) € (XN P) x (XN P) | fi,, # 0.

Denote by pra(f;,) the projection of f;, onto the A-summand of (16). Define
praf):= 11, yexnpprafin), and set

Supp(f):= {A € P* | pra(f) # 0} < P*.

> We denote by fp,:= pry(f) its
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PROPOSITION 3.1.

k
JkeN,3A, ..., Ac e P Supp(f) < | P(A)

i=1

F[G]:= {fe [1 ric,

AueXnp

is a commutative associative algebra with unit, the multiplication given by

(7),= X ST a7

A,20€XNP, J=A1+4
11t €XOP, pi=py 411,

Proof. We only show that the multiplication map (17) is well defined, all other
things are obvious. Let

k _ ko
Supp(/) < JP(A).  Supp(f) < | JPA).
i=1 j=1
Theorem 1.2(b) implies

k N koo _
supp( /) € [ P(A) x P(A),  supp(f) S | P(A) x P(A),
i=1 j=1

therefore the sum (17) is finite. To show f]; € 1[5[6], we write a summand of (17) as the

finite sum
Som S = Y PIACSiw)PPR( i)
AeSupp(f)
AeSupp(f)

Due to Theorem 1.2(a), (b), and (c), we find

IM € PHpra(pralfu )pri(fiow,)) # 0} S P(A + A) = P(A) + P(A)).

Using Theorem 1.2(b) and (c) once more, we find Supp(f7, ,, J;Azuz) - U[’j P(A; + Aj).
Therefore also Supp( ff) € U;; P(Ai + A)). O

Remark. We identify [F[G], in the obvious way, with a subalgebra of ]ﬁa] If 4
has only components of finite type, then ]P{[E] = I[G].

It is useful, to introduce a natural limit concept for IFTE]. This is done in a similar
way as for F/[?], but ‘supp’ being replaced by ‘Supp’. Call a sequence (f),cn S F[E]
convergent to f € ]FTE] if:

o Thereexist k € N, Ay, ..., A € P, such that Supp(f;) € (P(A) U ---U P(Ay))
NPt for all i € .

e Forevery A, u € XN P, there exists an element iy € IN, such that for all i > iy we
have (f3),, = fiu-

It is obvious how to define ‘dense’ and ‘continuous’, also if maps between different
spaces, as F[G] and F[T], are involved. Note that the addition, multiplication with a
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scalar, and the multiplication of the algebra F/[E] are continuous, as well as the pro-

jections pr;,, pra, and that I[G] is dense in F[G]. It is also obvious, how to define
‘summable’, ‘s-linear independent’, and ‘s-base’.

THEOREM 3.2. (1) The action w of G x G on ['[G] extends uniquely to an action © on
]P{[E], by continuous homomorphisms of algebras.

(2) The Chevalley involution x of F[G] extends uniquely to a continuous involution %
of FIG].

Proof. Let g,h € G and f€ ]ﬁ@]. If there exist extensions with these continuity-
properties, then, due to f= >, uJou> they are uniquely determined, and satisfy:

(g W) f); = Y prig(a(e. ). A e XOP. (18)

A
V=)' ApeXNP. (19)

It’s easy to see, that (19) defines a continuous involution of ﬁ@]. It remains to show,
that (18) defines an action of G x G on ]P{[-(\?] by continuous homomorphisms.

Note that for f'e F/[E] with Supp(f) € (P(A))U---U P(Ax)) N Pt, we can fix a
decomposition

(PADU---UPA) NPT = ] G with G S P(A),

and write /'in the form f= X /O with f©) .= >oaee, Pralf) € F[G].

To check that (18) gives a well defined continuous linear map, we therefore may
restrict to elements f € ]F/[E] with Supp( /') € P(A), A € P*. Fix 2, i€ XN P. Write
g, h € G in the form:

g = Uy - Uyt with u,, € Uy, t € T,

h = ug, ...u/;qf with up, € U/;’,, teT.

