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Abstract

The advances in machine learning (ML) software availability, efficiency, and friendliness, combined with the increase in the computation
power of personal computers, are harnessed to rapidly and (relatively) effortlessly analyze time-lapse image series of adherent cell cultures,
taken with phase-contrast microscopy (PCM). Since PCM is arguably the most widely used technique to visualize adherent cells in a
label-free, noninvasive, and nondisruptive manner, the ability to easily extract quantitative information on the area covered by cells, should
provide a valuable tool for investigation. We demonstrate two cases, in one we monitor the shrinking of cells in response to a toxicant, and
in the second we measure the proliferation curve of mesenchymal stem cells (MSCs).
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Introduction

Phase-contrast images possess high contrast between cells and the
background, however the contrast undergoes a reversal between
the edges and the center of the cell. This well-documented artifact
is termed “the halo effect,” and results in spurious bright areas
around phase objects and is especially prevalent with specimens
that induce large phase shifts (Yin et al., 2012; Juneau et al.,
2013). A typical image of a cell in phase contrast is shown in
Figure 1a, with an intensity profile along the yellow line, in
Figure 1b. The dark pixels in the cell center have gray values
lower than the background, thus, when a threshold value above
the background is set, the pixels with values higher than the thresh-
old (belonging to halos) are assigned to the foreground. This results
in segmentation of the halos, and not the whole cell body, as shown
in Figure 1c. This difficulty is the main reason phase-contrast
images are considered “not-quantitative” by many. To bypass this
obstacle, quantitative analysis of cells images is done mainly on
images of fluorescently labeled cells. As shown in Figure 1e (an
intensity profile along the line indicated in Fig. 1d), in such a
case, pixels belonging to the whole cell body have values higher
than the background, thus all of them are assigned to the fore-
ground once a threshold above the background is set (Fig. 1f).

The advantage of stained cells—leading to a consistent, high con-
trast, thus allowing easy segmentation and analysis thereof—is obvi-
ous. The price at which it comes, though, is typically (photo-)
toxicity, death (fixation), or altering of normal cell behavior
(Mobiny et al., 2020). Additionally, in cases where staining is

transient and does not necessarily require fixation, it is diluted
with every cell division, leading to contrast decrease over time.
Thus, quantitative label-free live imaging of cells in their unper-
turbed state is very problematic. Phase contrast is superior in that
it allows imaging of the cells without any invasive staining operation,
however it is not quantitative in the sense explained above. Owing to
this fact, much work has been invested in quantifying phase-contrast
images over the years (Ambühl et al., 2012; Theriault et al., 2012; Yin
et al., 2012; Su et al., 2013; Chen et al., 2014; Jaccard et al., 2014).

In this work, we specifically concentrate in quantifying the
dynamics of the relative cell coverage (the rate at which the cov-
erage changes with time). As we show in the following, the prob-
lem is significantly simpler than full segmentation of cells, where
precise contours of individual cells are sought. Thus, we are not
looking at distinguishing phenotypes, stages in cell cycle, different
types of cells in a co-culture, or other information of the kind that
requires full segmentation (Jaccard et al., 2017; Mao et al., 2019;
Kandel et al., 2020; Lu et al., 2020; Mobiny et al., 2020).
Consequently, the approaches we develop here are considerably
simpler, faster, require less computation power and are accessible
to nonexperts in image analysis. The information obtained is nev-
ertheless critical in many research areas (Topman et al., 2011),
two examples of which we present herein.

The advances in the area of machine learning (ML), combined
with the ever-increasing computation power of personal portable
computers, facilitate quantitative analysis of phase-contrast
images. One such example is “Ilastik” [interactive machine learn-
ing for (bio)image analysis] (Berg et al., 2019), a freely available
platform particularly suited for this task (https://www.ilastik.
org). Briefly, machine learning algorithms calculate a wide set
of parameters for each pixel in the image (the parameters measured
are typical of several categories, such as intensity, morphology, and
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texture). The algorithms then receive a human example of which
pixels are considered to belong to the objects of interest and
which are not. Comparing the sets of parameters calculated for
each pixel, the algorithm finds the features common to the pixels
that belong to one category or another and makes a prediction
(on all the pixels of the image, not only on those that were indicated
by the human). The prediction is presented as a probability for each
pixel to belong to a certain category (e.g., foreground or back-
ground). The process is repeated, with the human indicating addi-
tional pixels and the category to which they belong, in a process
termed “training”, until a satisfactory classification is reached.

