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IITAKA Cn,m CONJECTURE FOR 3-FOLDS OVER
FINITE FIELDS

CAUCHER BIRKAR, YIFEI CHEN and LEI ZHANG

Abstract. We prove Iitaka Cn,m conjecture for 3-folds over the algebraic

closure of finite fields. Along the way we prove some results on the birational

geometry of log surfaces over nonclosed fields and apply these to existence of

relative good minimal models of 3-folds.
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§1. Introduction

Iitaka conjecture

Let X be a normal projective variety over a field k, L a Cartier divisor on

X, and N(L) the set of all positive integers m such that the linear system

|mL| 6= ∅. For an integer m ∈N(L), let Φ|mL| be the rational map defined

by |mL|. The Kodaira dimension κ(L) is defined as

κ(L) =

{
−∞, if N(L) = ∅
max{dim Φ|mL|(X) |m ∈N(L)} if N(L) 6= ∅

If L is a Q-Cartier divisor, κ(L) := κ(mL) for any natural number m so that

mL is Cartier. This does not depend on the choice of m.

Throughout this paper, a contraction is a projective morphism f : X → Z

between varieties such that f∗OX =OZ . The following conjecture due

to Iitaka (in characteristic zero) is of fundamental importance in the

classification theory of algebraic varieties.

Conjecture 1.1. (Cn,m) Let f : X → Z be a contraction between

smooth projective varieties of dimension n, m respectively, over an alge-

braically closed field k. Assume the generic fiber F is smooth. Then

κ(KX) > κ(KF ) + κ(KZ).

One can formulate a more general problem when F is not smooth either

by assuming it is geometrically integral with a resolution or by considering

F as a variety over the function field of Z (for example, see Corollary 1.3).
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Over the field of complex numbers, the conjecture has been studied by

Kawamata [22, 23, 25], Kollár [29], Viehweg [43, 44, 44], Birkar [3], Chen

and Hacon [12], Cao and Pǎun [8], and so forth. We refer to [13] for a

collection of results over C. In positive characteristic, Chen and Zhang

proved the conjecture for fibrations of relative dimension one [13], and

Patakfalvi proved it when Z is of general type and the generic geometric

fiber satisfies certain properties [36, Theorem 1.1] (see also [37, Corollary

4.6]).

In this paper, we prove:

Theorem 1.2. Conjecture Cn,m holds when n= 3, k = F̄p, and p > 5.

Note that the smoothness of Xη implies that f is separable [31, Sec-

tion 3.2.2]. The case C3,2 follows from [13], so the main result here is C3,1.

Our main tools are the log minimal model program for 3-folds developed

recently by Hacon, Xu, and Birkar [5, 16, 47], birational geometry of log

surfaces over nonclosed fields (see below), and the semi-positivity results

of Patakfalvi [37]. The reason for the restriction k = F̄p is that it is often

easier to prove semi-ampleness of divisors over finite fields; for example, if

KX ∼Q f
∗D for some D ≡ 0 on Z, then D ∼Q 0 is automatic over k = F̄p

but the same conclusion would perhaps require substantial effort over other

fields; this is a major issue also in characteristic zero [22].

Since resolution theory holds in dimension three in positive characteris-

tics, we get

Corollary 1.3. Let f : X → Z be a contraction, from a smooth projec-

tive three- dimensional variety to a smooth projective curve over F̄p, p > 5.

Let F̃ be a smooth model of the generic geometric fiber of f . Then

κ(KX) > κ(KF̃ ) + κ(KZ).

Log surfaces over nonclosed fields

Let X → Z be a contraction between normal varieties and let F be its

generic fiber. As is well known, in char p > 0, F may not be smooth even if X

and Z are smooth. Actually F may even be geometrically nonreduced. This

creates difficulties because proofs in birational geometry are often based

on induction and in this case we cannot simply apply induction and lift

information from F to X. On the other hand, F has nice properties if we

think of it as a variety over the function field of Z without passing to the

algebraic closure of this function field. For example, if X is smooth, then F
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is regular. In particular, relevant to this paper is the case in which X is a

3-fold and Z is a curve. So it is natural for us to consider surfaces over a

not necessarily algebraically closed field k.

It is easy to define pairs, singularities, minimal models, and so forth over

an arbitrary field. See Sections 2.4 and 2.5 for more details.

Theorem 1.4. Let (X, B) be a projective dlt pair of dimension two over

a field k where B is a Q-boundary. Then we can run an LMMP on KX +B

which ends with a log minimal model or a Mori fiber space.

Theorem 1.5. Let (X, B) be a projective klt pair of dimension two over

a field k where B is a Q-boundary. Assume KX +B is nef and that κ(KX +

B) > 0. Then KX +B is semi-ample.

These results were proved by Tanaka [41] not long ago. Actually he proves

more general statements; in particular, he proves 1.5 without the assumption

κ(KX +B) > 0. We give a self-contained proof of the above theorems. Our

proof of 1.4 is perhaps the same as that in [41] which closely follows Keel’s

techniques [26]. However, our proof of 1.5 seems to be different from his. He

relies on another paper [40] but our proof is short and direct which follows

Mumford’s ideas [33] and uses a result of Totaro [42]. In fact we worked out

these proofs before [41] appeared.

Relative good minimal models of 3-folds

As mentioned earlier our motivation for considering surfaces over non-

closed fields is to treat 3-folds over curves.

Theorem 1.6. Let (X, B) be a projective klt pair of dimension three

where B is a Q-boundary, and f : X → Z be a contraction onto a curve,

over F̄p with p > 5. Let F be the generic fiber of f . If κ((KX +B)|F ) > 0,

then (X, B) has a good log minimal model over Z.

Actually the proof of the theorem works over any algebraically closed field

of char p > 5 except when κ((KX +B)|F ) = 1. In this case we make use of

the fact that any nef and big divisor on a surface over F̄p is semi-ample.

As far as Theorem 1.2 is concerned we only need special cases of 1.6 which

in turn only needs special cases of 1.5. We only need the case when B = 0

and F is smooth, or when κ((KX +B)|F ) = 0 but F admits a contraction

onto an elliptic curve. See Remark 3.17 for some more detailed explanations.
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§2. Preliminaries

We follow Kollár [27] to define canonical sheaves and divisors, adjunction,

pairs, singularities, and so forth which we discuss below.

2.1 Relative canonical sheaves

Let f : X → Z be a morphism of schemes where Z is regular and excellent,

and X is pure dimensional and of finite type over Z. Let S be a closed

subscheme of X and U :=X \ S. Assume that

• codimension of S in X is at least 2; and

• U is a locally closed local complete intersection in some PnZ .

Let I be the ideal sheaf of the closure of U in PnZ and let j : U →X be

the inclusion map of U in X. Now define the relative canonical sheaf as

ωX/Z = j∗((ωPnZ/Z ⊗ (det I/I2)∨)|U ).

Note that I/I2 is locally free on U . Moreover, ωPnZ/Z is as usual defined to

be OPnZ (−n− 1).

2.2 Relative canonical sheaves and divisors of normal schemes

Let f : X → Z be a quasi-projective morphism of schemes where Z is

regular and excellent, and X is integral and normal. The set of regular

points of X is an open subset U of X by definition of excellent schemes

(cf. [7, p. 382]). Let S be any closed subscheme of X containing the singular

points and such that the codimension of S in X is at least 2. Such an S

exists because X is normal. If we embed U as a locally closed subscheme

into some PnZ , then U is a locally closed local complete intersection because

U is regular (cf. [7, Proposition 2.2.4]). Therefore, we can define the relative

canonical sheaf ωX/Z as in the previous subsection. Under this situation,

this sheaf is of the form OX(KX/Z) for some divisor KX/Z which we refer

to as the canonical divisor of X over Z (when Z is the spectrum of a field,

we usually drop Z and just write ωX and KX if the ground field is obvious

from the context).