For n,7 € P(A), o €A}, denote the relation n' €ny+ Noa by 7 = n'. For
N € P(A) N P we have, due to Theorem 1.2(b), P(N) C P(A). In particular, every
o-string of P(N) is contained in a unique a-string of P(A). Therefore,
priﬁ(n(g, h)f;) # 0 is only possible for such 4, u, from which ;I,ﬁ can be reached
by a sequence of directed parts of strings in P(A) of the form

. O —Op—1 —oy 3 By By B .

A— % —> % % —> A U—> % —> k- %x —> [l
This is only possible for finitely many 4, y, because a real root string in P(A) contains
only finitely many elements. If we denote by S the set of all such /s, and by T} the
set of all such u’s, then (18) can be written as

e = Y. pripe ). LieXNP. (20)

(o w)eS;x Tz
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To check the continuity of n(g, h), let (f});cy be a sequence convergent to f with
Supp(f;), Supp(f) € P(A), A € P*. Applying n(g, h) to f; and f doesn’t change their
Supp-sets. Using (20), we find that n(g, h)f; is convergent to n(g, h)f.

To show that =n(g, h) is a homomorphism of algebras, let f, /' € Iﬁ@]. Choose
sequences (f;);ens (f1)ien € F[G] with limits £, . We have

(g, W(fif}) = (r(g, Wf)(n(g. W)f)) (i € N).

Due to the continuity of (g, /), and of the multiplication map, we get

(g, W) = (n(g, W )n(g, ) (i € N).
In a similar way, the action property of n transfers from ['[G] to F/[E]. O
The adjoint action of G on IF[G] extends uniquely to an action ¢ on F/[E] by con-
tinuous homomorphisms. It is given by ¢(g) := n(g, g), g € G. Next we determine the
corresponding invariant algebra F[G]°.
Let A € P*. For every 1 € P(A) choose ({ | })-dual bases
(aﬂ.k)kzl,,‘.,m;} badi=1....

of L(A),. The formal G-character of L(A) is defined by

mj

Tra= D Y fub, € F[G].

JeP(A) i=1

It is independent of the chosen dual bases. In the classical case, it coincides with the
G-character of L(A).

THEOREM 3.3. The family (Ttp)pcp+ is an s-base ofﬁa]G. Its s-linear combinations
are given by the sums

caTry, (21)
AE(P(A)U--UP(A))NP+
with ca € F, Ay, ..., Ar € Pt kelN.
Proof. We only show, that every element of ﬁ[@]G is of the form (21). Then the
rest of the theorem can be proved similar to the corresponding parts of Theorem 2.3.
For every A € Pt, the projection pry: F[G] — F[G] is G-invariant. Since for
fe F[G]G we have

__ \G
f= 2 () with pra(s) € (pracFTGD)
AeSupp(f)
__ \G
it is sufficient to show gprA(F[G])) — FTry.
We first show the inclusion ‘2’. Define an action ¢ of G on End(L(A)) by
«(g)p =gpg”'. g€G, ¢eEndLA).

Note, that due to [K], Lemma 9.3, we have (End(L(A))G: FidL(A)./Si\nce (1)) is non-
degenerate, we get an injective linear map Y. End(L(A)) — pra(F[G]) by
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V(@) =Y Sumlayldbi)). ipe XN P, ¢ e End(L(A)).
ij

We show, that it is also G-invariant. The group G is generated by the groups U, 7T,
o € Are. Therefore it is sufficient to show the U,T-invariance for all o. Let
ue U,T, let A, i € P(A), and denote by R resp. S the a-string through A resp. fi.
We have

C@¥Y@= > prig(ca)(¥($))-

(LWERXS

Insert the definition of W(¢),, in the expression on the right. After some transforma-
tions, it is equal to

przﬁ( Z Z.f(m),laZile‘(/<<(u*)7laﬂj | uqﬁulu}w))) (22)

(A WeERXS ij
The pairs
-1
((u*) a/li)/leR, i=1,...m;> (”bli)/leR, i=1,....m;> (23)
—1
((u*) aﬂj)ueS,jzl,..‘,m,u (ubllf),uES,jzl,...,mﬂ (24)

are pairs of (( | ))-dual bases of ®,crL(A); resp. BuesL(A),. Expression (22) does

not change, if we use other pairs of ({ | ))-dual bases. In particular, we can use

the pairs of dual bases (23) and (24) with u replaced by 1, and obtain ‘P(c(u)d));m.
We find

(pra(FTGD) 2 W(ER(LAN)) = F¥(idyx) = FTry.