Here, we trained a “parallel random forest classifier” to distin-
guish between cells and background in phase-contrast images.
The Ilastik implementation of “random forest” is based on the
originally introduced concept by Leo Breiman (Breiman, 2001).
Just as the human eye recognizes cells in phase-contrast, despite
the bright halos and the darker-than-background cell center, so
does the trained algorithm. The trained classifier is then applied
to never-before seen images, for processing. The training is rela-
tively fast (∼30 min) and the results are surprisingly good. We
then use the segmented images to calculate the fraction of the
area covered by cells in an image (“coverage” or “confluency”).

Materials and Methods

Cell Culture

Fibroblasts
All reagents were purchased from Biological Industries (Kibbutz
Beit Haemek, Israel) unless otherwise noted. Normal human
fibroblasts BJ (ATCC CRL-2522) were cultured in a 250 mL TC
flask (Cellstar, GrenierBio-One, Frickenhausen, Germany) at
37°C and 5% CO2 in Dulbecco’s Modified Eagle Medium
(DMEM) with L-glutamine, 10% fetal bovine serum (FBS), 1%

Pen-Strep solution, and 1% PSN antibiotic solution. The cells
were cultivated according to the supplier protocol.

Mesenchymal Stem Cells
All reagents were purchased from Biological Industries (Kibbutz
Beit Haemek, Israel) unless otherwise noted. Mus musculus
MSC (cell line ATTC/CRL 12424) were cultured in a 250 mL
TC flask (Cellstar, GrenierBio-One, Frickenhausen, Germany) at
37°C and 5% CO2 in DMEM supplemented with 4.5 g/L
D-glucose, 1 mM sodium pyruvate, 10% (v/v) FBS, 1% L-gluta-
mine, and 1% penicillin-streptomycin-neomycin antibiotic mix-
ture. The cells were cultivated according to the supplier protocol.

Exposure to Cytotoxic Reagent CdCl2

For exposure to a cytotoxic reagent, we used 1 mL growth
medium with low serum medium (1% FBS) with 120 μM of cad-
mium chloride (CdCl2) (≥99%) obtained from Fluka Chemical
Co., Germany, Ethanol (analytical grade), followed by 2–5 h of
incubation at 37°C and 5% CO2.

DiIC18 Staining

0.934 mg of 1,1-dioctadecyl-3,3,3′,3′-tetramethyl indocarbocya-
nine perchlorate (DiI), specifically DiIC18(3) (Molecular probes,
Eugene, Oregon, USA), was dissolved in 1 mL of Ethanol to pre-
pare a 1 mM stock solution. For the staining of cells, a 2.5 μM
staining solution was prepared by adding 2.5 μL bulk solution
to 1 mL Hepes Hank’s balanced salt solution (37°C). The incuba-
tion was then performed for 15 min at 37°C and 5% CO2. Before
imaging, the cells were washed three times with 1.5 mL Hepes
Hank’s balanced salt solution (37°C), allowing for 5 min of
incubation at 37°C and 5% CO2 between washes.

Fig. 1. Segmentation of cells from digital microscopy images. (a) Phase-contrast image of a cell. (b) Intensity (gray-value) profile along the line indicated in (a). Two
spurious bright areas are indicated with the word “Halos,” the image background is indicated by the blue dashed line, the cell center has values lower than the
background. A threshold value is indicated with a green dot-dashed line; all pixels with gray values higher than this value are assigned to the foreground. (c) The
result of segmenting the image in (a) according to the threshold value indicated in (b). Only the halos (the bright spurious areas around the cell) are segmented. (d)
Fluorescence image of a cell, stained with DiIC18 (membranal staining). (e) Intensity (gray-value) profile along the line indicated in (d). The image background is
indicated by the blue dashed line, all pixels belonging to the cell body have values higher than the background. A threshold value is indicated with a green dot-
dashed line; all pixels belonging to the cell body are correctly assigned to the foreground. (f) Correct segmentation of the whole cell body.
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Light Microscopy

Cells were imaged using an inverted Eclipse-Ti Nikon microscope
capable of phase-contrast and fluorescence imaging, with a 10×,
0.3 NA objective, fitted with a D5Qi1Mc, Nikon digital camera,
with a full frame of 1,280 × 1,024 pixels. The microscope was
enclosed by a CO2 microscope cage incubator (OKO-LAB,
Naples, Italy), designed to maintain the required environmental
conditions for cell culture in the microscopy workstation, thus
enabling prolonged observations of biological specimens.