If Y → Z is another quasi-projective morphism from a normal integral

scheme Y with KY/Z being Q-Cartier, and if we are given a Z-morphism

h : X → Y , then we let KX/Y =KX/Z − h∗KY/Z , which is compatible with

the definition of above paragraph if Y is regular.

Now assume that Z is integral and let F be the generic fiber of X → Z.

Let V and T be the inverse images of U and S under the morphism F →X.
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26 C. BIRKAR, Y. CHEN AND L. ZHANG

Then F is normal, V is regular, and the codimension of T in F is at least

2. We consider F with its natural scheme structure over K, the function

field of Z. By the definition of canonical sheaves, ωV is the pullback of

ωU/Z . Therefore, KV is the pullback of KU/Z . Moreover, if KX +B is Q-

Cartier for some Q-divisor B, then we can write KF +BF for the pullback

of KX +B to F where BF is canonically determined by B: more precisely,

BF is the closure of the pullback of B|U to V .

2.3 Intersection theory

For a short introduction to intersection theory on a proper scheme X

over a field k, see [28, Section 1.5]. Note that intersection numbers depend

on the ground field k. For a detailed treatment of intersection theory on

regular surfaces, see [31, Chapter 9]. Although [31] does not seem to treat

the Riemann–Roch formula, it holds on regular projective surfaces. More

precisely, if X is a regular surface projective over a field k and if L is a

Cartier divisor, then

X (L) = 1
2L · (L−KX) + X (OX)

where KX means the relative canonical divisor of X over k, and X (N) :=

h0(N)− h1(N) + h2(N) for any divisor (or sheaf) N which also depends

on the ground field k. The formula can be proved as in the case of smooth

surfaces over algebraically closed fields. The main point is that it can be

reduced to Riemann–Roch on curves which holds in a quite general setting

(cf. [31, Section 7.3]). See [41, Section 1.3] for a complete proof.

2.4 Pairs and singularities

Let k be a field. A pair (X, B) over k consists of a normal quasi-projective

variety X over k and an Q-Weil divisor B with coefficients in [0, 1] such

that KX +B is Q-Cartier. We usually refer to B as a Q-boundary. See [27,

Definitions 1.5 and 2.8] for definitions in more general settings.

For any projective birational morphism f : W →X from a normal variety

W , we can write KW +BW = f∗(KX +B) for some unique Q-Weil divisor

BW . For a prime divisor D on W we define the log discrepancy a(D, X, B)

to be 1− b where b is the coefficient of D in BW . We say (X, B) is lc (resp.

klt) if a(D, X, B) > 0 (resp. a(D, X, B)> 0) for any D on any such W . On

the other hand, we say (X, B) is dlt if there is a closed subset Z ⊂X of

codimension at least two such that a(D, X, B)> 0 for any D whose image
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in X is inside Z and such that outside Z we have: X is regular and SuppB

has simple normal crossing singularities.

We say f is a log resolution of (X, B) if W is regular and SuppBW has

simple normal crossing singularities. Log resolutions exist when dimX =

2 [38] or if k is algebraically closed and dimX 6 3; in these situations one can

check whether (X, B) is lc or klt by looking at one log resolution. Moreover,

if dimX = 2, then a minimal resolution of X exists.

2.5 Minimal models and Mori fiber spaces

Let (X, B) be an lc pair and (Y, BY ) be a Q-factorial dlt pair, over a field

k, equipped with projective morphisms X → Z and Y → Z and a birational

map φ : X 99K Y commuting with these morphisms such that φ∗B =BY and

such that φ−1 does not contract divisors. Assume in addition that

a(D, X, B) 6 a(D, Y, BY )

for any prime divisor D on birational models of X with strict inequality if D

is on X and exceptional/Y . We say (Y, BY ) is a log minimal model of (X, B)

over Z if KY +BY is nef/Z. We say (Y, BY ) is a Mori fiber space of (X, B)

over Z if there is a KY +BY -negative extremal contraction Y → T/Z with

dim Y > dim T .

2.6 Minimal models of 3-folds

For 3-folds we have the following result.

Theorem 2.7. Let (X, B) be a projective klt pair of dimension three and

X → Z a contraction to projective variety, over an algebraically closed field

k of char p > 5.

(1) If KX +B is pseudo-effective over Z, then (X, B) has a log minimal

model over Z.

(2) If KX +B is not pseudo-effective over Z, then (X, B) has a Mori fiber

space over Z.

(3) If KX +B is nef over Z, and KX +B or B is big over Z, then KX +B

is semi-ample over Z.

Part (1) is proved in [16] for canonical singularities, and in [5] in general.

Part (2) is proved in [11] for terminal singularities, and in [6] in general.

Part (3) is proved in various forms in [5, 6, 47].
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2.8 Adjunction

Let X be a normal projective variety over a field k. Let B > 0 be a Q-

divisor on X such that KX +B is Q-Cartier. Let S be a component of

bBc. Then we can write the pullback of KX +B to the normalization Sν as

KSν +BSν where the different BSν > 0 is canonically determined. If (X, B)

is lc outside a codimension > 3 subset of X, then BSν is a boundary. See

[27, Proposition 4.5] for more details.

2.9 Varieties over F̄p
Varieties over finite fields enjoy some special properties which we exploit.

For example, any numerically trivial divisor on a projective variety over F̄p
is torsion [26]. Another example is this:

Theorem 2.10. [39, Theorem 0.1 and 0.2] Let X be a normal projective

surface over F̄p. Let ∆ be an effective Q-divisor on X. If KX + ∆ is pseudo-

effective, then there exists a minimal model (X ′,∆′) of (X,∆), and KX′ +

∆′ is semi-ample.

2.11 Semi-positivity of direct images of pluricanonical sheaves

The following result is extracted from [37, 1.5, 1.6, 1.7 and the paragraph

below 1.7]. It holds in a more general form but this is all we need in this

paper.

Theorem 2.12. [37] Let f : X → Z be a surjective morphism from a

normal projective variety to a smooth projective curve over an algebraically

closed field k. Assume KX is Q-Cartier and that general fibers are strongly

F -regular.

• If KX is nef over Z and KX is semi-ample on the generic fiber of f , then

KX/Z is nef.

• If KX is ample over Z, then f∗OX(mKX/Z) is a nef vector bundle for

any sufficiently divisible natural number m.

We apply the theorem only when X is a 3-fold and general fibers have

canonical singularities.

2.13 Varieties with elliptic fibrations

For fibrations whose general fibers are elliptic curves, we can use a weak

canonical bundle formula which allows us to do induction.
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Theorem 2.14. Let f : X → Z be a contraction between smooth projec-

tive varieties over an algebraically closed field k such that the geometric

generic fiber is a smooth elliptic curve. Then κ(KX/Z) > 0.

Proof. This follows from [13, 3.2].

2.15 Nef divisors with Kodaira dimension one

Lemma 2.16. Let X be a normal surface projective over a field k. Let L

be a nef Q-divisor with κ(L) = 1. Then L is semi-ample.

Proof. Let X 99K Z be the rational map defined by the linear system

|mL| for some sufficiently divisible m> 0. Then dim Z = 1. We can replace

X with the normalization of the graph of X 99K Z; hence, assume X 99K Z is

a morphism. We can in addition assume L>H > 0 where H is the pullback

of some ample Q-divisor on Z. Since L is not big, its support does not

intersect the generic fiber of X → Z.