_ \G

To show equality, let /e (prA(F[G]) . Because Y is injective and G-equivariant,
it is sufficient to find an element ¢, € End(L(A)), such that f='¥(¢,). Define
¢, € End(L(A)) by

brbii=Y_ cuibi, A€ PN, i=1,....my,
k
where the coefficients ¢,; are given by f;, = E(/ Cjifayb,- Using the definition of ‘P, it

1s easy to check, that we have )i = [, an : = or A, ue XNP,
I y to check, th have (‘Y(¢)),, =/, d (Y(dp),, =0 for L ueXnp

A # .
To prove f'="¥(¢,), it remains to show f;, =0 for 4 # u. For 1€ T we have
c(t)f = f. Therefore

e; (e (O iu = fops 2, i€ P(A).

For A # u there exists an element ¢ € T, such that e;(7) # e,(7). Using the last equa-
tion, we find f;, = 0. |

Due to the explicit descriptions of the invariant algebras F/[?]W and F/[E]G, it is
now easy to derive the formal Chevalley restriction theorem:
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COROLLARY 3.4. The restriction map r: F[G] — [T ] extends uniquely to a con-
tinuous surjective homomorphism of algebl as r: F[G] — F[T] This extension induces
an isomorphism of the invariant algebras F[G]G and F[T]W

Proof. The restriction map r: F[G] — F[T] has been given explicitely in the proof
of Proposition 2.1. It is easy to check, that the map r: F/[a] — F/[?] defined by
r(f):=>,fu(Des, fe ]ﬁ@] is an extension with the properties stated in the cor-
ollary. It is also obvious, that #(Tra) = y,, where y, is the formal 7-character
defined in (10). Due the last theorem and Theorem 2.3, the restricted map
r F([E]G — ]F’/[T]W is bijective. O

Remark. The G x G-algebra Iﬁ@] has been defined using the Cartan subalgebra h.
Let W' be another Cartan subalgebra with corresponding G x G-algebra ]F([E]/. By
using the transitivity of the adjoint action of G on the Cartan subalgebras, it is not
difficult to see, that the identity map of [F[G] can be extended uniquely to a con-
tinuous, continuously invertible isomorphism of G x G-algebras between Iﬁ@] and
F[E]/. This isomorphism maps G-characters to G-characters. Thus, we may identify
the G x G-algebras belonging to different Cartan subalgebras.

4. A Convergent Chevalley Restriction Theorem in the Affine Case

In this section, we restrict to a generalized Cartan matrix of affine type, and to the
ground field of complex numbers ' = C.

We replace the Chevalley involution of G by the compact involution. We replace
the nondegenerate contravariant symmetric bilinear forms on the modules L(A),
A € P*, by the contravariant positive definite Hermitian forms. But for the sake
of simplicity, we shall use the same notations. Note that C[G];, is also spanned by
the matrix coefficients of elements v € L(A),, w € L(A),, A € PT, relative to these
forms.

The algebra C/[E] is equipped with the adjoint action ¢, and with the involution ,
induced by the compact involution of C[G].

Denote by G the set of elements g € G, such that for all A € PT, the linear map
na(g) on L(A) can be extended to a trace class operator on the Hilbert space comple-
tion of L(A). Note that G' is invariant under the compact involution. For a subset M
of G set MY := M NG".