Image Analysis

Analysis of Fluorescent Images
- A nonlinear transformation on the intensity was applied to each

frame, to equalize the intensities of all the cells (histogram
equalization), as shown in Figures 2b and 2e.

- A global threshold was determined following the Otsu method
(Otsu, 1979) according to which a binary image was produced
(white foreground and black background), as shown in Figures
2c and 2f.

- The fraction of area covered by cells was calculated as the num-
ber of white pixels divided by the total number of pixels in the
image.

Analysis of Phase-Contrast Images
- A parallel random forest algorithm was trained to identify two

categories: cell and background.
- The probability (that a pixel belongs to a category) map was

produced, as shown in Figures 3b and 3e.
- A global threshold was determined (Otsu method) according to

which a binary image was produced (white foreground and
black background), from the probabilities image, as shown in
Figures 3c and 3f.

- The fraction of area covered by cells was calculated as the number
of white pixels divided by the total number of pixels in the image.

For purposes of comparison, the fraction of area covered by cells
was normalized for both the fluorescence and phase-contrast

images, by setting coverage to 100% for the maximum frame
according to:

Area fraction

= 100 × 1+ ([area in present frame]− [area inmax frame])
(area inmax frame)

( )
.

Calculation of the Segmentation Performance in Phase-Contrast
Images
Treating the segmented fluorescence images as the “ground
truth,” it is possible to calculate segmentation performance
parameters according to commonly accepted procedures
(Jaccard et al., 2014). Defining the measures:

• True Positive (TP): the number of pixels identified as cell and
truly belonging to a cell.

• True Negative (TN): the number of pixels identified as back-
ground and truly belonging to background.

• False Positive (FP): the number of pixels (wrongly) identified as
cell when they actually belong to background.

• False Negative (FN): the number of pixels (wrongly) identified
as background when actually they belong to cell. The following
performance parameters are calculated as:

Accuracy = (TP+ TN)
(TP+ TN+ FP+ FN)

.

The fraction of pixels identified correctly (cell and back-
ground), out of all pixels in the image.

Precision = TP
TP+ FP

.

The fraction of pixels correctly identified as cell, out of all the
pixels identified as cell.

Sensitivity = TP
TP+ FN

.

Fig. 2. Analysis of fluorescence time-lapse images. First frame of time-lapse: original image (a), intensity equalized image (b), and binary image (c). Last frame of
time-lapse: original image (d), intensity equalized image (e), and binary image (f).
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The fraction of pixels correctly identified as cell, out of the pix-
els that should have been identified as cell (since they really
belong to cells).

Machine Learning with Ilastik
We used the Pixel Classification workflow provided by Ilastik. The
software implements “sparse annotation,” where only a limited
number of pixels in an image need to be annotated (identified
as “cell” or “background”) and presents the prediction for the
rest of the pixels immediately. The training process is interactive,
that is, the user continuously adds annotations and inspects the
resulting predictions, until satisfied. An easy-to-follow tutorial is
presented on the developers’ page at: https://www.ilastik.org/doc-
umentation/pixelclassification/pixelclassification.

The sparse annotation approach means that all the pixels in
the training image that were not annotated are, in fact, a kind
of test set, on which the predictions are displayed. This enables
most of the training to be completed on one single image.

Additional verification on additional images is usually needed
only in order to ensure that the training image is indeed represen-
tative of the test set (no new features appear in test images, that
have not appeared in the training image).