Let F be a fiber of X → Z which has a common component with L.

Let a be the smallest rational number such that L− aF 6 0 near F . Then

L− aF has no common component with F ; otherwise there would be two

components C, D of F such that C intersects D, C is not a component of

L− aF but D is a component of L− aF which implies (L− aF ) · C < 0,

a contradiction. These arguments show that L is the pullback of some

Q-divisor on Z which is necessarily ample, hence L is semi-ample.

2.17 Generically trivial divisors

We recall a result of Kawamata adapted to char p > 0.

Lemma 2.18. [6, Lemma 5.6] Let f : X → Z be a contraction between

normal projective varieties over an algebraically closed field k and L a nef/Z

Q-divisor on X such that L|F ∼Q 0 where F is the generic fiber of f . Assume

dim Z 6 3 if k has char p > 0. Then there exist a diagram

X ′
φ
//

f ′

��

X

f
��

Z ′
ψ
// Z

with φ, ψ projective birational, and a Q-Cartier Q-divisor D on Z ′ such that

φ∗L∼Q f
′∗D.
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2.19 Easy additivity of Kodaira dimensions

The following result is well-known to experts [15, Propostion 1].

Lemma 2.20. Let f : X → Z be a contraction between normal varieties

projective over a field k. Let D be an effective Q-Cartier Q-divisor on X

and H a big Q-Cartier Q-divisor on Z. Then

κ(D + f∗H) > κ(D|F ) + dim Z

where F is the generic fiber of f .

Proof. Since D is effective, it is enough to prove the statement with H

replaced by any positive multiple and D replaced by D + lf∗H for some l >

0. If V →X is a morphism, we denote the pullback of D to V by DV (similar

notation for other divisors). Let m be a sufficiently divisible natural number

and let d= dimK H0(mDF )− 1 where K is the function field of Z. Let S

be the normalization of the image of φmDF : F 99K PdK whose dimension is

equal to κ(DF ). Moreover, φmDF induces a (not unique) map ψ : X 99K PdZ
over Z which restricts to φmDF . Let T be the normalization of the image of

ψ. Let Y be the normalization of the graph of X 99K PdZ and G the generic

fiber of Y → Z. We have induced morphisms Y → T , G→ S, and G→ F .

Let A on PdZ be the pullback of a hyperplane via the projection PdZ → Pdk.
Perhaps after changing D up to Q-linear equivalence we can assume mDG >
AG. Thus replacing D with D + lf∗H for some l we can assume mDY >AY .

Therefore, we may replace X with T and replace D with AT . But then the

statement is trivial in this case because we can assume A+ f∗H is ample.

2.21 Covering Theorem

Theorem 2.22. [21, Theorem 10.5] Let f : X → Y be a proper surjective

morphism between smooth complete varieties. If D is a Cartier divisor on

Y and E an effective f -exceptional divisor on X, then

κ(f∗D + E) = κ(D).

Here by f -exceptional we mean: for any prime divisor P on Y , there is

a prime divisor Q on X mapping onto P such that Q is not a component

of E.
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§3. Log surfaces over nonclosed fields

In this section, k will denote a field which is not necessarily algebraically

closed. Shafarevich [38] studied the minimal model theory of regular surfaces

over nonclosed fields and Dedekind rings (see also [31]), and Manin [32]

and Iskovskikh [20] treated the special case of rational surfaces. None of

them seems to have discussed the abundance problem. If k is perfect (e.g.,

when char k = 0) or if the surface is smooth over k, then one can often

reduce problems to the algebraically closed case by passing to the algebraic

closure. But our main point here is that we can actually prove many things

by working over k rather than the algebraic closure when char k > 0.

3.1 Curves with negative canonical divisor

As a preparation we collect some results about curves.

Lemma 3.2. Let X be a local complete intersection integral projective

curve over a field k, and let l =H0(OX). Assume that degk KX < 0. Then

(i) Pic0(X) = 0;

(ii) X is a conic over l, and degl KX =−2;

(iii) if X is normal and char k > 2, then Xl̄
∼= P1

l̄
.

Proof. By assumption degk KX < 0, we get h1(OX) = h0(KX) = 0 which

implies pa(X) 6 0. Then (i) and (ii) follow from [31, Chapter 9, Proposition

3.16], and (iii) is [11, Lemma 6.5].

3.3 Reduced boundary of dlt pairs

Lemma 3.4. Assume (X, B) is a Q-factorial dlt pair of dimension two

over a field k. Then every irreducible component of bBc is regular.

Proof. Let S be a component of bBc and let x ∈ S be a closed point. As

(X, S) is plt, S is regular at x by [27, 3.35].

Proposition 3.5. Let (X, B) be a Q-factorial dlt pair of dimension two

projective over a field k where B is a Q-boundary. Assume S is a component

of bBc and A is an ample Q-divisor such that

• (KX +B) · S < 0;

• (KX +B +A) · S = 0; and

• KX +B +A is nef and big.
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Then there is a birational morphism σ :X → Y with Y normal and

projective, whose exceptional locus is equal to S, and the resulting pair

(Y, BY := σ∗B) is Q-factorial dlt. Moreover, (KX +B) · S >−2.

Proof. By perturbing the coefficients of B (i.e., by replacing B with B −
P and replacing A with A+ P for some appropriate P ) we can assume S =

bBc. Since KX +B +A is nef and big, we can write KX +B +A∼Q H +D

where H is ample and D > 0. Since (H +D) · S = 0, S is a component of

D and S2 < 0. Let ε > 0 be a small rational number such that A′ :=A+ εS

is ample. Then S is the only curve on X such that (KX +B +A′) · S < 0.

Let t be the smallest real number such that L :=KX +B +A′ + tA is nef.

We want to show L is semi-ample and that L · S = 0. If char k = 0, the

last sentence and the other claims of the proposition can be reduced to the

algebraically closed case by passing to the algebraic closure. So we assume

char k > 0.

By definition L is nef and big but not ample; then there is a curve C with

L · C = 0 by Nakai–Moishezon criterion [14, Theorem 1.21], which implies t

is a rational number. Actually C = S by construction.

By Lemma 3.4, S is regular. Then by adjunction (2.8) we can write

KS +BS = (KX +B)|S where BS > 0. Since degk(KS +BS)< 0, we have

degk KS < 0. This implies Pic0(S) = 0 by Lemma 3.2. Therefore, L|S ∼Q 0

which implies that L is semi-ample [26], so it defines a birational contraction

σ :X → Y contracting exactly S so that LY is ample where LY is the

pushdown of L.

The dlt property of (Y, BY ) is obvious once we show Y is Q-factorial

where BY is the pushdown of B. Let RY be a prime divisor on Y and R its

birational transform on X. There is s> 0 such that (R+ sS) · S = 0. Since

L is the pullback of an ample divisor on Y , the divisor M :=mL+R+ sS

is nef and big on X, and E(M) = S for any m� 0. Moreover, M |S ∼Q 0, so

by [26, Theorem 0.2], M is semi-ample, thus it is the pullback of some ample

divisor MY on Y . But then RY =MY −mLY is Q-Cartier. This shows Y is

Q-factorial. Finally

(KX +B) · S = degk(KS +BS) > degk KS =−2.

3.6 Base point freeness

Proposition 3.7. Let (X, B) be a klt pair of dimension two projective

over a field k where B is a Q-boundary. Assume L is a nef and big Q-divisor

so that L− (KX +B) is nef. Then L is semi-ample.
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Proof. If char k = 0, we can pass to the algebraic closure of k in which

case the theorem is well-known. So we assume char k > 0.