Choose a system of fundamental dominant weights as in [K], chapter 6. Denote by
0 the minimal positive imaginary root, denote by d the scaling element. Due to [B],
Lemma 3 and Theorem 1, we have

w

= {exp(h) | h € h with Re(d(h)) > 0}

= {lh1 (c1)-- [11,1(611)td(cn+1)|

G D G'(Tyes)" = UENYUT = K (T H" U™, (25)

,cp € CX
Cpyl € L with |c,q1| > 1
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G. Briichert conjectured equality in (25). Note that T is invariant under the W-
action on 7, and G'(Tyes)" is invariant under the conjugation action of G on itself.

For A € P*, we get an orthonormal base of L(A), by choosing an orthonormal
base (vi)i—;. ., of every weight space L(A);, 4 € P(A). This base is a complete
orthonormal system of the Hilbert space completion of L(A). The trace function
of the semigroup of trace class operators of the Hilbert space completion of L(A)
induces functions on T" and G*, which can be described by the following absolutely
convergent series:

> men), teT" (26)
AeP(A)

DY o lgu)), geG". (27)
JeP(A) i=1

Clearly (26) is a W-invariant function. G. Briichert showed in [B], Theorem 3(a), that
(27) restricted to G'(Tres)" is a G-invariant function.

THEOREM 4.1. In (25) we have equality, i.e.,
Glr — G/(Trest)tr — UiNlrui — K(Tv-l—)trU:t

Proof. Due to the Iwasawa decomposition we have G = KTTU. The group K
gives rise to groups of unitary operators on the Hilbert space completions of L(A),
A € P*. Therefore we get G = K(TTU)". Due to (25) we have (TH)"U C (T+*U)".
To show the reverse inclusion, let t € T+, u € U with tu € (T+U)". Fix an element
A € Pt with A(h)) > 0 for some j € I, and choose an orthonormal base of L(A) as
above. We have

my

00> YN [ | )l =Y myle)l.

AeP(A) i=1 A€P(A)

Using [K], Proposition 11.10 and Equation (11.10.1), we find ¢t € T". O

Next we define an appropriate notion of convergence for the elements of C/ﬁw Jand
C/[E], such that the formal characters y, and Try are convergent, and give rise to the
functions (26) and (27). (For this note, that Tra = Y, p) 21 foe,» Where the
matrix coefficient f,,,,. is built with the Hermitian form.) As part of the following
theorem, we extend Theorem 3(a) of [B] to all functions corresponding to convergent
elements of C/[(\}].

Call an element f € @] convergent, if Y, |f;(1)| < oo for all r € T". Call an ele-
ment [ € C/[E] convergent, if
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D It (@)l < oo
A

for all # € G and g € G". This notion is independent of the chosen Cartan subalge-
bra.

Assigning to 7 € T' (resp. g € G") the value >, f3(2) (resp. >_;, fiu(g)), we get a
function on T (resp. G'), which we also denote by f.

THEOREM 4.2. (1) The set of convergent elements of <C/[?w ] forms a W-invariant
subalgebra of (j? 1. It can be identified with the corresponding algebra of functions on
T, which we denote by C[T"], the W-action being induced by the conjugation action
of Won T".

(2) The set of convergent elements of C/[E] forms a G and *-invariant subalgebra of
C/[a]. It can be identified with the corresponding algebra of functions on G, which we
denote by C[G"], the G-action being induced by the conjugation action of G on G%, and
the involution x being induced by the compact involution of G.

Remark. The algebras C[T'], C[G] contain only convergent elements. They can be
identified with the corresponding subalgebras of C[T"], C[G"].

Proof. We only show (2). The arguments in the proof of (1) are easy, or similar to
some arguments in the proof of (2).

The definition of ‘convergent’ implies, that the set of convergent elements of C/[E]
is a G-invariant subspace of 6[5]. It is #-invariant, due to c(h)f* = (c((h*)~")f)*.

It is also a subalgebra. Obviously the unit of C/[Z?] is convergent. If f1, /> € C/[E] are
convergent, a Cauchy summation argument shows the convergence of fif5.