We used the default “Parallel Random Forest (VIGRA)” clas-
sifier, with all features at all scales offered by the software (37 in
total) and did not attempt to reduce the feature set. Two classes,
Cell and Background, were defined and appropriate pixels belong-
ing to the two classes were annotated. The training was deemed
satisfactory by visual inspection as well as observation of negligi-
ble decrease of the out-of-bag error (OOB) accompanied by a sig-
nificant increase in computation time. Ilastik defaults to 100
decision trees and does not enable tuning of hyperparameters.

For movies (stacks of 60 frames), training was performed
vastly on one frame of one movie, with small corrections on a
few selected frames where the predictions were not satisfactory.
The rest of the movies acquired as repetition experiments were
treated as the test set and analyzed in “batch mode” with the pre-
viously trained classifier.

For series of (7) images acquired once per day, the training was
performed on one image (usually day 2) and the rest of (6)
images, as well as all images acquired in repeated experiments

were treated as the test set and analyzed in “batch mode” with
the previously trained classifier.

The output of the classifier is a probability map, where each pixel
value represents the likelihood of this pixel to belong to the partic-
ular class. This probability represents the result of the votes of all
(100) decision trees in the forest. For example, if 85 trees classify
a pixel as “cell” (and the remaining 15 classify it as “background”),
the probability of this pixel to belong to a cell is 0.85.

The probability images were further thresholded (according to
the Otsu method) to yield a binary image where pixels are deter-
ministically classified into the two classes.

These binary images were used to assess the area occupied by
cells.

Results

Validation Against Fluorescence Images

Human fibroblast cells were stained using DiIC18, a fluorescent
dye that specifically stains the plasma membrane. The cells were
exposed to a mild concentration of 80 μM of CdCl2, a well-known
cell toxicant (Rana et al., 2018) that induces the shrinking of the
cells over time. The continuous shrinking of cells allows us to
compare precisely the same cells presenting a continuously
changing coverage in fluorescence and phase-contrast images.
Images of the culture were acquired every 2 min in fluorescence
and phase contrast, of the same field, over a period of ∼2 h, in
an automated microscope enclosed in a CO2, temperature-
controlled incubator. Numerous experiments were performed
with variations in the parameters: different culture dishes, differ-
ent positions in the same dish, different concentrations of toxi-
cant, to enable verifying the broad applicability of the
conclusions. In the following, we present one typical example.
For reference, we report in Table 1. the results for three different
toxicant concentrations.

In Figure 2, we present the fluorescence images, intensity-
equalized images, and segmented images (using an automatic
threshold) of the first and last frames in the time-lapse measure-
ment, respectively. A Supplementary Movie S1 presents the whole
sequence. The shrinking of the cells is readily visible; the resulting
quantification of the coverage is described in Figure 4a.

Fig. 3. Analysis of phase-contrast time-lapse images. First frame of time-lapse: original image (a), probabilities image (b), and binary image (c). Last frame of time-
lapse: original image (d), probabilities image (e), and binary image (f).
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In Figure 3, we present the simultaneously acquired phase-
contrast images, probability images, and segmented probability
images of the first and last frames in the time-lapse measurement,
respectively. The probability images are the output of the
machine-learning classifier. The shrinking of the cells is readily
visible. The resulting quantification of the coverage is described
in Figure 4b.

At this point, segmentation performance parameters can be
calculated, treating the fluorescence-image-derived maps as
ground truth, and the phase-contrast-derived maps as the recog-
nition. An overall impression of the performance can be seen in a
color-coded map, as shown in Figure 4d. Visually, it is obvious
that the phase-contrast-derived maps overestimate the size of
the cells (the green areas represent False Positives, i.e., pixels
identified as cells, that are in fact background), and obviously
under-estimate the background. We report Accuracy = 0.77,
Precision = 0.74, and Sensitivity = 0.95. The likely cause for the
overestimation of cell sizes lies in the fact that phase contrast
creates halos that extend over the edges of the cell; thus, a cell
in phase contrast does appear larger than the same
membrane-stained cell in fluorescence contrast. This approach
is thus not suitable for precise segmentation of cell contours.
The performance parameters calculated above indicate a worse
performance than much more rigorous approaches (Jaccard

et al., 2014), which are aimed at precise segmentation. However,
we stress that it is not the performance benchmark we are seeking.
Instead, we would like to evaluate the success of our approach
to correctly capture the trends in changing coverage. For this
purpose, we plot the fluorescence versus phase-contrast area
fractions in Figure 4c. In addition to the readily observable
excellent correlation, we calculate a Pearson correlation coefficient
of r = 0.996 (99% CI: 0.993–0.998, N = 60). We note that on
comparing the correlations obtained in all the performed experi-
ments, the value of the correlation did not fall below 0.95, see
Table 1.