Since L is nef and big, by [26, Theorem 1.9], there exist a birational

morphism X → V to a proper algebraic space V and a reduced divisor D

on X such that, the exceptional locus is equal to D, and that L≡ 0/V .

Let φ : W →X be a log resolution of (X, B +D). Let ∆W be the sum

of the birational transform of BV plus the reduced exceptional divisor of

W → V where BV is the pushdown of B on V . Let RW be an ample divisor

on W and let LW be the pullback of L. Also let G= L− (KX +B) and GW
be its pullback. Fix m� 0 and let t be the smallest number such that

NW :=KW + ∆W +GW + tRW

is nef. Note that by construction, KW + ∆W +GW = LW + EW where

EW > 0 and its support is equal to the exceptional locus of W → V .

Moreover, NW is nef and big but not ample, so by [10], there is a curve

S with NW · S = 0. Since (KW + ∆W +GW ) · S < 0, EW · S < 0, hence S

is a component of EW which is contracted over V , so it is a component of

∆W . In addition, t is a rational number and (KW + ∆W ) · S < 0. Therefore,

by Proposition 3.5, S can be contracted by a birational morphism W →W ′

with an induced morphismW ′→ V . Continuing this process gives an LMMP

on KW + ∆W over V . It terminates with some model Y on which KY + ∆Y

is nef/V .

Since KY + ∆Y ≡ EY /V , EY is nef over V and since EY is exceptional

over V , we deduce EY = 0 by the negativity lemma (which holds over

arbitrary fields). Therefore, Y = V because EY contains all the exceptional

curves of Y → V . Thus V is projective and Q-factorial. Now LV is ample

and it pulls back to L, hence L is semi-ample.

Proposition 3.8. Let (X, B) be a klt pair of dimension two projective

over a field k where B is a Q-boundary. Assume L is a nef Q-divisor so

that L− (KX +B) is nef and big, and L is not numerically trivial. Then L

is semi-ample.

Proof. By Proposition 3.7, we can assume L is not big. Moreover,

replacing X with its minimal resolution we can assume X is regular. Let

G := L− (KX +B). By the Riemann–Roch theorem for regular surfaces

(see 2.3), for any sufficiently divisible natural number m we have

X (mL) = 1
2mL · (mL−KX) + X (OX).
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Since G is big and L is not numerically trivial, L ·G> 0, and since

mL−KX ∼Q (m− 1)L+B +G,

L · (mL−KX)> 0, hence X (mL) is large when m is large. This implies

h0(mL) > 2 for such m because h2(mL) = h0(KX −mL) = 0. Therefore, L

is semi-ample by Lemma 2.16.

3.9 Running the LMMP

Proof of Theorem 1.4. The proof is broken into several steps.

Step 1. Assume KX +B is pseudo-effective but not nef. First suppose X

is Q-factorial (we see in the next step that this is automatically satisfied).

Let H be an ample divisor on X and let t be the smallest number such that

L=KX +B + tH is nef. Obviously L is nef and big. Moreover, t is rational

which can be seen as in the proof of Proposition 3.5. Although we can apply

Proposition 3.7 to deduce that L is semi-ample and defines a contraction

but we want to modify the situation so that the contraction contracts only

one curve. Pick a curve C such that L · C = 0. Let ∆ = (1− δ)B + εC for

certain small rational numbers ε, δ > 0 so that (X,∆) is klt, (KX + ∆) · C <

0, and δB + tH is ample. Now let t′ be the smallest number such that

L′ :=KX + ∆ + δB + t′H is nef. Then t < t′ because C2 < 0, so L′ is nef

and big, and δB + t′H is ample. Note that C is the only curve satisfying

L′ · C = 0.

Now by Proposition 3.7, L′ is semi-ample and it defines a nontrivial

birational contraction X → Y contracting C with (KX +B) · C < 0. Let

RY be a prime divisor on Y and R its birational transform on X. Let r be

the number such that (R+ rC) · C = 0. If m> 0 is sufficiently large, then

L′′ :=mL′ +R+ rC is nef and big. Moreover, applying 3.7 to L′ + L′′ shows

that L′′ is the pullback of an ample divisor on Y , hence RY is Q-Cartier.

Therefore, Y is Q-factorial and (Y, BY ) is dlt. Now replace (X, B) with

(Y, BY ) and repeat the argument.

Step 2. In this step we show that the dlt property of (X, B) impliesX is Q-

factorial. Since the pair is dlt, there is a log resolution φ : W →X such that

the log discrepancy a(D, X, B)> 0 for every curve D contracted by φ. Fix

m� 0. By Bertini Theorem (similar argument as in [47, Proposition 2.3]),

there exists a divisor Hm ∼Q mH on X such that (X, B +Hm) is dlt. Let

ΓW on W be the sum of the birational transform of B +Hm and the reduced

exceptional divisor of W →X. Then KW + ΓW = φ∗(KX +B +Hm) + EW
where EW > 0 is contracted over X. Then applying a similar procedure as

above, we can run an LMMP for KW + ΓW . Since m� 0, by projection

https://doi.org/10.1017/nmj.2016.61 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.61


IITAKA CN,M CONJECTURE FOR 3-FOLDS OVER FINITE FIELDS 35

formula the curves C contracted by the LMMP intersect φ∗H trivially, and

by Proposition 3.5, such curves are contracted by φ. In other words, the

LMMP is over X. The LMMP contracts EW so it ends with X which means

X is Q-factorial. This and the previous step together prove the theorem

when KX +B is pseudo-effective.

Step 3. From now on we assume KX +B is not pseudo-effective. If there

is a curve C such that (KX +B) · C < 0 and such that there is a birational

morphism X → Y with exceptional divisor equal to C, then we replace

(X, B) with (Y, BY ). So we can assume there is no such C.

Pick an ample divisor A and let t be the smallest number such that

KX +B + tA is pseudo-effective. By the last paragraph KX +B + tA is

nef: otherwise, we can run an LMMP for KX +B + tA which is also an

LMMP for KX +B contracting some curve C, a contradiction.

If ρ(X) = 1, then we already have a Mori fiber space. So assume ρ(X)>

1. Then there is another ample divisor H such that A is not numerically

equivalent to hH for any number h. Let s be the smallest number such that

KX +B + sH is pseudo-effective. Arguing as above, KX +B + sH is nef.

By our choice of A and H both KX +B + tA and KX +B + sH cannot be

numerically trivial at the same time. We may assume KX +B + tA is not

numerically trivial.

Step 4. In this step we assume t is a rational number. By Proposition 3.8,

KX +B + tA is semi-ample defining a contraction f : X → Z onto Z of

dimension one. Assume there is a fiber F of f which is not irreducible. Let

C be a component of F . Then C2 < 0. We can find a Q-boundary ∆ such that

(X,∆) is klt, KX + ∆ is pseudo-effective, and (KX + ∆) · C < 0. So we can

contract C. But since (KX +B) · C < 0, this contradicts the first paragraph

of Step 3. Therefore, we can assume all the fibers of f are irreducible. But

this means f is extremal and so f is a Mori fiber space.

Step 5. Finally we show t is indeed a rational number. Assume not.

We derive a contradiction. Let L=KX +B + tA. We can assume A is an

effective Q-divisor. For each sufficiently divisible natural number m, let am
be the number so that bmLc=mL− amA. Since t is not rational, there

is an infinite set Π of such m so that the am form a strictly decreasing

sequence with limm∈Π am = 0. On the other hand, for each m ∈Π, let a′m
be the number so that

(mL− a′mA) · ((m− 1)L+B + (t− am)A)

= (mL− a′mA) · (bmLc −KX) = 0.
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Since limm∈Π am = 0 and L2 = 0, we can see

lim
m∈Π

a′m = lim
m∈Π

mL · ((m− 1)L+B + (t− am)A)

A · ((m− 1)L+B + (t− am)A)
=
L · (B + tA)

A · L
> 0.