Next, we prove, that the algebra of convergent elements can be identified with its
corresponding algebra of functions on GY. Let fe @] be convergent, with
Zwﬂu(g) =0 for all g € GY. Due to [K,P 2], Lemma 2.1(d), which is also valid
for the algebra of strongly regular functions of the slightly bigger Kac-Moody
group, the condition f;, |y-ry+= 0 for all 4, y, is sufficient for f= 0.

Fix an element g € U"TUT = U~ U" T, and write g in the form

g = exp(yp,) - exp(yp,) exp(xy,) - - - exp(x; )"

withp, g e N, .7, € AL, yp €8 5. x, € g,.and i € h. To show f;,(g) = 0, it is suf-
ficient to show

k kp

for all kl,...,kp, ll,...,lq ENO.
To abbreviate the notation, for ¢ € C set

hp,(c) == exp(cyp), &, (c) == exp(exy).
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Due to U-UTTY C GY, and the description of T' given at the beginning of this sec-
tion, we have for all r;, 57 € C, ¢,...,c, € C, ¢yy1 € C with [cyqq] > 1t

0= f0 (99,000 00D, 1)+, G5t (1), (en)talens)
ot

ky lq
_Z ZZ k ky 1 L\ Sq | uth) 1(d)
— f}#(yﬁlyﬁﬁxyllx/qq>k_llﬁ Cl 1 ...C}’H—l'
u )k : q:

Lokp

This expression is a Laurent series in ¢y, ..., ¢4 1, its coefficients vanish. Due to the
orthogonality of the weight spaces, Equation (28) is valid for

;“#:u—i_ll'))l +"'+lqu_klﬂl _'”_kpﬁp'
Therefore the coefficients of the Laurent series are power series in
Fly...,Tp, 81, ..., 8. The vanishing of the coefficients of these power series proves
(28) for 4= 4Ly + -+ lypy = kify — - — ko

Obviously, the involution on the set of convergent elements identifies with the
involution induced by the compact involution on G". To check the corresponding
thing for the G-actions, we may restrict to convergent elements f € (C([E] with
Supp(f) € P(A)N P, AePt. Note that due to Theorem 1.2(b), supp(f)
C P(A) x P(A).

Since G is generated by the groups U, T, o« € At it is sufficient to consider only
U,T-actions. Let u € U, T. Because f and c(u)f are convergent, and G" is invariant
under conjugation, we find for all g € G*':

N=| Y. > ( > (c(u)fM)zlug))

S1,82 —Strings A1 €sy, Ar€sy 1 EST, UrES2
of P(A)
-1
= > D (W )(©) = flu gu). O
S1,82 a—Strings Uy €81, HyESy
of P(A)

Due to the last proposition, the invariant algebras C[G"], C[T"]" consist of the
functions induced by the convergent elements of @E]G, C/[T 1"V. In particular,
C[G"]¢ contains the functions given by the formal G-characters Try, A € Pt, and
C[T"" contains the functions given by the formal T-characters x4, A € P*.

We can now formulate the convergent Chevalley restriction theorem:

THEOREM 4.3. The restriction map r: C/[E] — C/[T] induces the restriction map of
Sfunctions r: C[G"] — C[T"], which induces an injective homomorphism of the invar-
iant algebra C[G"]% into C[T"]V.

Proof. The restriction map r: (T[E] — C/[T ] is given by

1(f), =fu(Des, feCIGl, AeXNP.
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If f e C[G] is convergent, then for t € T" we find

DN O =D @ < Y i) < oo
A A Au

Therefore r(f) € Cﬁ ] is also convergent.

The restriction map r: 6[?;] — C/[—T ] induces the restriction map of functions
C[G"] — C[T"], because due to the orthogonality of different weight spaces, we
have r(f)(1) = >, f7:(t) = 32, /() = A1) for all + € T*. The remaining statements
follow easily from Corollary 3.4, using r(Trp) = x5, and Theorem 4.2. O

Remark. Tt remains open if the restriction map is surjective. If not, a full analogue
of the Chevalley restriction theorem can be obtained by replacing C[T"] by the
image r(C[GY]).
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