This indicates that the method described here to quantify
changes in the area fraction occupied by cells over time, from
phase-contrast images, is in excellent agreement with the
fluorescence-image-derived method. We note that the agreement
is somewhat lower for coverages between ∼98 and 100%, that is,
at the initial stages of measurement, when the contraction of cells
is just beginning. Additionally, the phase-contrast detection
seems to be in general less sensitive than the fluorescence-based
detection: according to phase-contrast detection, the contraction
of the cells proceeds to ∼88% of the original coverage, while
according to fluorescence detection it proceeds as low as ∼77%
by the end of measurement. This fact is also observed in the
slope of the linear regression described by the red line in
Figure 4c, with a value of 0.55 ± 0.05, which implies that phase-
contrast detection is approximately 2 times less sensitive than
fluorescence detection. This can be a result of the fact that slight
changes in the base of the cell are not easily observed in phase-
contrast, as opposed to fluorescence. Also, the optical resolution
in phase contrast is lower, due to the reduction of effective N.A.
by the phase anulus. Nevertheless, it is very clear that changes in
area coverage of cells can be easily monitored using phase-
contrast microscopy alone, assisted by an easily trained machine-
learning classifier.

Table 1. Pearson Correlation Coefficient and 99% Confidence Interval for
Various Concentrations of Toxicant.

Toxicant concentration Pearson correlation coefficient 99% CI

40 μM 0.90 < 0.95 < 0.97

80 μM 0.993 < 0.996 < 0.998

120 μM 0.975 < 0.986 < 0.993

Fig. 4. Cell contraction (shrinking) as a function of time. (a) Fractional area coverage of cells, as detected from fluorescence images. (b) Fractional area coverage of
cells, as detected from phase-contrast images. (c) Correlation between fluorescence and phase-contrast detection. The correlation coefficient is r = 0.996. The red
line represents a linear regression with a slope of 0.55. (d) Color-coded segmentation parameters of last frame in the time-lapse: yellow – TP, green – FP, Red – FN,
and blue – TN.
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An Attractive Application: Growth Curves of Adherent Cells

Growth curves of adherent cells is a highly important parameter,
allowing to monitor and handle cell cultures development and for
assaying the influence of various drugs on the proliferation rate
(Iloki Assanga et al., 2013; Jaccard et al., 2014).

To demonstrate the usefulness of this label-free approach to
monitoring the area fraction covered by cells, we performed an
experiment where we grew MSCs in a nondifferentiation medium
and followed the area they covered as a function of time. In general,
it is desirable to avoid altering the behavior of cells under study by
fluorescently (or otherwise) tagging them. In the case of stem cells,
this becomes even more important, since such alterations may lead
to fundamental, unintended, biological processes. In our experi-
ment, we followed the cell culture during 7 days from seeding,
and quantified the area covered by the cells, according to the
approach described above for phase-contrast images. Numerous
experiments were performed, with variation in the parameters: dif-
ferent culture dishes, different positions in the same dish, different
initial densities of seeded cells, to enable verifying the broad appli-
cability of the conclusions. In the following, we present one typical
example.

In Figure 5, we present the original image and machine-
learning-based segmentation of the second and last days.