Thus we can assume

(mL− amA) · (bmLc −KX)> τ(m− 1)A · L

for some τ > 0 independent of m. Therefore,

X (bmLc) = 1
2(mL− amA) · (bmLc −KX) + X (OX)

is large when m ∈Π is large. This in turn implies h0(bmLc) is large for such

m. Take a divisor M1 ∈ | bmLc |. Then mL∼R M :=M1 + amA. If C is a

component of SuppM , then L · C = 0 which means t is a rational number,

a contradiction.

3.10 Mori fiber spaces

Proposition 3.11. Let (X, B) be a dlt pair of dimension two projective

over a field k. Assume f : X → Z is a Mori fiber structure for (X, B) where

dim Z = 1. Then the geometric general fibers of f are conics and if char

k > 2 they are smooth rational curves. In particular, if F is a general fiber,

then (KX +B) · F >−2.

Proof. Let F be the generic fiber of f which is a regular curve since

X is regular in codimension one. Since −(KX +B) is ample over Z,

−KF is ample. On the other hand, since f is a contraction, H0(OF ) =K

where K is the function field of Z. The assertions follow from Lemma 3.2

straightforwardly.

3.12 Curves of canonical type

Let X be a regular surface projective over a field k. A connected divisor

D =
∑r

1 diDi > 0 is called a curve of canonical type if D|D ≡ 0 and KX |D ≡
0. It is called indecomposable if there is no prime number dividing all the

di. The following result was proved by Mumford [33, p. 332]. Although

he assumes the ground field to be algebraically closed his proof works for

arbitrary fields. We give the proof for convenience (see also [2, Theorem

7.8]).

Proposition 3.13. Let D be an indecomposable curve of canonical type.

Let L be a Cartier divisor on D such that L≡ 0. If h0(L) 6= 0, then L∼ 0.
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Proof. Assume α ∈H0(L) is nonzero. Then α|Di is either nowhere

vanishing or everywhere vanishing because L|Di ≡ 0. Since D is connected,

either α is nowhere vanishing on D or α|SuppD = 0. The former implies L

is generated by global sections which in turn implies L∼ 0. So it is enough

to treat the latter. Let ni be the order of vanishing of α along Di. Let

N =
∑
niDi. Then by assumption 0<N <D.

We claim that for every component Di such that ni < di, −N |Di is nef.

Granted this claim, since D is connected we have that ni > 0 for every i ∈
{1, 2, . . . , r}. Let a be the smallest rational number such that aN −D > 0.

Then aN −D = 0 because otherwise, since D is connected, there will exist

a component Di of D such that Di is not contained in aN −D, ni < di and

(aN −D) ·Di > 0, which contradicts that −N |Di is nef. Since the di have

no common factor, N =D. So α= 0, a contradiction.

The claim follows from local analysis. Assume ni < di, say for i= 1.

Consider the exact sequence

0→OD1(L− n1D1)→O(n1+1)D1
(L)→On1D1(L)→ 0.

Since α|n1D1 = 0 by definition of n1, the section α|(n1+1)D1
is the image of

a section β of (L− n1D1)|D1 . If P is the zero divisor of β, then a local

computation of intersection numbers shows that P > (N − n1D1)|D1 . More

precisely, let v ∈D1 be a closed point, let R=OX,v, and let fi be a local

equation of Di near v. Then locally considering α as an element of R

〈fd11 ···f
dr
r 〉

,

it is easy to see that α is represented by λfn1
1 · · · fnrr for some λ ∈R, and

that β is represented by λfn2
2 · · · fnrr which gives the equation of P near v.

Therefore, from

lengthR/〈f1〉
R

〈f1, λf
n2
2 · · · f

nr
r 〉

> lengthR
R

〈f1, f
n2
2 · · · f

nr
r 〉

we deduce that locally near v we have P > (N − n1D1)|D1 because the left

hand side of the displayed formula is the coefficient of v in P and the right

hand side is nothing but the local intersection number (N − n1D1) ·D1

at v which is in turn equal to the coefficient of v in (N − n1D1)|D1 . As

P ∼ (L− n1D1)|D1 , we deduce that deg N |D1 6 0.

Proposition 3.14. Let D be an indecomposable curve of canonical type.

Then the arithmetic genus pa(D) = 1 and KD ∼ 0.

Proof. By definition of curves of canonical type KD = (KX +D)|D ≡ 0.

By [31, Chapter 7, Corollary 3.31], 0 = degk KD = 2(pa(D)− 1). Thus
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pa(D) = 1 which means X (OD) = 0, hence h1(OD) = h0(OD)> 0. So by

duality h0(KD) = h1(OD)> 0 which implies KD ∼ 0 by Proposition 3.13.

Proposition 3.15. Assume char k > 0. Let D be an indecomposable

curve of canonical type such that D|D is torsion. Then D is semi-ample

on X.

Proof. Let r be the order of D|D in Pic(D). First we want to show

rD|rD ∼ 0. This is trivially true if r = 1, so assume r > 1. Assume we already

know rD|lD ∼ 0 for some 0< l < r. Consider the exact sequence

0→OD(rD − lD)→O(l+1)D(rD)→OlD(rD)→ 0.

Now h0(OD(rD − lD)) = 0 by Proposition 3.13, and since X (OD) = 0, by

Riemann–Roch we get

X (OD(rD − lD)) = degk(rD − lD)|D + X (OD) = 0

which implies h1(OD(rD − lD)) = 0. So any nowhere vanishing section of

OlD(rD) lifts to O(l+1)D(rD) which shows rD|(l+1)D ∼ 0. Inductively one

shows rD|rD ∼ 0. Finally applying [42, Lemma 4.1], we deduce D is semi-

ample.

3.16 Abundance

Proof of Theorem 1.5. We can assume KX +B is not big by Proposi-

tion 3.7. Replacing X with its minimal resolution we can assume X is

regular. By assumption m(KX +B)∼M for some integer m> 0 and M

is an effective Cartier divisor. Let n be a sufficiently large natural number.

We can run an LMMP on KX + nM because

KX + nM ∼ (1 + nm)

(
KX +

nm

1 + nm
B

)
and because (X, nm

1+nmB) is klt. Moreover, we claim that M is numerically

trivial on each step of the LMMP and the nefness of M is preserved in the

process. Indeed assume the first step of the LMMP is a birational contraction

X → Z contracting a curve E. Then degk KE = (KX + E) · E < 0, hence by

Lemma 3.2, if setting l =H0(OE) then

−2 = degl KE = degl(KX + E)|E
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which implies degl KX |E =−1. Thus from degl(KX + nM)|E < 0 we deduce

M · E = 0, because otherwise, deglM |E > 1 since M is Cartier, this is

impossible since we have assumed n� 0. On the other hand, if X → Z

is a Mori fiber space, then we stop the LMMP and in this case M ≡ 0/Z

by Proposition 3.11 and calculations similar to those above. Applying this

argument to every step of the LMMP proves the claim. Note that the

regularity of X is also preserved by the LMMP because the LMMP is a KX -

MMP; hence X remains with terminal singularities which implies regularity.

Replacing X with the end product of the LMMP we can assume either

KX + nM is nef or that there is a Mori fiber structure X → Z so that M ≡
0/Z. First assume KX + nM is nef. There is a divisor 0 6D =

∑
diDi 6M

such that D is connected, the di have no common prime factor, and M = aD

in a neighborhood of D for some number a. In particular, D is nef. We

show D is an indecomposable curve of canonical type. It is enough to show

KX |D ≡ 0 because M not being big implies D|D ≡ 0. Since M is not big

and since m(KX +B)∼M , we deduce KX + n′M is not big for any n′.

Therefore, (KX + nM +M)2 = 0 from which we deduce (KX + nM) ·M =

0, hence (KX + nM)|D ≡ 0, so KX |D ≡ 0.

In order to apply Proposition 3.15 we need to show D|D is torsion. By

construction, B|D ≡ 0 which implies B = bD in some neighborhood of D

because D is connected, where b < 1 is a rational number. Taking positive

integer m′ so that m′b ∈ Z we get

0 ∼ m′KD =m′(KX +D)|D =m′(KX +B +D)|D −m′B|D
∼ (a+m′)D|D −m′bD|D

which impliesD|D is torsion because a+m′ −m′b > 0. Therefore,D is semi-

ample, hence κ(M) = 1 which implies M is semi-ample by Lemma 2.16.

Now assume we have a Mori fiber structure X → Z with M ≡ 0/Z. If F

is the generic fiber, then M |F ∼ 0. This implies M is the pullback of some

effective divisor N on Z. Either N is ample or N = 0, hence in any case M

is semi-ample.

Remark 3.17. Here we explain what we need from this section for the

proof of Theorem 1.2. We need Theorem 1.5 for the proof of Theorem 1.6. In

turn we use Theorem 1.6 in the proofs of Corollary 4.1 and Proposition 5.3

(steps 1 and 5) in two situations: when (1) F is smooth and when (2) κ(KF +

BF := (KX +B)|F ) = 0 and there is a surjective map F → C onto an elliptic

curve defined over the function field K of Z and such that KF +BF is big
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over C. In each case it is enough to know that KF +BF is semi-ample. In

case (1), we can pass to the algebraic closure K̄ and deduce that KF +BF
is semi-ample. In case (2), m(KF +BF )∼MF > 0 for some m> 0, and

using the map F → C it is relatively easy to show MF = 0: if not then each

connected component of MF is irreducible; let D be the reduction of such

a component; then there is one such D which maps onto C and one can

show that D is an elliptic curve with KF ·D = 0 and D|D torsion; one then

applies Proposition 3.15 to deduce that D is semi-ample, hence κ(MF ) > 1,

a contradiction.

§4. Relative good minimal models of 3-folds

Proof of Theorem 1.6. By [5], (X, B) has a log minimal model over Z.

Replacing (X, B) with the minimal model, we can assume KX +B is nef/Z.

Let F be the generic fiber of X → Z and let KF +BF = (KX +B)|F . Then

(F, BF ) is klt and KF +BF is nef with κ(KF +BF ) > 0. By Theorem 1.5,

KF +BF is semi-ample.

If κ(KF +BF ) = 0, then KF +BF ∼Q 0, hence KX +B ∼Q 0/Z, by

Lemma 2.18. On the other hand, if κ(KF +BF ) = 2, then KX +B is

big/Z, hence it is semi-ample over Z by Theorem 2.7. So we assume

κ(KF +BF ) = 1.

Since KF +BF is semi-ample and κ(KF +BF ) = 1, there is a diagram

Y
φ

~~

g

��
X

f   

S

h��
Z

where φ is birational, S is a smooth projective surface, and φ∗(KX +

B)|G ∼Q 0 on the generic fiber G of g. By Lemma 2.18, we can actually

assume φ∗(KX +B)∼Q 0/S. So φ∗(KX +B)∼Q g
∗D for some Q-Cartier

Q-divisor D on S. On the other hand, let H be an ample divisor on Z.

Then since D is nef and big over Z, D + nh∗H is nef and big for any n� 0.

Since we are working over F̄p, D + nh∗H is semi-ample (this follows from

[26]) which implies D is semi-ample over Z from which we deduce KX +B

is semi-ample over Z.

https://doi.org/10.1017/nmj.2016.61 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.61


IITAKA CN,M CONJECTURE FOR 3-FOLDS OVER FINITE FIELDS 41

Corollary 4.1. Let W be a smooth projective 3-fold over an alge-

braically closed field k of char p > 5. Assume κ(KW ) = 1. If X is a minimal

model of W , then the Iitaka fibration X 99K C is a morphism where C is a

smooth projective curve, and KX ∼Q 0/C.

Proof. Denote by g : W 99K C the Iitaka fibration, which is assumed to

be a morphism by blowing up W . Let r : Y → C be a minimal model of W

over C which has at most terminal singularities. Let R be the generic fiber

of r. Since Y is regular in codimension two, R is a regular surface. Since

κ(KW ) = 1 and since g is the Iitaka fibration of KW , κ(KR) = 0. Moreover,

as KY is nef over C, KR is nef too. Therefore, by Theorem 1.5, KR ∼Q 0.

This implies KY ∼Q 0/C as KY is nef over C, by Lemma 2.18. Thus KY is

the pullback of an ample Q-divisor on C. In particular, this means that Y

is a minimal model of W globally, not just over C.

From the above arguments, we have that KY is semi-ample. So if X is a

minimal model of W , then KX is semi-ample too by a standard argument

using the negativity lemma, the pullback of KX and KY coincide on any

common resolution of X and Y (cf. [4, Remark 2.7]). Therefore, the Iitaka

fibration X 99K C is a morphism, and KX ∼Q 0/C as claimed.

§5. Kodaira dimensions

In this section we prove some results on Kodaira dimensions which will

be used in the proof of Theorem 1.2.

Proposition 5.1. Let f : X → Z be a contraction from a smooth projec-

tive variety onto a smooth projective curve over an algebraically closed field

k of char p > 0. Assume there is an integer m> 1 such that f∗OX(mKX/Z)

is a nonzero nef vector bundle. If either

(1) g(Z)> 1; or

(2) g(Z) = 1 and deg f∗OX(mKX/Z)> 0;

then κ(KX) > κ(KF ) + 1 where F denotes the generic fiber.

Proof. (1) Since f∗OX(mKX/Z) is nef, f∗OX(mKX/Z)⊗OZ(P ) is ample

where P is a closed point on Z. So for sufficiently divisible positive integer

l, the sheaf Sl(f∗OX(mKX/Z)⊗OZ(P )) is globally generated. Considering

the natural homomorphism Sl(f∗OX(mKX/Z + f∗P ))→ f∗OX(l(mKX/Z +

f∗P )) which is nonzero, we conclude that the divisor l(mKX/Z + f∗P ) is

linearly equivalent to an effective Cartier divisor.
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As g(Z)> 1, we can write KZ ∼ P +N where N is an effective divisor.

Then

lmKX ∼ l(mKX/Z + f∗P ) + (m− 1)lf∗P + lmN.

Applying Lemma 2.20 we are done in this case.

(2) Let r = rank f∗OX(mKX/Z). Let d > r be an integer not divisible by

p. With Z seen as an abelian variety, the morphism Z ′ = Z
×d−−→ Z is an étale

cover of degree d2 by [34, Section 6]. Consider the base change

X ′ =X ×Z Z ′

f ′

��

g
// X

f
��

Z ′
π // Z.