The relative area coverage extracted from the segmented
images is plotted as a function of time in Figure 5e. To demon-
strate that the measurement is valid, we fitted the data to a
Gompertz function of the form C = Ae−e−k(t−t0) , where C is the
coverage, A is the upper asymptote (in this normalized case, it
was defined as 100% on day 7), k is the rate coefficient, t is
time, and t0 is the time at the inflection point, where the coverage
is A/e or 36.8% of the asymptote. The Gompertz model is perhaps
the most frequently used sigmoid model fitted to growth data
(Tjørve & Tjørve, 2017). According to the fit, the maximal rate
of growth occurs at 2.26 days from start and has a value of
49%/day (of the previous coverage), and a population doubling
time of 2.6 days in full agreement with standard growth-curve
measurements, obtained by harvesting cells and counting them
in a hemocytometer (not shown). The key parameters from this
curve are k, the growth rate coefficient, which does not depend
on the units of the Y-axis (whether normalized or not, or whether

it represents absolute or relative number of cells) and t0, the
inflexion point, or the time point when the growth rate is maxi-
mal. The (maximal) rate of growth at the inflection point is
given by Ak/e and the population doubling time is given by

t0 − ln ( ln 2)
k

.

Thus, the comparison of k and t0 between different culture
conditions (e.g., various drugs or toxicants), or even different
methods of extracting growth curves, is a very powerful research
tool. For adherent cells, the traditional measurement of a growth
curve is a labor-intensive task, involving harvesting, fixation, and/
or staining cells at multiple time points (Iloki Assanga et al.,
2013). The method described here is fast and user-friendly, non-
invasive, and nondestructive.

Simplified Approach to Proliferation Assessment

While the above approach is very advantageous, its drawbacks are
that machine-learning algorithms are typically slow, require high
computation resources, and demand human intervention during
the training process. In this section, we examine whether, for
the limited scope of calculating area coverage of freely proliferat-
ing cells (no segmentation of individual cells), a simple threshold-
ing of phase-contrast images is sufficient. To elaborate on this
approach, we reiterate the fact that, as mentioned in the introduc-
tion, threshold-based segmentation in phase-contrast images
results typically in segmentation of the halos only, and not the
whole cell area. However, if we assume that the area occupied
by halos is roughly proportional (but smaller) to the area the
whole cell occupies, then quantifying the area covered by cells
may be assessed from the area occupied by halos. Of course,
the above assumption is not easy to justify: the size and intensity
of halos in phase-contrast microscopy is difficult to predict, since
it depends on the magnitude of gradients in the index of refrac-
tion, and these strongly depend on the (3D) morphology of the
cell membrane. Since the morphology is unknown and is not uni-
form among different cells (some cells are round and small, some
are triangular, some are elongated, etc.), this assumption seems
unsubstantiated. Nevertheless, upon averaging over a large

Fig. 5. Proliferation of MSCs monitored during 7 days with phase-contrast microscopy. (a) Phase-contrast image, day 2. (b) Machine-learning-aided segmentation of
the image in (a). (c) Phase-contrast image, day 7. (d) Machine-learning-aided segmentation of the image in (c). (e) Fractional area coverage of cells as quantified in
each of the 7 days. Red continuous curve is a fit of the data to the Gompertz function of the form C = Ae−e−k(t−t0 ) with t0 = 2.26 and k = 1.33 (see text for details).
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number of cells in a field-of-view, this approach proves to yield a
more predictable value. This is so because the variation in the dis-
tribution of cell morphologies between images (taken one day
apart) may not be very large, and if this is the case, the relative
change in intensity of the halos may be roughly proportional to
the number of cells observed in the field of view.

To experimentally test the validity of this assumption, we
applied direct thresholding of the same phase-contrast images
referred to in Figure 5 and compared the results with the
machine-learning segmented images. The original images and
the respective segmented halos are shown in Figure 6.

In Figure 6e, we plot the data obtained using the thresholding
method, together with the data obtained using the machine-
learning method (as described in Fig. 5), for comparison. It is
clear that, while there is no perfect overlap, the correlation
between the two methods is very strong (Fig. 6f) with a
Pearson correlation of r = 0.991 (99% CI: 0.949–0.998, N = 7).
Thus, even though the coverage obtained from thresholding obvi-
ously does not represent the true area covered by cells (but rather
the area covered by the halos), k and t0 are still valid, since they do
not depend on scaling of the Y-axis, and since, as it turns out, in
these specific conditions (this type of cells and this range of cell
density) the assumption that the area of the halos is proportional
to the cell area holds. In Table 2, we report the results obtained for
various initial seeding densities, for reference.