Since π is flat, we have KX′/Z′ = g∗KX/Z by [18, Theorem 8.7] and

f ′∗OX′(mKX′/Z′)∼= π∗f∗OX(mKX/Z) by [19, Proposition 9.3]. By Riemann–

Roch for vector bundles over a curve, we have

h0(f ′∗OX′(mKX′/Z′)⊗OZ′(−P ′))

> deg(f ′∗OX′(mKX′/Z′)⊗OZ′(−P ′))

= deg f ′∗OX′(mKX′/Z′)− r

= d deg f∗OX(mKX/Z)− r > 0,

where P ′ ∈ Z ′ is a closed point. So mKX′ =mKX′/Z′ ∼ f ′∗P ′ + E for some

effective divisor E on X ′. Then

κ(KX) = κ(KX′) = κ(KX′ + f ′∗P ′) > κ(KF ′) + 1 = κ(KF ) + 1

by Lemma 2.20 where F ′ is the generic fiber of f ′.

Proposition 5.2. Let f : X → Z be a contraction from a normal Q-

factorial projective variety to an elliptic curve over F̄p. Assume that f∗OX
(lKX/Z) is a nonzero nef vector bundle for some l > 0. Then κ(KX) > 0.

Proof. If deg f∗OX(lKX/Z)> 0, then

h0(X,OX(lKX/Z)) = h0(f∗OX(lKX/Z)) > χ(f∗OX(lKX/Z))> 0.

So we can assume deg f∗OX(lKX/Z) = 0. By [1, Part II, Theorem 5], the vec-

tor bundle f∗OX(lKX/Z) can be decomposed into a direct sum
⊕

i Vi ⊗ Li
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where Vi are nef indecomposable vector bundles with h0(Vi) = 1 and Li are

line bundles with deg Li = 0. Since we work over F̄p, L1 is torsion, say of

order n. We have a cover π : Z ′ ∼= Z→ Z between elliptic curves induced

by the dual map Pic0(Z)
×n−−→ Pic0(Z). Then π∗L1 ∼OZ′ , and X ×Z Z ′ is

integral since π is flat and f is separable. Let X ′ be the normalization of

the fiber product X ×Z Z ′. Consider the natural morphisms f ′ : X ′→ Z ′

and π′ :X ′→X. Then we have a natural inclusion π∗f∗OX(lKX/Z)⊆
f ′∗(π

′∗OX(lKX/Z)) by [19, Proposition 9.3]. So f ′∗(π
′∗OX(lKX/Z)) contains

π∗V1 ⊗ π∗L1
∼= π∗V1. Hence

h0(X ′, π′∗OX(lKX/Z)) = h0(Z ′, f ′∗(π
′∗OX(lKX/Z))) > h0(Z ′, π∗V1) > 1.

By Theorem 2.22, we have

κ(X, KX) = κ(X, lKX/Z) = κ(X ′, π′∗OX(lKX/Z)) > 0.

Proposition 5.3. Let f : X → Z be a contraction from a projective 3-

fold with Q-factorial terminal singularities to an elliptic curve over F̄p with

p > 5. Assume that KX is big over Z and that the generic fiber of f is

smooth. Then κ(X) > 2.

Proof. We break the proof into several steps.

Step 1. By Theorem 2.7, there is a minimal model Y of X over Z. Since

Y has terminal singularities, the generic fiber of Y → Z is also smooth.

Replacing X with Y , we can assume KX is nef/Z. Since Z is an elliptic

curve, KX is actually globally nef by the cone theorem [6, Theorem 1.1],

because otherwise there will exist a rational curve Γ such that KX · Γ< 0,

and Γ must be contained one fiber of f since g(Z) = 1, which, however,

contradicts that X is minimal over Z.

Step 2. Let X ′ be the relative canonical model of X over Z which exists by

Theorem 2.7. SoKX′ is ample over Z. Since the geometric generic fiber Xη̄ of

f is smooth, the geometric generic fiber X ′η̄ of f ′ coincides with the canonical

model of Xη̄, and has canonical singularities which are strongly F -regular

since chark = p > 5 by [17]. Therefore, by Theorem 2.12, f ′∗OX′(mKX′) =

f∗OX(mKX) is a nef vector bundle for any sufficiently divisible m> 0.

If ν(KX) = 3, then κ(KX) = 3, so there is nothing to prove. On the other

hand, if f∗OX(mKX) is nef with deg f∗OX(mKX)> 0 for some m> 0,

then we are done by applying Proposition 5.1 to a resolution of X. So in

the following we assume ν(KX) = 2 and that deg f∗OX(mKX) = 0 for any

sufficiently divisible positive integer m.
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Step 3. Applying Proposition 5.2 and Step 2, we find a positive integer l

and a divisor M > 0 such that lKX ∼M and that f∗OX(klKX) is nef for

any k > 1. We prove that KX |M is semi-ample.

Let T be a horizontal/Z component of M . We show that KX |T is semi-

ample. Take the normalization S→ T , and let C ⊂ S be the reduction of

the conductor. Write M = nT + T ′ where T is not a component of T ′.

By adjunction [26, 5.3], we have(
KX +

M

n

)∣∣∣∣
S

∼Q KS + C +D

where D is a canonically defined effective Q-divisor and |S means pullback

to S. Then KX |S is semi-ample on S by Theorem 2.10.

We want to argue that semi-ampleness of KX |S implies semi-ampleness of

KX |T . Since KX is nef and K3
X = 0, we have K2

X · T = 0, that is, (KX |T )2 =

0, thus (KX |S)2 = 0.

If ν(KX |S) = 0, then KX |S ∼Q 0, that is, the associated map is trivial,

hence KX |T is semi-ample by [26, Corollary 2.14].

If ν(KX |S) = 1. We denote by h : S→ V the map associated to KX |S and

denote by H a general fiber, which has genus g(H) > 1 because it dominates

Z. As KX |S ·H = 0, we have (KS + C +D) ·H = 0, hence

0 6 deg KH = (KS +H) ·H =KS ·H =−(C +D) ·H 6 0.

Therefore, C ·H =D ·H = 0, and H is smooth with arithmetic genus

pa(H) = 1. Applying [26, Corollary 2.14] again, we conclude that KX |T is

semi-ample, and the associated map h̄ : T → V̄ is an elliptic fibration. In

particular, this means that no component of T ′ intersects the general fibers

of h̄.

Let R0 be the union of the vertical/Z components of M . Then since KX

is f -semi-ample by Theorem 2.7, the restriction KX |R0 is semi-ample. Let

R6M be a reduced divisor containing R0 and assume that KX |R is semi-

ample. If R= SuppM , then KX |M is semi-ample by [26, Lemma 1.4]. If

not, pick a horizontal/Z component T of M which is not a component of

R. As noted above, KX |T is semi-ample defining a contraction h̄ : T → V̄

such that, either V̄ = spec k, or dim V̄ = 1 and general fibers of h̄ do not

intersect any component of R. Applying [26, Corollary 2.12], we deduce that

KX |T∪R is semi-ample. Inductively, we extend R to the support of M .
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Step 4. In this step we prove κ(KX) > 1. Consider the following exact

sequence

(5.3.1) 0→OX((k − 1)M)→OX(kM)→OM (kM)→ 0.

For k > 2, by assumptions in Step 2, both f∗OX(kM) and f∗OX((k − 1)M)

are nef vector bundles with

deg f∗OX(kM) = deg f∗OX((k − 1)M) = 0.

If

h0(f∗OX(kM)) = h0(f∗OX((k − 1)M)) = 1

for all k > 2, then h1(f∗OX((k − 1)M)) = 1 for such k by Riemann–Roch,

and by taking cohomology of the exact sequence (5.3.1), we conclude that

h0(OM (kM)) 6 1. However, this contradicts semi-ampleness of M |M and

the property ν(M |M ) > 1. Therefore, κ(KX) > 1.

Step 5. Assume κ(KX) = 1. We derive a contradiction. Let W →X

be a resolution so that the Iitaka fibration W → C is a morphism. By

Corollary 4.1, the induced map X 99K C is a morphism and KX ∼Q 0/C.

In particular, ν(KX) = 1 which contradicts the assumption ν(KX) = 2.

§6. Proof of Theorem 1.2

Proof of Theorem 1.2. We can assume κ(KZ) > 0 and κ(KF ) > 0. As

pointed out in the introduction C3,2 follows from [13], so we assume n= 3

and m= 1. Replacing X with a minimal model over Z, we can assume KX

is nef/Z. Of course X may not be smooth any more but it has Q-factorial

terminal singularities. The generic fiber stays smooth by the arguments in

Step 1 of the proof of Theorem 5.3.

If κ(KF ) = 0, then by Theorem 1.6 and Lemma 2.18, KX/Z ∼Q f
∗M for

some Q-divisor M . Moreover, by Theorem 2.12, KX/Z is nef, hence deg M >
0 which implies κ(M) > 0 as we are working over F̄p. Thus κ(KX/Z) > 0 and

κ(KX) = κ(KX/Z + f∗KZ) > κ(KZ).

If κ(KF ) = 1, then KF is semi-ample by Theorem 1.5. We claim that the

geometric generic fiber of the Iitaka fibration I : F → C is a smooth elliptic

curve. Indeed, denote by F̄ = F ⊗K(Z) K(Z) the geometric generic fiber of

f . Since char k = p > 5, the geometric generic fiber of the Iitaka fibration

Ī : F̄ → C̄ is a smooth elliptic curve by [2, Theorem 7.18]. For any sufficiently
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divisible positive integer n, since H0(F̄ , nKF̄ )∼=H0(F, nKF )⊗K(Z) K(Z),

we see that Ī : F̄ → C̄ coincides with the base change of the morphism I :

F → C via spec K(Z)→ spec K(Z). Thus the geometric generic fiber of I

is a smooth elliptic curve.

Considering the relative Iitaka fibration, blowing up X if necessary, with

the help of Theorem 1.6 and Lemma 2.18, we get a smooth resolution of

σ :X ′→X and a smooth surface Y fitting into the following commutative

diagram

X

f
��

X ′
σoo

h
��

Z Y
g

oo

such that

• the geometric generic fiber of h is a smooth elliptic curve;

• σ∗KX ∼Q h
∗D where D is a g-big divisor on Y .

By flattening trick (cf. [46, Lemma 7.3]), we can assume that every h-

exceptional divisor is also σ-exceptional. By Theorem 2.14, we have effective

vertical (w.r.t. h) divisors D1, D2 on X ′ such that

σ∗KX +D1 ∼Q KX′ ∼Q h
∗KY +D2.

Then D2 −D1 ∼Q h
∗(KY −D). So there exists a Q-divisor ∆ on Y such

that D1 −D2 = h∗∆. We can write that

∆ = ∆1 −∆2

where ∆1 and ∆2 are effective divisors on Y having no common components,

thus are supported in h(D1) and h(D2), respectively. It follows that

h∗D ∼Q h
∗(KY + ∆2 −∆1) and thus D2 −D1 ∼Q h

∗(∆2 −∆1).

Therefore,

σ∗KX + h∗∆1 ∼Q h
∗(D + ∆1)∼Q h

∗(KY + ∆2).

Consider the pair (Y,∆2). By Theorem 2.10, we obtain a minimal model

(Y ′,∆′) of (Y,∆2) such that KY ′ + ∆′ is semi-ample. Denote by µ : Y → Y ′
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the natural morphism. There exists an effective µ-exceptional divisor E such

that

KY + ∆2 = µ∗(KY ′ + ∆′) + E.

Since D + ∆1 ∼Q KY + ∆2 and D is nef and g-big, we have

ν(Y ′, KY ′ + ∆′) = ν(Y, KY + ∆2) > ν(Y, D) > 1

where the first “=” is obtained by the proof of [9, Proposition 2.7] and the

fact that µ∗(OY (xnEy)) =OY ′ for any integer n > 0. So

κ(Y, KY + ∆2) = κ(Y ′, KY ′ + ∆′) = ν(Y ′, KY ′ + ∆′) > 1.

Observe that every component of h∗∆1 is either contained in D1 or

h-exceptional, thus is σ-exceptional. Then applying Theorem 2.22, we

conclude that

κ(X) = κ(X ′, σ∗KX + h∗∆1) = κ(Y, KY + ∆2) > 1.

If g(Z) = 1, then we are done by the above inequality.

So assume that g(Z) > 2. If κ(X) = 1, then by Corollary 4.1 KX is semi-

ample, and the Iitaka fibration I :X → C is a morphism. Let G be a general

fiber of I, which is integral since I is separable [2, Lemma 7.2]. Then G is

dominant over Z and KG ∼Q 0. Let G̃ be a smooth resolution of G. By the

construction above, the divisor h∗D ∼Q σ
∗KX is semi-ample, and induces a

morphism coinciding with the composite morphism X ′→X → C. Since h :

X ′→ Y is fibered by elliptic curves, we conclude that the Stein factorization

of the natural morphism G̃→ Z induces an elliptic fibration G̃→ Z̃ with

g(Z̃) > 2, hence κ(G̃) > 1. However, this contradicts that KG ∼Q 0.

Finally assume κ(KF ) = 2. If κ(KZ) = 0 we apply Proposition 5.3. But

if κ(KZ) = 1, we replace X with its canonical model over Z so that KX is

ample over Z, and we use Theorem 2.12 to deduce f∗OX(mKX/Z) is a nef

vector bundle for sufficiently divisible integer m> 0 as in the proof of 5.3;

next we apply Proposition 5.1 to a resolution of X.

Proof of Corollary 1.3. By [2, Corollary 7.3] f has integral generic geo-

metric fiber. Let F be the generic fiber of f , let F1 = F ×K(Z) K(Z)1/p∞ ,

and let F̃1→ F1 be a desingularization. Since K(Z)1/p∞ is perfect, F̃1 is

smooth over K(Z)1/p∞ by [31, Chapter 4 Corollary 3.33]. Therefore, there

exists a natural number e such that F̃1 can be descent to F̃2, which is a

desingularization of F2 = F ×K(Z) K(Z)1/pe and smooth over K(Z)1/pe .
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Denote by F e : Z ′→ Z the eth absolute Frobenius iteration. Then X ×Z
Z ′ is integral since F e is flat and f is separable. We have the following

commutative diagram

X ′

f ′
((

π // X ×Z Z ′

��

g
// X

f
��

Z ′
F e

// Z

where π :X ′→X ×Z Z ′ is a resolution. By the above argument, the generic

fiber F ′ of f ′ is a smooth curve over K(Z ′). By Theorem 1.2,

κ(KX′) > κ(KF ′) + κ(KZ′) = κ(KF̃ ) + κ(KZ).

Let σ = gπ :X ′→X be the natural composite morphism. By [13, Theo-

rem 2.4], there exists an effective σ-exceptional divisor E on X ′ such that

KX′/Z′ 6 σ∗KX/Z + E.

Thus

KX′ + (pe − 1)f ′∗KZ′ 6 σ∗KX + E.

We can assume KZ′ is effective, thus

κ(KX) = κ(σ∗KX + E) > κ(KX′ + (pe − 1)KZ′)

> κ(KX′) > κ(KF̃ ) + κ(KZ),

where the first “=” is from Theorem 2.22.
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