Conclusion

While phase-contrast images suffer from well-known artifacts, the
phase-contrast microscope is still the most common analytical instru-
ment in a cell-culture facility. Although traditionally it is only used as
an inspection tool, we show here that it can be used as a quantitative
tool, with the aid of modern, accessible and easy-to-use machine
learning software and powerful personal computers.

We described two distinct cases where quantification of the area
covered by cells is possible and accurate, providing important bio-
logical information in a noninvasive and nondestructive manner.

Case 1: The number of cells in the field of view does not change,
however the area of the individual cells is changing, for example,
cells that are shrinking in response to a toxic environment. The
area fraction occupied by cells may be very useful in assessing
toxic effects of a variety of substances, continuously, even if tran-
sient. It is worthwhile studying to what extent such approaches
can lead to systematic quantification of toxicity, at much more del-
icate levels than existing assays (most of which include staining and
report on very final stages of toxic effects, mostly cell death).

Case 2: The size of the cells in the field of view does not change
considerably, however their number is changing, with prolifera-
tion being the simplest example we demonstrate (migration in
or out of the field of view may serve as another example). It is
hard to overestimate the importance of cell growth curves as a
research tool, however the methods used for adherent cells are
labor-intensive and disruptive, since they involve harvesting
(thus destruction of the specific culture) and/or staining, before
counting (by a variety of methods). Not only our method allows
assessing growth curves of the very same culture, in a label-free
manner, but it is also easy to imagine how growth curves in dif-
ferent areas of the same culture may be obtained and compared,
thus offering a measure of position-dependent proliferation rates.

In addition, we demonstrate that, if a set of assumptions holds,
the relatively computing-intensive machine-learning part may be
avoided, and accurate proliferation rates may be obtained from
phase-contrast images by traditional and fast methods (direct
threshold). We emphasize that the growth curves obtained this
way should not be interpreted as “confluency,” since they are

Fig. 6. Proliferation of MSCs monitored during 7 days with phase-contrast microscopy. (a) Phase-contrast image, day 1. (b) Thresholding segmentation of the image
in (a). (c) Phase-contrast image, day 7. (d) Thresholding segmentation of the image in (c). (e) Fractional area coverage of cells as quantified in each of the 7 days.
Black squares represent results obtained using the machine-learning approach (same data as Fig. 5e), red circles represent results obtained using thresholding, for
comparison. (f) The results obtained by the second method (threshold) as a function of those obtained by the machine-learning method. The red line represents a
least squares linear fit to the data.

Table 2. Values of k Extracted from Both Methods and Pearson Correlation
Coefficient 99% Confidence Interval, for Various Initial Seeding Densities.

Initial
coverage

Growth
coefficient k

(ML)

Growth
coefficient k

(direct threshold)
Pearson correlation
coefficient 99% CI

0.4%a 1.26 ± 0.12 1.20 ± 0.09 0.949 < 0.991 < 0.998

4% 1.43 ± 0.11 1.27 ± 0.09 0.958 < 0.995 < 0.999

10% 1.27 ± 0.09 1.37 ± 0.14 0.876 < 0.987 < 0.998

aThe data are reported in Figures 5 and 6.
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only proportional (with an unknown constant, smaller than 1) to
the true percentage of the area covered by the cells.

In analyzing growth curves, the key quantitative information is
contained in the parameters k and t0 of the fit to a Gompertz
function, and these can safely be compared between different cul-
tures and different methods of obtaining the growth curves, since
they do not depend on the scaling of the Y-axis. The ML method
overestimates the true area of the cells (as assessed from fluores-
cence images), but by a constant factor, thus the correlation over
time between the two methods is excellent (but not the agreement
regarding absolute coverage). The thresholding method under-
estimates the true area of the cells (as assessed from ML images),
by a constant factor (when the appropriate conditions hold), thus
the correlation over time is excellent (but not the agreement
regarding absolute coverage). Absolute coverage can still be esti-
mated from the flattening of the growth curve, in all methods
of obtaining of growth curves.

It is very important not to use the simple thresholding method
in cases where the cells are shrinking (or swelling), like in the first
case reported here. In such cases, the assumption “area of halos is
proportional to the area of cell” obviously does not hold.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927622000794.
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